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AMPS: AN AUGMENTED MATRIX FORMULATION FOR
PRINCIPAL SUBMATRIX UPDATES WITH APPLICATION TO

POWER GRIDS∗
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Abstract. We present AMPS, an augmented matrix approach to update the solution to a linear
system of equations when the matrix is modified by a few elements within a principal submatrix.
This problem arises in the dynamic security analysis of a power grid, where operators need to perform
N − k contingency analysis, i.e., determine the state of the system when exactly k links from N fail.
Our algorithms augment the matrix to account for the changes in it, and then compute the solution
to the augmented system without refactoring the modified matrix. We provide two algorithms—a
direct method and a hybrid direct-iterative method—for solving the augmented system. We also
exploit the sparsity of the matrices and vectors to accelerate the overall computation. We analyze
the time complexity of both algorithms and show that it is bounded by the number of nonzeros
in a subset of the columns of the Cholesky factor that are selected by the nonzeros in the sparse
right-hand-side vector. Our algorithms are compared on three power grids with PARDISO, a parallel
direct solver, and CHOLMOD, a direct solver with the ability to modify the Cholesky factors of the
matrix. We show that our augmented algorithms outperform PARDISO (by two orders of magnitude)
and CHOLMOD (by a factor of up to 5). Further, our algorithms scale better than CHOLMOD as
the number of updated elements increases. The solutions are computed with high accuracy. Our
algorithms are capable of computing N − k contingency analysis on a 778,000-bus grid, updating a
solution with k = 20 elements in 16 milliseconds on an Intel Xeon processor.
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1. Introduction. We consider updating the solution to a system of equations
Ax = b, where A is a symmetric positive definite or indefinite n × n matrix and b
is an n-vector, when a low-rank change is made to A. The change we consider is an
update of a principal submatrix of the form

(1) Â = A−HEH>,

where E is a symmetric m×m matrix, and H is an n×m submatrix of an identity
matrix, and m � n. Since both A and E are symmetric, Â is also symmetric. Note
that the dimension of the matrix does not change when it is updated. We wish to
compute the solution to the updated system

(2) Âx̂ = b̂.
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We describe an augmented matrix approach to the solution of the updated system,
in which the augmented matrix is a block 3 × 3 matrix whose (1, 1)-block is the
original matrix A, and the updates to A are represented by the other submatrices of
the block matrix. We describe two algorithms to solve this augmented system. In
both algorithms, the original matrix A is factored with a direct method. In the first
algorithm, the Schur complement system is also solved by a direct method, and in the
second algorithm it is solved with a Krylov subspace solver. We maintain symmetry
in the augmented system of equations and the second algorithm, whereas in the first
algorithm an unsymmetric system is solved to reduce the computation time. Note that
our algorithms can handle arbitrary changes to b̂ in (2). However, in the power grid
application considered here, b̂ only changes in the set of m rows where the principal
submatrix is updated. Hence we focus on this situation in our experiments.

Our motivation for this work comes from dynamically assessing the security of
power grids, which is also called contingency analysis. In power engineering, an
interconnected power system is described by a system of complex, nonlinear equations
representing the relationship between voltage, power, and admittance at points of
interest called buses. Here, we consider the “DC” approximation of this problem,
which is derived using heuristic assumptions, and is described by a linear system,

(3) −Bd = p,

where B is the imaginary component of the n×n admittance matrix, d is an n-vector
of the relative phase shift of the voltage, p is an n-vector of the real power, and n is
the number of buses in the system. In contingency analysis, one removes an existing
connection between two buses in the system to simulate the failure to transmit power
through that transmission line, or all the connections to a generator to simulate the
failure to generate power from it. Removing a connection in the system corresponds
to a principal submatrix update to (3), and the updated matrix has the same size n
as the original matrix. Bienstock discusses a mixed-integer programming approach
to this problem [1], which restricts the size of the problems they can solve to a few
hundred buses.

We propose AMPS, an augmented system that is equivalent to (2), which means
solving the augmented system in exact arithmetic would give us the same solution
vector x̂. Our experimental results show that the accuracy of the solution to the
augmented system is comparable to that of the solution x̂ obtained by solving (2) by
a direct method.

Our algorithm satisfies the following four desiderata:
1. The solution of the augmented system should be computed in a number of

operations proportional to the size of the update m rather than the size of
the system n. This is especially important for large systems when there is a
need for a sequence of updates in real time.

2. The accuracy of the solution to the augmented system should be comparable
to that of the direct solution of the modified system.

3. Both the factors of the matrix and the solution of the original system should
be utilized in solving the augmented system to avoid redundant computations.

4. Sparsity in the matrices and the vectors should be exploited to accelerate the
computations.

The work most closely related to this paper is an augmented matrix approach
to solving the stiffness system of equations in a surgery simulation when an organ
is cut or deformed, proposed by Yeung, Crouch, and Pothen [16]. The surgery is
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visualized by updating a finite element formulation of a linear elastic model of the
organ as it is cut. The matrix here is the (varying) stiffness matrix from the finite
element model of the organ. For surgery simulations, solutions of tens or hundreds
of modified systems per second are needed. With the augmented matrix approach,
the stiffness matrix of the initial mesh can be kept unchanged, and all changes as the
mesh is being cut can be described using the (1, 2)- and (2, 1)-blocks of a block 2× 2
matrix. In this problem, nodes and elements could be deleted, added, or replaced, and
thus the dimension of the matrix changes, unlike the situation here. These authors
used an unsymmetric form of the augmented matrix with a hybrid direct-iterative
algorithm, where a direct method was used to factor the initial stiffness matrix, and
the Schur complement system was solved implicitly using a Krylov space solver. There
are two major differences here. The first is that the update is restricted to a principal
submatrix in the power grid context. The second is that symmetry is preserved, while
it was destroyed in the earlier method even though both the matrix and the updates
were symmetric. There are other existing augmented matrix approaches, which will
be discussed later in this paper.

Notation. We use Householder notation throughout; that is, matrices are de-
noted by uppercase Roman letters, vectors by lowercase Roman letters, and scalars by
Greek letters. There are some exceptions: Indices and dimensions are also denoted by
lowercase Roman letters (e.g., i, j, k and m, n). With this convention, the elements
of a matrix A are denoted by αij , and the elements of a vector x are denoted by χj . A
submatrix of A is denoted by Aij , and a subvector of x is denoted by xj . We use A>

to denote the transpose of A. The symbols L and D are reserved for lower triangular
and (block) diagonal matrices. The jth column of the identity matrix I is written as
ej , and thus the matrix H in (1) is H = [ej1 , ej2 , . . . , ejm

] for the set of indices of the
modified rows and columns S = {j1, j2, . . . , jm}.

Organization of this article. Section 2 presents our new augmented system
of equations for solving the modified system when a principal submatrix is updated.
Section 3 describes the details of the algorithm to solve the modified system using
the augmented formulation presented in the previous section. Section 4 presents
computational times and the accuracy of solutions when the augmented system is
applied to contingency analysis of three power grids. Section 5 discusses conclusions
and directions for future work.

2. Augmented system formulation. It is well known that augmented sys-
tems can be used to effectively add and remove rows and columns of matrices [2, 7].
We begin by describing how these operations are accomplished, assuming that both
the original matrix and the modifications are symmetric; i.e., the procedures are ap-
plied to rows and columns simultaneously. These modifications are not restricted to
principal submatrix updates. Also, these modifications might not preserve the nonsin-
gularity of the matrix. Hence after each update, we characterize the conditions that
must be satisfied for the updated matrix to be nonsingular when the initial matrix is
nonsingular. These results are obtained using the determinantal identity

det
[
A B
C D

]
= det (A) det (D − CA−1B),

when A is nonsingular. The goal of these characterizations is to show that our aug-
mented system formulation by itself does not create singular matrices.
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2.1. Adding a row and a column. To add a row and a column to Ax = b,
we consider the system

(4)
[
A â

â> α̂

] [
x̂1
χ̂

]
=
[
b

β̂

]
.

If A is nonsingular and α̂ 6= â>A−1â, then the augmented matrix is nonsingular, and
if A is positive definite and α̂ > â>A−1â, then the augmented matrix is also positive
definite.

2.2. Removing a row and a column. To remove the jth row and column
from Ax = b, we consider the system

(5)
[
A ej

e>j 0

] [
x̂1
χ̂

]
=
[
b
0

]
.

The last row e>j x̂1 = 0 constrains the jth component of x̂1 to be 0, and consequently
removes the contribution of the jth column ofA. This leaves us with one fewer effective
variable than the number of equations. This is compensated for by the additional
component χ̂ in the solution vector. Consider the jth row of the augmented system:
e>j Ax̂1+χ̂ = e>j b. Since χ̂ only appears in the jth row of the system, it is constrained
to the value e>j (b − Ax̂1) after all the other components of x̂1 are determined. Its
value will be discarded after the system is solved.

Augmentation in this manner makes the matrix symmetric indefinite. If A is a
symmetric positive definite matrix, then we can show that the augmented matrix is
nonsingular, since its determinant is equal to −det(A) (A−1)jj , and both terms are
positive.

2.3. Replacing a row and a column. Replacing a row and a column can be
done by removing the old row and column and adding the new ones. The resulting
augmented formulation would be

(6)

 A âj ej

â>j α̂jj 0
e>j 0 0

x̂1
χ̂1
χ̂2

 =

b

β̂
0

 ,
where âj and α̂jj are the jth column and the (j, j)th element of Â in (2), respectively.
Note that the jth component of âj is then multiplied by the jth component of x̂1,
which is constrained to be 0 by the last equation. Hence the jth component of âj can
be chosen arbitrarily.

We can calculate the determinant of the augmented matrix as

det (A) det

[
α̂jj − â>j A

−1âj −â>j A
−1ej

−e>j A
−1âj −e>j A

−1ej

]
.

Hence if A and the 2 × 2 matrix above are both nonsingular, the augmented matrix
is also nonsingular.

2.4. Replacing multiple rows and columns. Replacing m rows and columns
can be done by concatenating the replaced rows and columns. Suppose the set of
indices of the rows and columns to be replaced is S = {j1, j2, . . . , jm}. The complete
augmented formulation would be

(7)

 A J H
J> C 0
H> 0 0

x̂1
x̂2
x̂3

 =

 b

H>b̂
0

 ,
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where J = [âj1 , âj2 , . . . , âjm
] are the modified columns of Â, H = [ej1 , ej2 , . . . , ejm

]
is the submatrix of the identity matrix with the indices of the columns to be replaced,
and C = H>ÂH is the diagonal block of the modified matrix Â where the changes
occur. Note that the submatrix C is m×m, J and H are n×m, and m� n.

Again, if A is nonsingular, we can express the determinant of the augmented
matrix as

det (A) det
[
C − J>A−1J −J>A−1H
−H>A−1J −H>A−1H

]
.

If A and the second matrix above are both nonsingular, then the augmented matrix
is also nonsingular. (We can choose J = AH as shown later in this section; then the
block 2 × 2 matrix above is the negation of the Schur complement matrix S1 in the
iterative variant of our AMPS algorithm in section 3.) In other words, the augmented
matrix is nonsingular if and only if both A and the Schur complement matrix S1 are
nonsingular.

We proceed to refine the system of equations (7) further. With a suitable n × n
permutation matrix P , we can partition H into an identity matrix and a zero matrix:

(8) PH =
[
Im

0n−m

]
.

Applying the same permutation matrix P to J , A, x̂1, and b yields

PJ =
[
J1
J2

]
, PAP> =

[
A11 A12
A>12 A22

]
,(9a)

P x̂1 =
[
x̂11
x̂12

]
, Pb =

[
b1
b2

]
.(9b)

We can then apply the permutation matrix

(10) P̂ =

P Im
Im


to the matrix in (7) from both left and right, which yields

(11)


A11 A12 J1 I
A>12 A22 J2 0
J>1 J>2 C 0
I 0 0 0




x̂11
x̂12
x̂2
x̂3

 =


b1
b2

H>b̂
0

 .
Here A11 is the m×m submatrix being replaced by C, A22 is the (n−m)× (n−m)
principal submatrix of A that is unchanged, and A12 is the m× (n−m) off-diagonal
submatrix of A. Note that the third column block effectively replaces the first column
block, and by symmetry in the update, the third row block also replaces the first row
block. Hence, the submatrix

[
J2
C

]
must consist of the modified columns in Â that

correspond to the original columns
[

A>
12

A11

]
in A.

Lemma 1. The submatrix J1 in (11) can be chosen arbitrarily such that the system
is always consistent. Moreover, if Â in (2) is nonsingular, x̂12 and x̂2 are independent
of the submatrix J1.
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Proof. Consider the last row block of (11). We have x̂11 = 0. Consequently, the
first column block, which then multiplies x̂11, does not contribute to the solution of
the system. Moreover, consider the first row block of (11):

(12) A12x̂12 + J1x̂2 + x̂3 = b1.

Since x̂3 only contributes to one row block in the system of equations, its values can
be determined uniquely for any values of J1. Hence the submatrix J1 can be chosen
arbitrarily.

Now we can prove the second statement in the lemma. If we consider the second
and third row and column blocks of system (11), since the last column blocks are zero
for these rows, we have, after row and column permutations,

(13)
[
C J>2
J2 A22

] [
x̂2
x̂12

]
=
[
H>b̂
b2

]
.

(This system is the updated n× n system of equations (2) written in its block 2× 2
form.) Hence the vectors x̂12 and x̂2 are independent of the submatrix J1.

Note that the values of x̂2 and x̂3 are coupled in (12); i.e., we can express one in
terms of the other. Therefore, we need only one of them when solving the updated
solution x̂ in (2).

Since we have applied the permutation to the solution vector in (11), we need to
unpermute it to obtain the updated solution x̂ in (2). Hence we obtain

(14) P x̂ =
[

x̂2
x̂12

]
.

2.5. Principal submatrix update. We now extend the techniques described
in the previous subsection to design an augmented matrix approach to update the
solution when A is modified by a principal submatrix update as in (1). In this case,
all the changes are captured in the submatrix C in (7), and we can deduce that
C = H>ÂH = H>AH − E. Therefore, the submatrix J2 in (11) remains unchanged
from the original system, and thus J2 = A>12. As proven in the previous subsection,
J1 in (11) can be chosen arbitrarily. With the choice of J1 = A11, we can show that

(15) J = P>
[
J1
J2

]
= P>

[
A11
A>12

]
= AH.

The last equation follows from

(16) AH = P>
[
A11 A12
A>12 A22

]
PH = P>

[
A11 A12
A>12 A22

] [
Im

0n−m

]
= P>

[
A11
A>12

]
.

We can thus write (7) as

(17)

 A AH H
H>A C 0
H> 0 0

x̂1
x̂2
x̂3

 =

 b

H>b̂
0

 .
Here is an example in which the principal submatrix at the third and fifth rows
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and columns are modified. The augmented system (17) would be

(18)



A

α13 α15 0 0
α23 α25 0 0
α33 α35 1 0
α43 α45 0 0
α53 α55 0 1

...
...

...
...

α31 α32 α33 α34 α35 · · · α̂33 α̂35 0 0
α51 α52 α53 α54 α55 · · · α̂53 α̂55 0 0
0 0 1 0 0 · · · 0 0 0 0
0 0 0 0 1 · · · 0 0 0 0





χ̂1
χ̂2
ζ3
χ̂4
ζ5
...
χ̂3
χ̂5
δ3
δ5


=



β1
β2
β3
β4
β5
...
β̂3

β̂5
0
0


,

in which the ζ terms are constrained to be 0, the χ̂ terms are the permuted solutions
to (2), and the δ terms are the values of x̂3 in (17).

3. Solution method. In this section, we describe our algorithms to solve the
system (7). Suppose we have computed the LDL> factorization of A when solving
the original system Ax = b. Here, L is a unit lower triangular matrix, and D is a
diagonal matrix or block diagonal matrix with 1× 1 or 2× 2 blocks if A is indefinite.
A fill-reducing ordering and an ordering to maintain numerical stability are usually
used during the factorization, and thus a permuted matrix of A is factored, i.e.,
Ṗ>AṖ = LDL> for some permutation matrix Ṗ . We assume that hereafter the
permuted system Ṗ>AṖ Ṗ>x = Ṗ>b has replaced the original system. Solutions to
the original system Ax = b can then be obtained by applying the inverse permutation
Ṗ . For simplicity, we will not explicitly write the permutation matrices Ṗ . We can
solve (17) in two ways.

Iterative method. With A = LDL> as a block pivot, (17) can be reduced to a
smaller system involving the symmetric matrix S1, negation of the Schur complement
of A:

(19)
[
E I
I H>A−1H

]
︸ ︷︷ ︸

S1

[
x̂2
x̂3

]
=
[
H>(b− b̂)
H>A−1b

]
,

where E = H>AH − C, which is the same E as in (1). This can be shown by
premultiplying and postmultiplying (1) by H> and H, respectively:

(20) C ≡ H>ÂH = H>AH −H>HEH>H = H>AH − E.

We can solve (19) by an iterative method such as GMRES or MINRES. Matrix-vector
products with S1 need a partial solve with A = LDL> involving only the rows and
columns selected by H and H>, and products with E, in each iteration. Note that H>

in the right-hand-side vector selects the components from the difference vector b̂− b
and the solution x of the original system Ax = b, if the changes in the right-hand-side
vector are only in the changed rows of A.

Direct method. Alternatively, the (2, 1)-block of S1 can be used as a block
pivot with another Schur complement:

(21)
(
EH>A−1H − I︸ ︷︷ ︸

S2

)
x̂3 = EH>A−1b−H>(b− b̂).
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We can then solve this equation for x̂3 using a direct solver with an LU factorization
of S2, which can be constructed efficiently as described later in subsection 3.3. Note
that S2 is unsymmetric although both the augmented matrix in (17) and S1 in (19)
are symmetric. This is because we have chosen an off-diagonal block pivot in forming
S2 to avoid the computation of the inverse of either E or H>A−1H on the diagonal
block of S1.

3.1. Solution to the modified system. It turns out that we only need to
compute x̂3 to obtain the full solution vector x̂ to the modified system (2). This can
be done by making the following observation. Premultiplying the first row block of
(17) by A−1 and rearranging terms yields

(22) x̂1 = A−1b−Hx̂2 −A−1Hx̂3.

From (14), we have

(23) P x̂ =
[

x̂2
x̂12

]
=
[
x̂11
x̂12

]
+
[
x̂2
0

]
= P x̂1 + PHx̂2

by using (8) and (9b) and the fact that x̂11 = 0. Premultiplying both sides by P>

yields

(24) x̂ = x̂1 +Hx̂2.

Substituting (22) into (24), we have

(25) x̂ = A−1b−A−1Hx̂3,

in which the first term is the solution to the original system.

3.2. Relation to the Sherman–Morrison–Woodbury formula. The solu-
tion x̂ in (2) obtained by AMPS using the direct approach can be expressed in a single
equation by substituting x̂3 in (21) into (25):

(26) x̂ = A−1b−A−1H
(
EH>A−1H − I

)−1
[
EH>A−1b−H>(b− b̂)

]
.

In the case when the right-hand side of (2) does not change from the original system,
i.e., b̂ = b, (26) becomes

(27) x̂ =
[
A−1 −A−1H

(
EH>A−1H − I

)−1
EH>A−1

]
b.

Using the Sherman–Morrison–Woodbury formula

(28) (A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1,

the inverse of Â in (1) can be expressed as

Â−1 =
[
A+ (H) (−I)

(
EH>

)]−1

= A−1 −A−1H
(
−I + EH>A−1H

)−1
EH>A−1,(29)

which when multiplied by b is identical to (27).
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3.3. Forming the Schur complement S2 explicitly. In the previous subsec-
tion we have described the algorithm to solve the modified system using the augmented
formulation. We now discuss how we form the matrix W ≡ EH>A−1H in the Schur
complement S2 in (21) by using partial triangular solves.

From the factorization of A, the matrix H>A−1H can be expressed as the product
H>L−>D−1L−1H. Then W> can be expressed as

(30) W> = H>L−>D−1L−1HE.

Recall that E is symmetric. Let X ≡ L−1HE. Premultiplying both sides of this
equation by L, we have

(31) LX = HE ≡ Ẽ.

Observe that the right-hand side of (31) is a matrix Ẽ mapping the ith row of E to
the jith row of Ẽ with the rest of Ẽ filled with zeros. For instance, if the set of indices
of updates is S = {3, 5}, then (31) would be

(32) LX = HE =



0 0
0 0
1 0
0 0
0 1
...

...


E =



0 0
0 0
ε11 ε12
0 0
ε21 ε22
...

...


.

Since both L and Ẽ are sparse, we can use partial forward substitution to solve for X.
Let Y ≡ L−1H. We can again use partial forward substitution by exploiting the

sparsity in H and L to compute Y , as discussed in the next subsection. Once we have
the matrices X and Y , we can compute W> as follows:

(33) W> = H>L−>D−1X = Y >D−1X.

3.3.1. Exploiting sparsity in the computations. To describe how we exploit
the sparsity in the matrices and the vectors to reduce the complexity of our algorithms,
we need a few concepts from sparse matrix theory as outlined below. We start with
a few definitions to help with the discussions that follow.

Definition 2. An n× n sparse matrix A can be represented by a directed graph
G(A) whose vertices are the integers 1, . . . , n and whose edges are

{(i, j) : i 6= j and αij 6= 0}.

The edge (i, j) is directed from vertex i to j. The set of edges is also called the
(nonzero) structure of A.

The transitive reduction of a directed graph G = (V,E) is obtained by deleting
from the set of edges E every edge (i, j) such that there is a directed path from vertex
i to j that does not use the edge (i, j) itself.

Definition 3 (see [11]). An elimination tree of a Cholesky factor L is the tran-
sitive reduction of the directed graph G(L).

Definition 4. The (nonzero) structure of an n-vector x is

struct (x) := {i : χi 6= 0},

which can be interpreted as a set of vertices of the directed graph of any n×n matrix.
In this paper, for a vector x, closureA (x) refers to closureA (struct (x)).
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Definition 5. Given a directed graph G(A) and a subset of its vertices denoted
by V , we say V is closed with respect to A if there is no edge of G(A) that joins a
vertex not in V to a vertex in V ; that is, νj ∈ V and αij 6= 0 implies νi ∈ V . The
closure of V with respect to A is the smallest closed set containing V ,

closureA (V ) :=
⋂
{U : V ⊆ U, and U is closed},

which is the set of vertices of G(A) from which there are directed paths in G(A) to
vertices in V .

To compute the structure of X in (31), we apply the following theorem.

Theorem 6. Let the structures of A and b be given. Whatever the values of the
nonzeros in A and b, if A is nonsingular, then

struct
(
A−1b

)
⊆ closureA (b) .

The proof of Theorem 6 is due to Gilbert [6]. Hence the structure of each column
of X would be the closure of the nonzeros of the corresponding column of Ẽ in the
graph of G(L). Similarly, to compute the submatrix of L> necessary to obtain the
needed components of W̃ , we can apply the following theorem.

Theorem 7. Suppose we need only some of the components of the solution vector
x of the system Ax = b. Denote the needed components by x̃. If A is nonsingular,
then the set of components in b needed is closureA> (x̃).

The proof of Theorem 7 can be found in [16]. Hence we can deduce that if S is
the set of indices of updates, the submatrix of L> needed would also be the closure
of S, which is the same as the row indices of nonzeros in the columns of X. (Recall
that S has cardinality m.) Since L is a Cholesky factor, this closure is equivalent to
the union of all the vertices on the paths from S to the root of the elimination tree
of G(L), denoted by PS, as proven among others in [16]. We denote the size of this
closure by ρ:

(34) ρ ≡ | closureL (S) | =
∑
k∈PS

|L∗k|.

The upper bound on ρ is the total number of nonzeros in L, denoted by |L|. In
practice, since m � n, this upper bound is quite loose, and ρ is closer to a small
constant times m than to |L|.

3.4. Complexity analysis. The time complexity of principal submatrix up-
dates using the symmetric augmented formulation can be summarized as in Table 1.
Direct method refers to the approach of solving for x̂3 directly using (21), and iterative
method refers to the approach of applying an iterative method to (19). Recall that n
is the size of the original matrix A, m is the size of the principal submatrix update C,
while t denotes the number of iterations that the iterative method takes to converge.

The overall time complexity of the direct method is dominated by either step 3
(computing W>) or step 7 (solving for x̂), i.e., O(m·ρ+|L|). For the iterative method,
the time complexity is dominated by either step 6 (solving for x̂3) or step 7 (solving
for x̂), i.e., O(t · ρ+ |L|). Hence the AMPS algorithms have the time complexities

(35) O(m · ρ+ |L|) (direct) and O(t · ρ+ |L|) (iterative).
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Table 1
Summary of time complexity.

Computation Complexity

Direct method Iterative method

Amortized initialization:

1 Compute LDL> factorization of A O(n3/2) for planar networks

2 Compute x = A−1b O(|L|)

Real-time update steps:

1 Obtain the submatrix B O(|B|) ≤ O(m2)

2 Compute E = H>AH −B O(|E|) ≤ O(m2)

3 Compute W> = H>A−1HE O(m · ρ) -

(a) Form Ẽ = HE O(|E|) -

(b) Solve LX = Ẽ O(m · ρ) -

(c) Solve L>W̃> = D−1X O(m · ρ) -

(d) Form W> = H>W̃> O(m2) -

4 Form W − I O(m) -

5 Form right-hand side of (19) and (21) O(m) O(|E|+m)

6 Solve for x̂3 O(m3) O(t · ρ)

7 Solve x̂ = x−A−1Hx̂3 O(|L|)

In comparison, for CHOLMOD [4], the time complexity for updating the Cholesky
factor of the matrix, when row and column changes are made, is

(36) O

∑
j∈S

 ∑
k:Ljk 6=0

|L∗k|+
∑

k∈P j

|L∗k|

 ,

where L is the original Cholesky factor, L is the modified Cholesky factor, and P j

is the path from node j to the root of the elimination tree of L. (Note that we
have to add the cost |L| to compute the solution by solving the triangular system of
equations.)

Consider the two inner sums in the expression for the complexity. The first inner
sum computes the total number of operations of steps 1–4 in both Algorithms 1
(Row Addition) and 2 (Row Deletion) in CHOLMOD. If we denote Tj as the set
of nodes k < j in G(Â) that have an edge incident on node j, then this sum is
equivalent to the number of outgoing edges of the closure of Tj in G(L) up to node j.
The second inner sum computes the number of operations needed for step 5 (rank-1
update/downdate) in Algorithms 1 and 2 of CHOLMOD. This sum is equivalent to
the closure of {j} in the updated graph G(L). Combining the two summation terms,
we can express the time complexity of CHOLMOD in terms of the closures:

(37) O

∑
j∈S

closure L (Tj)

 ≤ O(m ·max
j

closure L (Tj)
)
.

We make two observations when comparing the AMPS algorithms with CHOL-
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MOD. First, in general, the AMPS algorithms do not introduce new fill-in elements in
the Cholesky factor, whereas fill-ins are possibly introduced in CHOLMOD. However,
this happens when the update introduces a new nonzero entry in row/column j of
Â. In our application to the contingency analysis for power flow, we only remove
connections between buses. Hence running CHOLMOD neither introduces fill-ins
to the factor nor changes the elimination tree. Second, since the nodes in Tj are
numbered less than j, the closure of Tj is always larger than the closure of {j},
whether or not the updated factor L is different from L. In the case that row j of L is
relatively dense due to fill-in, the first inner sum in (36) may be the dominant term.
On the other hand, the AMPS algorithms only need the closure from node j in G(L).

3.5. Comparison with other augmented methods. Several algorithms have
been proposed to solve a modified system of linear equations using augmented matri-
ces. Gill et al. [7] used augmented matrices and a factorization approach to update
basis matrices in the simplex algorithm for linear programming, motivated by the
work of Bisschop and Meeraus [2, 3]. In their method, the matrix was factored in a
block-LU form as

(38)
[
A ÂH
H>

]
=
[
L

Z̃> D̃

] [
U Ỹ

I

]
.

Here the matrix L is unit-lower triangular and the matrix U is upper triangular. The
matrices Ỹ and Z̃ are n × m submatrices of the block factors, and D̃ is the Schur
complement of A.

Maes [12] and Wong [15] used a similar approach to implement active-set QP
solvers with symmetric augmentation to solve the Karush–Kuhn–Tucker (KKT) ma-
trices arising from Hessian updates and factored in a block-LU form as

(39)
[
A V

V > C̃

]
=
[
L
Z> I

] [
U Y

S̃

]
.

Here the submatrices Y and Z are n × 2m submatrices, doubling the size of Ỹ and
Z̃ in (38). These submatrices were updated using sparse triangular solves, and S̃ was
updated using a dense LU-type factorization. Comparing the augmented matrix in
(39) with (7), we have

(40) V =
[
AH H

]
Q> and C̃ = Q

[
C 0
0 0

]
Q>

for some permutation matrix Q.
To take advantage of symmetry, Maes and Wong factored the augmented matrix

in a symmetric block-LBL> form

(41)
[
A V

V > C̃

]
=
[
L
Z> I

] [
D

D̃

] [
L> Z

I

]
.

The major differences between the our methods and the KKT matrix block-LU/block-
LBL> update method are as follows. We exploited the explicit forms of the submatri-
ces Z and D̃ in the factorization when the update is a principal submatrix. Specifically,
if we factor the augmented matrix in (17) as in (41), we have

(42)

 A AH H
H>A C 0
H> 0 0

 = L̂D̂L̂>,
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where

(43) L̂ =

 L
H>L I

H>L−>D−1 0 I

 and D̂ =
[
D
−S1

]
.

Here L̂ is a lower triangular matrix, D̂ is a matrix whose (1, 1)-block is (block) diago-
nal, and the rest is the negation of the Schur complement S1 in (19). Combining the
results from (40) and (43), we obtain the relationship between the factors in (41) and
those in our method:

(44) Z> = Q

[
H>L

H>L−>D−1

]
and D̃ = Q(−S1)Q>.

Hence, we do not need to construct Z and D̃ as in the Gill et al., Maes, and Wong
algorithms. We also make use of the structure of the factors in computing the solution,
whereas Maes updated the factors by treating the augmentation submatrix V as sparse
and C̃ as dense. Finally, we compute the solution to the modified system by explicitly
using the solution to the original system.

4. Experimental results. The augmented matrix solution method was evalu-
ated through a series of N−k contingency analyses of two real-world power systems—
the 3,120-bus Polish system from the MATPOWER repository [17] and the 14,090-
bus WECC system—and a 777,646-bus generated system, which is based on the
case2736sp system from the MATPOWER repository and the IEEE 123-bus dis-
tribution feeder [9]. The distribution feeder is balanced by making the load on each
phase equivalent and extending the unbalanced laterals. Several distribution feeders
are added at appropriate locations in the transmission case to create this system.

This section provides relevant implementation details and presents experimental
results, including comparisons with the PARDISO direct solver [10, 13, 14] on the
modified systems and the CHOLMOD direct solver that updates the factors of A
according to Â.

Since the power flow systems follow Kirchhoff’s current law, the admittance ma-
trix B in (3) is a weighted Laplacian. A boundary condition is applied to fix the phase
shift of a selected bus called the slack bus, and the reduced system is nonsingular but
with an eigenvalue close to zero. Hence in the power community a direct solver is
usually used to solve the system.

The estimated condition numbers of the admittance matrices B calculated by
using MATLAB’s condest function are 1.2 × 106 for the 3,120-bus Polish system,
2.1×107 for the 14,090-bus WECC system, and 9.9×108 for the 777,646-bus generated
system. The estimated eigenvalues with the smallest magnitude calculated by using
MATLAB’s eigs function are 5.0 × 10−2 for the Polish system, 2.3 × 10−3 for the
WECC system, and 1.4× 10−4 for the generated system.

4.1. Implementation. All experiments were conducted on a desktop computer
with four 8-core Intel Xeon E5-2670 processors running at 2.6 GHz with 20 GB cache
and 256 GB RAM. All reported times represent the average of 20 runs.

The precomputed LDL> factorizations of the admittance matrices were computed
using Oblio, a direct solver library for solving sparse symmetric linear systems of
equations with data structure support for dynamic pivoting using 1 × 1 and 2 × 2
pivots [5]. Both the GMRES iterative solver used in (19) and the PARDISO solver
applied to (2) for comparison purposes were from the Intel Math Kernel Library
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(MKL) [8]. The CHOLMOD solver applied to (2) was from the SparseSuite package.
The remainder of the code was written by the authors.

All matrices were stored in sparse matrix format to reduce both the storage space
and access time.

4.2. Experiments. In our N − k contingency analysis experiments we remove
k out of N connections in the power grid and form the modified system (2). This
corresponds to a principal submatrix update as described in (1), where H is formed
by the columns of the identity matrix corresponding to the end-points of the removed
connections, and m ≤ 2k.

We compare the solution of the augmented system using an iterative solver on
(19) and using (21) by means of the LU factorization of the Schur complement matrix
S2. Note that since B in (3) is a weighted Laplacian, the update matrix E at the
(1, 1)-block of (19) is singular, and thus the whole matrix is symmetric indefinite.
We have used the MINRES method and the generalized minimum residual (GMRES)
method to solve these indefinite systems. For MINRES, the average solve time per
iteration is faster than the GMRES method, but since it converged slowly and needed
more iterations than GMRES, the total solve time was higher than the latter. Hence
we report times obtained from GMRES. We also compare our augmented system
with PARDISO and CHOLMOD being applied to (2).

The LDL> factorization times using Oblio were 0.0306 seconds for the 3,120-bus
Polish system, 0.156 seconds for the 14,070-bus WECC system, and 2.53 seconds for
the 777,646-bus generated system. In comparison, the average factorization times
using PARDISO were 0.00735 seconds for the 3,120-bus Polish system, 0.039 seconds
for the 14,070-bus WECC system, and 2.37 seconds for the 777,646-bus generated
system. Although Oblio did not perform as well as PARDISO on the smaller problems,
it provides the ability to extract the factors, which is essential for closure computation
and the sparsity-exploiting triangular solves.

In Figure 1, we plot the time to compute the updated solution when up to 20 edges
are removed from the grid. The augmented methods outperform both PARDISO and
CHOLMOD on all three power grids. The time taken by PARDISO for the 777,646-
bus generated system is not plotted in Figure 1(c) to better differentiate the relative
performance of our methods with CHOLMOD. For this large grid, PARDISO took
approximately 2.4 seconds for solving each modified system, which is two orders of
magnitude (149–186 times) slower than our augmented iterative method. In compar-
ison, CHOLMOD computed the solutions 1.47–5.09 times slower than our augmented
iterative method. We also observe that the augmented methods scale much better
than CHOLMOD as the number of edges removed (size of the updates) increases.
However, the number of fill-ins, if any, introduced by CHOLMOD is insignificant, as
we can see from Figure 2 that only the factor update time increases when the number
of edges removed increases.

Figures 3 and 4 show the breakdown of the total time used in solving the up-
dated systems using our augmented direct and iterative methods on the 3,120-bus
Polish system and the 777,646-bus generated system. Here Preprocessing is the step
of computing the closure of the modified rows and columns in the graph of G(L), and
extracting the necessary submatrix of L for solving for x̂3 in (19) and (21). Augmen-
tation refers to the step of solving (19) for the iterative method and (21) for the direct
method. Matrix Formation corresponds to the step of forming W as described in sub-
section 3.3. Solution is the step of computing the solution to the modified system in
(25).



AUGMENTED MATRICES FOR PRINCIPAL SUBMATRIX UPDATES S823

2 4 6 8 10

10−4

10−3

10−2

number of edges removed

ti
m

e
(s

) Aug. Direct
Aug. GMRES
CHOLMOD
PARDISO

(a) 3,120-bus Polish system

2 4 6 8 10

10−3

10−2

number of edges removed

ti
m

e
(s

) Aug. Direct
Aug. GMRES
CHOLMOD
PARDISO

(b) 14,090-bus WECC system

0 5 10 15 20

10−1.2

10−1.4

10−1.6

10−1.8

number of edges removed

ti
m

e
(s

) Aug. Direct
Aug. GMRES
CHOLMOD

(c) 777,646-bus generated system

Fig. 1. Timing results of compared methods.
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Fig. 2. Breakdown of the time of the CHOLMOD method for the 777,646-bus generated system.
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Fig. 3. Breakdown of the time for the 3,120-bus Polish system.
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Fig. 4. Breakdown of the time for the 777,646-bus generated system.

It can be seen that for a small system the time is dominated by the augmentation
part in (19) (step 6 in Table 1) for the iterative method, or by the matrix formation of
the reduced system in (21) (step 3 in Table 1) in the direct method. Hence the product
of m or t (the number of steps of the iterative solver) with O(ρ) is the dominant term.
On the other hand, for a large system the time is dominated by the computation of
x̂ in (25) (step 7 in Table 1), which has O(|L|) time complexity.

The experimental results also indicate that the augmented solution methods do
not lead to difficulties with solution accuracy. Table 2 summarizes the average relative
residual norms for the solutions computed by our augmented methods, PARDISO and
CHOLMOD.

5. Conclusions and future work. We have formulated two algorithms using
an augmented matrix approach to solve linear systems of equations when the system
is updated by a principal submatrix. The algorithms use either a direct method
or a hybrid of direct and iterative methods. We applied the algorithms to assess
the security of power grids and demonstrated that we could do N − k contingency
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Table 2
Average relative residual norms (

∥∥Âx̂− b̂
∥∥
2/

∥∥b̂
∥∥
2) for each problem.

Problem Aug. Direct Aug. GMRES PARDISO CHOLMOD

3,120-bus Polish system 2× 10−13 3× 10−13 2× 10−13 2× 10−13

14,070-bus WECC system 4× 10−13 4× 10−13 4× 10−13 5× 10−13

777,646-bus system 6× 10−12 6× 10−12 6× 10−12 5× 10−12

analysis by removing k = 20 connections in a grid with 778,000 buses in about 16
milliseconds. The augmented solution methods have been experimentally shown to
offer advantages in both speed and reliability, relative to a direct solver (two orders
of magnitude faster), or a solver that updates the Cholesky factors (1.5 to 5 times
faster), and scales better with an increasing k, the number of connections removed.
We believe that our algorithms are able to solve much larger dynamic security analysis
problems in the power grid than previous work.

In the future, we plan to extend our augmented solution method to problems
where the updated system of equations has a different size than the original system,
as in finite element applications [16].
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