Software Testing and Reliability

A Short Course @ Guidant Corporation, Minneapolis/St Paul

Aug 12-16, 2002

Laboratory Exercise# 03 Date assigned: 08/14/02

Prepared by: Ramkumar Natarajan

1. Objective:

Locate bugs quickly using the xSlice tool

2. Tool(s) Needed:

xSlice

3. Problem Statement:

Introduction:

Slice is the program debugger in the Tool suite. It automates many tedious tasks that developers otherwise must perform manually while debugging their code. Slice helps developers to focus on just the relevant code by eliminating the typical conceptual clutter of debugging. It makes the relevant pieces of the code stand out in no time with its intelligent analysis and state-of-the-art graphical interface.

In general, program slicing can be categorized as static slicing and dynamic slicing. A static slice is a set of statements of a program which might affect the value of a particular output or the value of a variable instance; whereas a dynamic slice is the set of statements which did affect the value of the output upon execution of a particular input. A dynamic slice with respect to the output variables gives us the statements that are not only executed but also have an impact on the program output under that test case. Although both static and dynamic slices can be used as an abstraction to help programmers in locating faults, a static slice is less effective because it, in general, requires that a larger portion of program code be examined than does a dynamic slice.

Collecting dynamic slices may consume excessive time and file space. Slice computes an execution slice instead. An execution slice is the set of statements executed under a test case. Since not every statement that is executed under a test case has an effect on the program output for that test case, some statements in an execution slice may not be in the corresponding dynamic slice. This makes an execution slice a super set of a dynamic slice.

Based on execution slices, Slice also computes an execution dice which is the set difference of two execution slices. In Slice, an execution slice is the set of a program's blocks, decisions, c-uses or p-uses executed by a test input. Similarly, an execution dice is the set of blocks, decisions, c-uses or p-uses in one execution slice which do not appear in the other execution slice. The strategy for fault localization in Slice is as follows. Suppose a piece of software has worked successfully for some time, so many error-free test cases are available. Then a problem is reported from the field with a new test case that exhibits a failure. The fault will be in the execution slice of the new test that exhibits the failure. It seems likely that the fault is not in the execution slices of the similar tests that do not exhibit the failure. We refer to the error-free test cases as successful tests and those that cause a failure as failed tests. A good starting point for locating the fault is to look at code that is in the failed execution slice but not in the successful ones, i.e., the execution dice obtained by subtracting the successful execution slices from the failed execution slice. Code in the resulting dice is highlighted in red as the most likely location of the fault. Code in the failed execution slice but not in the dice is highlighted in a different color with its likelihood of containing the fault inversely proportional to the number of successful tests which also execute it.

Execution dices obtained depend on the test cases used. Different dices may be generated by different sets of successful and failed tests. In order to have the best results one should try to identify successful tests that are as similar as possible to the failed tests in order to filter out as much irrelevant code as possible.

Tutorial:

Use the wordcount example with the following files present in the \Labs\Day3\Lab\Exercise3 folder.

· C files main.c, main_err.c and wc.c

· Data files input1, input2, and input3
· makefile

The file main_err.c is an erroneous version of main.c with a fault, which is to be found.

Steps:

1. Compile wordcount.exe without atac using main.c and wc.c.

prompt:> cl /nologo /w main.c wc.c /Fewordcount.exe

2. Delete the object files

prompt:> del *.obj
3. Compile wc_err.exe with atac using main_err.c and wc.c.

prompt:> ataccl /nologo /w main_err.c wc.c /Fewc_err.exe
4. Set the trace file name

prompt:> set ATAC_TRACE=wc_err.trace
After the compilation, two .atac files (main_err.atac for main_err.c and wc.atac for wc.c) and two executables wordcount.exe and wc_err.exe are created.

To find where the fault is, you need some successful tests and some tests that fail.

5. Run wc_err.exe on the first test:

prompt:> wc_err input1 (wc_err.1)
This should produce the following output:

1
4
19
input1

1
4
19
total

6. Repeat the same test with wordcount.exe.

prompt:> wordcount input1

The same output is generated which implies that test wc_err.1 does not distinguish the behavior of wc_err.exe from that of wordcount.exe. Hence, it is a successful test.

7. Run the second test on wc_err.exe

prompt:> wc_err -w input1 (wc_err.2)

The output looks like:

4
input1

4 total

8. Repeat the same test with wordcount.exe.

prompt:> wordcount -w input1

This implies that test wc_err.2 is another successful test.

9. Run another test by:

prompt:> wc_err -w <input1 (wc_err.3)

An output with an empty line is generated.

10. Repeat the same test with wordcount.exe.

prompt:> wordcount -w <input1

Executed on wordcount, the same test produces the following output:

4

This output differs from that generated by wc_err.exe indicating test wc_err.3 is a failed test.

11. Invoke the graphical user interface of the Toolsuite by entering the following command:

prompt:> xslice main_err.atac wc.atac wc_err.trace

12. Pull down the “Tool” menu and select the “xslice” option.

13. Click on the “TestCases” button in the top button bar to get the test case window of Slice.

14. Mark wc_err.1 and wc_err.2 as successful tests by clicking on the leftmost square next to them. A check sign appears in the square. In addition, wc_err.1 and wc_err.2 are highlighted in green.

15. Mark wc_err.3 as a failed test by clicking on the square immediately to the left of wc_err.3 . An X sign appears in the square and wc_err.3 is highlighted in red.
16. Click on “Summary” in the top button bar to have a summary by file displayed in the main Slice window.
17. To see the source display of the corresponding file, click on a file name in this summary window. You can have the summary displayed in other formats by clicking on the ``by-type'' or the ``by-function'' button in the middle button bar. Be sure “by-file” is selected.

Code in the execution dice is highlighted in red as the most likely location of the fault. Code in the failed execution slice but not in the dice is highlighted in a different color with its likelihood of containing the fault inversely proportional to the number of successful tests which also execute it.

In our case, code in red with the highest priority 3 is executed by the failed test (wc_err.3) but not the successful tests (neither wc_err.1 nor wc_err.2).

Code with a priority 2 is executed by the failed test (wc_err.3) and one of the successful tests (either wc_err.1 or wc_err.2).

Code with a priority 1 is executed by the failed test (wc_err.3) and both successful tests (wc_err.1 and wc_err.2).

Finally, code in white with a priority 0 is the code that is not executed by any of the failed tests (wc_err.3, in our case).

Note that only those pieces of code that are executed by all of the failed tests get a nonzero priority (i.e., are highlighted in non-white colors). However, if the program under test has multiple faults with each detected by different tests, you should try to locate one fault at a time. That is, while computing the execution slice or dice, do not select failed tests from different faults at the same time. Otherwise, the highlighted code will miss some of the faults.

Those pieces of code that are not executed by any of the failed tests get a priority of zero (i.e., are highlighted in white) irrespective of whether or not they are executed by any (or some, or all) successful tests. The highest priority among all pieces of code in a file gets reflected in the corresponding entry in the summary window.

Main_err.c is in red because some of its code has a priority 3, but the highest priority wc.c has

is 1, so it is displayed in the color of priority 1. In other words, main_err.c (but not wc.c) has blocks that are executed by the failed test (wc_err.3) but not the successful tests (neither wc_err.1 nor wc_err.2).

18. Click on main_err.c, as it contains the most likely location of the fault.

19. Note the red spot selected in the source code of main_err.c.

20. The scroll bar is a thumbnail sketch of the entire file indicating there is one red spot. Clicking with the left mouse button at the spot in the scroll bar brings the corresponding region of the file into the source window.

Analysis of the code reveals that the blocks highlighted in red contain the fault. With the help of Slice and a careful selection of the successful and failed tests, this example shows that program maintainers can quickly locate faults by examining a reduced set of code instead of the entire

program.

21. To quit Slice, click on the ``File'' button in the top button bar, then select “exit”.

(Question:

What was the error in main_err.c?

