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AbstractÐA novel approach to model the system test phase of the software life cycle is presented. This approach is based on

concepts and techniques from control theory and is useful in computing the effort required to reduce the number of errors and the

schedule slippage under a changing process environment. Results from these computations are used, and possibly revised, at specific

checkpoints in a feedback-control structure to meet the schedule and quality objectives. Two case studies were conducted to study the

behavior of the proposed model. One study reported here uses data from a commercial project. The outcome from these two studies

suggests that the proposed model might well be the first significant milestone along the road to a formal and practical theory of

software process control.
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1 INTRODUCTION

RESEARCH in software process modeling dates back to the
early 1970s. A detailed account of its evolution is given

by Cugola and Ghezzi [1]. In this account, the features of
PROSYT, a second generation process-centered software
engineering environment, are grouped by Ghezzi into three
main areas: 1) process modeling, 2) process enactment, and
3) system architecture. Under process enactment, Ghezzi
states: ªTo better control process execution, PROSYT allows
process managers to specify a deviation handling and a
consistency checking policy. Such policies state the level of
enforcement adopted . . . and the actions that have to be
performed when the invariants are violated as a result of
deviation, respectively.º The problem of ªmanaging unfore-
seen situations,º also referred to as ªtolerating deviations,º
is formulated and solutions are proposed by Cugola [2].
Cugola has also proposed policies to handle various types
of deviations. Though useful in practice, the policies do not
assist in the computation of quantitative values of correc-
tions that are often needed when deviations occur in
process variables that can be, and often are, measured in
numerical terms; project schedule and product quality are
examples of such process variables.

We are aware of formal and rigorous procedures applied
to the software process [3], [4], [5], such as Statistical
Process Control [6]. However, in practice, these and other
less formal but rigorous approaches fall far short of the
formalisms for process control that exist in other engineer-
ing disciplines. For example, control theory is rich in
formalisms that are practical and in regular use in chemical
process control. Temperature control, aircraft wing control,

and continuous gravimetric control are only a few examples
of a myriad of control applications in the industry that rely
on control algorithms firmly grounded in theory. One of the
issues control theory deals with in a formal manner is the
reduction of deviations from one or more set points
characteristic of the process under control, e.g., temperature
in a boiler control system.

Research reported herein is perhaps the first step toward
a formal theory of software process control. The long term
objective of this research is to borrow, adapt, and modify,
when needed, from the richness of control theory; especially
from the theory of state variables, which has proven useful
in modeling engineering, biological, and social processes
[7], [8], [9]. For the short term, we focus our efforts on one
significant phase of the Software Development Process
(SDP), namely, the Software Test Process (STP). Though
control of other phases of the SDP is often as important to
an organization as the control of the test phase, the
following two reasons motivated us to select the STP:
1) STP lends itself well to the characterization of input,
output, and internal process variables and 2) there is a
significant amount of data available from past and ongoing
projects that is a key to the conduct of case studies to
investigate the applicability of our model and approach.
This second reason helps us to solve the difficult problem of
identifying and estimating the key parameters to be
included in any model of the STP.

Within the STP, we decided to focus on the system test
phase due to its easier formulation and modeling. Although
there are variations on how to conduct the system test phase
and how it impacts the other phases of the SDP, we assume
the test and debug cycles alternate or occur concurrently not
based on a predetermined schedule but as and when the
need arises. Specifically, a software product P could be in
one of three states: Test, debug, and End. When in Test, P is
executed until a failure is detected. At this point, if a debug-
mode condition is true, then P enters the debug state;
otherwise, it remains in Test. The debug-mode condition
could be, for example, ªThe number of failures detected
exceeds a threshold.º As another example, it could be ªA
failure that will prevent succeeding tests from running as
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planned.º P remains in the Debug state until errors are
found and fixed, when it returns to the Test state. However,
while P is in Debug, another avatar of it could remain in the
Test state. This is when we say that testing and debugging
are taking place concurrently. This test-debug cycle can be
handled effectively by our model; other scenarios are
possible with some care in collecting the needed data.

The remainder of this paper is organized as follows: In
Section 2, we state a process control problem that arises
within the context of the STP. This problem is by no means
the only control problem that one might need to deal with.
It is, however, the focus of our attention in the remainder of
this paper. In Section 3, we offer an introduction to feedback
control from the point of view of a software engineer. The
modeling approach and the motivation appear in Section 4,
which also describes a model based on the use of state
variables. The behavior of the model under extreme
conditions is analyzed in Section 5. This analysis is the first
step toward assessing the accuracy of the model. Estimation
of various parameters of our model is discussed in Section
6. One case study to analyze the behavior of the model is
presented in Section 7. A description of other modeling
approaches is presented in Section 8. Finally, in Section 9,
we present our conclusions and outline directions for future
work in the area of process modeling using the theory of
feedback control.

2 THE STP CONTROL PROBLEM AND ITS CONTEXT

The key components of an SDP are: 1) specificatiom,
2) design, 3) coding, and 4) testing with multiple feedback
paths from the completion of each phase back to earlier
phases. We focus on the system test phase, specifically, on
the control of the time and effort required to reduce the
errors by a desired fraction. The unit and integration test
phases are not accounted for in our model. Thus, upon the
completion of coding and unit testing, our model incorpo-
rates any effort to test and debug. Such testing often occurs
as the final phase prior to delievering the application to the
customer for beta testing or actual use. Though the various
phases of the STP can occur concurrently, we assume that
such concurrency affects only the effort applied during the
execution of a phase. Also, though inspections can be and
often are performed after each phase of the SDP, we do not
consider inspections as part of the STP.

2.1 The STP Control Problem

Consider an application P under test. We assume that the
quality and schedule objectives were set at the start of the
SDP and revised before the test process has started. For a
scheduled target date or a set of checkpoints leading to a
target date, the quality objective might be expressed in a
variety of ways: 1) as the reliability of P to be achieved by
the target date [10], 2) as the number of errors remaining at
the end of the test phase, or 3) as the increase in code
coverage [11]. Further, the quality objective could be more
refined and specified for each checkpoint.

We assume that a test manager plans the execution of the
test phase to meet the quality and schedule objectives. Such
a plan involves several activities, including the constitution
of the test team, selection of the test tools, identification of

training needs, and scheduling of training sessions. Each of
these activities involves estimation. For example, constitut-
ing the test team requires a determination of how many
testers to use. The experience of each tester is another
important factor to consider. It is the test team that carries
out the testing activity and, hence, spends the effort that
will hopefully help in meeting the objectives. The ever
limited budget is usually a constraint to contend with.
During the initial planning phase, a test manager needs to
answer the question, ªHow much effort is needed to meet
the schedule and quality objectives?º Experience of the test
manager does help in answering this question. However,
we approach this problem from a mathematical standpoint.

The question stated above is relevant at each checkpoint.
We assume that the test manager has planned to conduct
reviews at intermediate points between the start and the
target date. The question might arise at various other points
also, for example, when there is attrition in the test team. An
accurate answer to the above question is important not only
for continuous planning but also for process control and
resource allocation. A question relevant for control is: ªHow
much additional test effort is required at a given checkpoint
if a schedule slippage of, say, 20 percent can be tolerated?º
This question could be reformulated in many ways in terms
of various process parameters. A few other related ques-
tions of interest to a test manager are:

1. Can testing be completed by the deadline and the
quality objective realized?

2. How long will it take to correct the deviations in the
test process that might arise due to an unexpectedly
large number of reported errors, turnover of test
engineers, change in code, etc.?

3. By how much should the size of the test team be
increased if the deadline is to be advanced without
any change in the error reduction objectives?

To answer these questions, we propose a model based on
the application of the theory of feedback control using a
state variable representation. Our model allows comparison
of the output variables of the software test process with one
or more ªsetpoint(s).º Such a comparison leads to the
determination of how the process inputs and internal
parameters ought to be regulated to achieve the desired
objectives of the STP.

3 FEEDBACK CONTROL IN THE CONTEXT

OF THE STP

When applied to the STP, the objective of feedback control
is to assist a test manager in making decisions regarding the
expansion of or reduction in workforce and the change of
the quality of the test process. The control process is applied
throughout the STP. Though it does not guarantee that the
STP will be able to meet its schedule and quality objectives,
it does provide information that helps the test manager
determine whether or not the objectives will be met and, if
not, what actions to take.

We assume that the schedule objective is specified as:
Complete the test process by a specified time tf . The quality
objective is specified as: Ensure that at most rf errors remain in
P at time tf . As noted earlier, the quality objective could be
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stated in several other ways. Finding and reducing the
number of remaining errors is often a significant objective
of the STP. It is due to this emphasis that we decided to use
the number of remaining errors in the formulation of the
quality objective. In our work, we assume that any
reduction in software errors that remain in a product
improves the quality of that product. In the work that
follows, we do not distinguish among the various types of
errors such as specification errors, critical and noncritical
errors, etc.

Hence, we specify the quality objective in terms of the
number of remaining errors. The difficulties in estimating
the number of remaining errors are overcome using
techniques described in Section 6. We are also aware that
an STP might be driven by objectives other than, or in
addition to, the two specified here. However, for the
purpose of the control of STP, our current focus is on
schedule and quality. We also assume that, prior to the start
of the STP, the project manager sets up a monitoring
schedule that consists of a sequence of k; k > 0 checkpoints
over time. The ith checkpoint, denoted by cpi, is specified at
time ti when monitoring is to take place and ri is the
number of errors expected to remain in P at time ti. The first
checkpoint occurs some time after the start of the STP, i.e.,
at t1 > 0, and the last checkpoint coincides with the
deadline. The economics of a software project will most
likely constrain its budget. The budget is not included
explicitly in our model. However, the proposed feedback
control mechanism assists a project manager in tracking
possible budget overruns. Also, a project manager need not
explicitly specify ri. Instead, the specification could be in
terms of a fraction by which the number of errors is
expected to be reduced. Thus, for example, this fraction
could be 0 < fi < 1 at the ith checkpoint. This would imply
that the number of errors expected to remain in P at
checkpoint cpi is fi � riÿ1.

The use of feedback control can be understood from
Figs. 1 and 2. The continuous line in Fig. 2 shows the
expected variation in r�t� over the course of the STP; r�t� is

computed using the state model described in Section 4.3.
The dashed lines indicate the prediction used by a test
manager to generate a schedule in terms of the checkpoints.
The checkpoints are determined by the test manager and
the expected values of the number of remaining errors at
each checkpoint, denoted by rexpected�cpi� at checkpoint cpi,
can be read off the r�t� function. The test process is started
at time t � t0, at which point, P contains r�0� � r0 errors.

At checkpoint cpi, the observed value of the number of
remaining errors, denoted by robserved�cpi�, is compared with
rexpected�cpi� to generate the input rerror�cpi� to the controller.
The controller computes �w0f and �
0, which are, respec-
tively, the changes needed to the workforce and the quality
of the test process, for the objectives to be met. The test
manager uses the changes computed by the controller to
decide whether or not any change is needed in the test
process. Thus, for example, the test manager might decide
to ignore the controller output. In this case, we assume that
the STP continues until the next checkpoint without any
changes in wf and 
. However, the manager might decide to
make use of the output from the controller and change only
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Fig. 1. Feedback control of the software test process. wf , 
, sc, r�cpi�, and r0 denote, respectively, the size of the test team, the overall quality of the

test process, the complexity of the product under test, the number of remaining errors at the ith check point cpi, and an estimate of the number of

remaining errors at the start of the STP.

Fig. 2. Checkpoints in a Software Test Process. cpi denotes the ith

checkpoint.



the workforce to wf ��wf and keep 
 at its current value.
Obviously, several possibilities exist. In any case, the STP
continues with the workforce and process quality set to,
respectively, wf ��wf and 
 ��
. Note that these
updated values of the workforce and the quality of the test
process are also input to the model which in turn
recomputes r�t�.

The process described above continues until the STP is
completed. During this process, the manager might decide
to change the checkpoints and, possibly, the objectives of
the STP. In any case, the STP model and the controller are
provided with the updated values and generate useful data
throughout the STP. Of course, there is no guarantee that
there exists a feasible solution to the problem of completing
the STP with the desired objective being met. However, if a
feasible solution exists, then the model finds it and assists
the test manager in steering the STP.

4 MODELING THE SOFTWARE TEST PROCESS

A number of variables and parameters are specific to the
system test phase:

1. r�t�Ðthe number of remaining errors at time t,
2. wfÐsize of the test team,
3. scÐprogram complexity,
4. tÐtime measured in appropriate units,
5. 
Ða constant characterizing the overall quality of

the test process,
6. ef�t�Ðeffective test effort at time t, and
7. er�t�Ðerror reduction resistance at time t.

Our model allows one to choose from a variety of or a
combination of existing complexity measures to obtain a
value of sc. For example, we could use program size,
cyclomatic complexity [12], or a combination of both to
compute sc as explained in Section 6.3.

The coefficient 
 characterizes the overall quality of the
test process and represents environmental factors such as
pressure due to the deadline, test methodology used,
organization of the test team and the process, experience
and expertise of the test team personnel, and possibly other
factors. Although a single coefficient is unable to fully
represent the quality of the test phase, when appropriately
chosen, it appears to be adequate. The effective test effort
(ef ) is the actual effort expended by the test team to perform
all activities required of them to test the system.

The process of error removal might cause the introduc-
tion of new errors in the application under test. This results
in additional effort by the test team. Further, other factors
that reduce the quality of the test process also tend to offset
the benefits of applying the effective test effort. We use the
error resistance, er, to model the impact of 
 on ef .

4.1 Model Assumptions

Three key assumptions are presented next. We believe that
these assumptions govern the STP. The assumptions and
the resulting equations lead to a state model of the STP. The
solution of this state model allows a test manager to answer
schedule related questions mentioned earlier in Section 1.
Let _r�t� and �r�t� denote, respectively, the first and second
derivative of r�t� with respect to time.

Assumption 1. The rate at which the velocity of the remaining
errors changes is directly proportional to the net applied effort
(en) and inversely proportional to the complexity of the
program under test. This leads to.

�r�t� � en�t�
sc
) en�t� � �r�t�sc: �1�

The first assumption is justified as follows: When the
same metric or a combination of metrics is used to compute
software complexity for two different programs under test,
it is reasonable to expect that more effort will be necessary
to test the more complex program. If, for example,
cyclomatic complexity [13] and LOC are used to determine
sc, a larger program with more paths will likely require
more test effort than a smaller program with a smaller
number of paths. The net applied effort (en) is the balance of
all the effort acting on the product under test. This results
from the difference of the effective test effort applied by the
test team minus any ªfrictionalº forces that oppose the
applied effort. Since r represents the number of remaining
errors, its first derivative _r is the error reduction velocity
(ve). Consequently, �r, which denotes the rate of change of _r,
is an acceleration.

In the world of software, (1) is analogous to Newton's
second law of motion for physical systems, where en is
analogous to physical force, �r to acceleration, and sc to
mass. In the physical world, a larger mass requires a greater
force to move it a given distance at a desired velocity. In the
world of software, higher program complexity requires
larger effort to reduce errors by a given fraction at a desired
error reduction velocity ( _r).

It is widely believed that the difficulty in finding
program errors increases as the test phase progresses.
Assuming a fixed team size, this implies that the effective
test effort is directly proportional to r. This observation
suggests the next assumption.

Assumption 2. The effective test effort is proportional to the
product of the applied work force and the number of remaining
errors. This leads to

ef�t� � ��sc� wfr�t�; �2�
where ��sc� � �

scb
is a function of software complexity.

Parameter b depends on the characteristics of the product

under test. Borrowing from COCOMO [14], [15], we set b to

1.05, 1.12, or 1.20, for organic, semidetached, and

embedded mode projects, respectively.

Justification of this assumption follows by analogy with
the predator-prey system described by Volterra [16]. Here,
the decline in the prey population is proportional to the
number of possible encounters between the predators and
the prey, i.e., the product of the populations of predators
and prey. Assumption 2 above presents similar character-
istics to this widely accepted model. The probability of
finding an error is equivalent to an encounter between a
tester and an error. The tester plays the predator role and
errors are the prey. There are wf r possible encounters. �
may also depend on r, although we do not make this
dependency explicit. The parameter � defines the decline
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rate and it may decrease as r gets smaller (� � ��r�). That is,
as the test process continues, the errors become more
difficult to find, not only because there are less of them, but
also because some errors require a combination of events to
be triggered and it is most likely this combination will be
discovered by the testers only in the final phases of testing,
if it is discovered at all. This behavior is captured by
changes in � over different periods of the STP.

Assumption 2 can be understood with another analogy.
In a spring-mass system, the restoring force is determined
by the spring stiffness and by the extension of the spring
beyond its natural length. Increasing the spring stiffness, or
its extension, increases the restoring force. The number of
remaining errors is analogous to the spring length. At the
beginning of the test phase, r is larger than it is toward the
end. Hence, the effective effort decreases with r. The work
force can be related to the spring stiffness. The larger the
work force, the greater the restoring force, i.e., the effective
effort. Thus, spring stiffness is analogous to wf and spring
extension to the number of remaining errors (r) in the
application. In (2), � remains constant over a period and
must be calibrated for the STP under consideration. The
behavior of Assumption 2 is similar to the rate of decrease
of errors [17], [18], [19] when software reliability models are
applied to the STP [20].

The effective test effort is opposed by a force intrinsic to
the test process. We refer to this force as the error reduction
resistance, denoted by er. This observation leads to the last
assumption.

Assumption 3. The error reduction resistance opposes, is
proportional to the error reduction velocity, and is inversely
proportional to the overall quality of the test phase. This leads to

er�t� � ÿ� 1



_r; �3�

for an appropriate constant �. The negative sign indicates that
the error reduction always opposes _r.

The justification of Assumption 3 relies on an analysis of

its behavior under extremal conditions. A very low quality

will induce a large resistance, i.e., as 
 ! 0, er !1. The

same is true for values of _r; i.e., the larger _r is, the larger the

error resistance er. This implies that the faster one attempts

to reduce the remaining errors, the more likely one is to

make mistakes that slow the test process. This behavior

resembles that of a physical dashpot. The coefficient of

viscosity of the liquid inside the dashpot is 1

 . Therefore, a

small coefficient of viscosity corresponds to the test phase

being conducted in a smooth and careful way. For example,

this may imply that the number of new errors inserted is

relatively small. Similarly, a larger coefficient of viscosity

corresponds to an increased tendency to insert errors

during the debugging process. The velocity component in

the dashpot is the dual of the error reduction velocity ( _r).

Thus, 
 and the rate at which errors are found determine

the error reduction resistance, which is analogous to the

damping force generated by the dashpot. In the remainder

of this paper, we use r, _r, �r, ef , er, and en, to denote,

respectively, r�t�, _r�t�, �r�t�, ef�t�, er�t�, and en�t�.
4.2 A Differential Equation Model of the STP

en, ef , and er are related by the following force balance
equation:

ÿ ef � er � en; �4�
where ef has a negative sign because it opposes the increase
in errors. Substituting ef , er, and en by the righthand sides
of (1), (2), and (3), respectively, results in the following
second-order differential equation:

ÿ � wf r ÿ � 1



_r � sc �r: �5�

To help clarify the behavior of (5), consider a physical
system that consists of a solid block attached to an
extended spring and a dashpot. The spring is extended
by 100 units affixed to a wall, as is the dashpot. The spring
restoring force will move the block from the initial position
(100 units) to a position as close to zero as possible; the
dashpot will retard this movement. Here, we assume an
overdamped system and, hence, the block will never reach
a negative position. This behavior is analogous to what
happens in the system test phase where the resistance
offered by the dashphot is related to er and the restoring
force to ef . By assumption, the system test phase starts
with a program of complexity sc and with 100 percent of
remaining errors. The ideal goal is to remove errors until r
approaches zero. The effective effort due to wf and r, and
the error reduction resistance due to 
 and _r, will
determine the rate of decrease of r. Unfortunately, despite
the overlap, the physical analogy given earlier can break-
down. For example, if a spring were quickly detached from
a moving block, inertia would keep the block moving. An
analogous behavior during the STP would imply the
impossible, that errors would continue being removed
after the work force was removed from the project.

Given r�0� � r0, the initial error reduction velocity is
ve � 0. Under this condition, the solution to (5) is:

r�t� � r0�2

�2 ÿ �1
eÿ�1t ÿ r0�1

�2 ÿ �1
eÿ�2t; �6�

where �1 and �2 denote the distinct roots of the character-
istic equation of (5) [7], [16]. The two distinct negative roots
are due to the assumption of a stable overdamped process.
If underdamping were allowed, r would reach a negative
value, which is meaningless in the STP. The overdamping
requirement [21] restricts the values of 
 to less than

�

2�s�1ÿb�c wf ��
1
2

:

This is calculated by forming the characteristic equation and
requiring the discriminant of the associated quadratic
formula to be nonnegative.

From Fig. 3, we note how r, _r, and �r change over time.
Errors are generally easy to find at the beginning of an STP
and, therefore, _r is relatively high. As the STP progresses
over time, error detection becomes increasingly difficult
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and, hence, _r decreases toward zero, as observed in Fig. 3b.

Therefore, we have a deceleration until chances of finding

new errors becomes almost zero, as in Fig. 3c. As expected,

in accordance with Assumption 1, en approaches zero as

t!1 as depicted in Fig. 3d.
In our model, we consider only two forces acting on the

product under test: the effective test effort (ef ) and the error

resistance (er). However, there are other forces that affect a

product during the STP. Hence, it is wise to include the

model forces represented by the auxiliary effort when a test

tool is being used and also to include an opposite force

when the test team spends time learning the use of a new

test tool during the STP. Other forces, not considered in this

paper, include efforts for communication and adaptation.
Because our model captures the dominant dynamics of

the STP, leaving out certain forces as described above may

introduce some error between the predicted behavior and

the observed behavior. In addition, the STP is often beset by

disturbances that may cause a delay in the process. For

example, suppose a test team is using a populated database

to test the product and, for some reason, the database

becomes unavailable for one working day, making the team

unable to test the program for the entire day. This would

constitute a 100 percent disturbance if the time unit were

days and a 20 percent disturbance if the time unit were

weeks. In all cases, the disturbance represents a force, say

Fd, opposing the effective test effort, ef [22]. Thus, it can be

seen as a possibly event-dependent percentage of the

effective test effort. Of course, as more elements of the

STP are accounted for in the model, then the contribution

of, for example, learning and communication to Fd will

diminish to zero. Nevertheless, denoting Fd�t� by Fd and
incorporating Fd into (5) results in (7).

�r � ÿ � wf

s
�1�b�
c

rÿ �


 sc
_r� 1

sc
Fd: �7�

4.3 A State Model for the STP

The state model is a matrix differential equation in a vector
of state variables which, in our case, are the remaining
errors, r, and the error reduction velocity, _r. These state
variables are sufficient to model the dominant dynamics of
the STP and also serve as the output variables of interest.
Hence, with r and _r as state variables, the following
controllable canonical state model [7] results from (7).

_r
�r

� �
� 0 1
ÿ � wf

s
�1�b�
c

ÿ �

 sc

" #
r
_r

� �
� 0

1
sc

� �
Fd: �8�

The matrix multiplying the vector of state variables is
called the A-matrix. The model must be initialized at t � 0,
which requires at least an estimate of r�0� � r0 and the
observation that the error reduction velocity _r�0� � 0. The
value of r0 can always be updated as observed data
becomes available over the course of the STP. Indeed, data
is needed to make initial estimates for the proportionality
constants � and �. Also, in this formulation, the workforce
variable, wf , is taken as a parameter in the A-matrix rather
than as an external input, such as Fd, because, in the STP, it
is typically constant over one or more checkpoint periods.
For example, if wf � 5 from time ti to tj, i < j and changes
to 6 from tj�1 to tk, �j� 1� < k, we use wf � 5 to observe the
behavior for the first period and then switch to a system
with wf � 6 for the second period. To extract wf from the
A-matrix and make it an external input would move the
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model into the nonlinear category. By viewing wf as a
parameter, then the model remains in the piecewise-
constant linear category and is amenable to well-known
solution techniques with the use of feedback as a parametric
control to achieve management schedule objectives and
reduce the impact of Fd. In addition, by having a piecewise-
constant A-matrix, we may also update estimates for � and �
as new data becomes available.

4.4 Using the Model for Feedback Control

We now explain how feedback control can be applied to
adjust STP parameters to meet the desired objective. The
objective of an STP is restated below after combining the
constraints on time to completion and the number of
remaining errors.

Given that the program under test contains r�0� � r0 errors
at the start of STP, it is desired to complete the STP in
t� weeks, such that the number of remaining errors r is
reduced to �� r0.

Once the STP objective has been set up, the project manager
has two options. Option 1 is to organize a team of testers
and start the STP. Under this option, the manager does not
estimate any of the model parameters and, hence, does not
apply the model to check if the desired objective is indeed
feasible.

Option 2 is to estimate the model parameters, using data
from past similar projects, required to meet the objective
and use the model to test if indeed the objective can be met.
If the model indicates that the objective cannot be met with
the estimated set of parameters, then another set is tried.
This process continues until a reasonable set of parameter
estimates is found, at which point the STP is started. Note
that only wf and 
 are under the control of the manager.
Also, budgetary restrictions might impose additional
constraints on these parameters. The estimation of para-
meters is discussed in Section 6.

5 EXTREME CASE ANALYSIS

We now subject the model in (8) to an extreme case analysis
with Fd � 0. Our purpose is to evaluate its behavior under
extreme conditions to find if the behavior is consistent with
what one would expect of an STP under such conditions.
We consider extreme conditions at the intersections of low
and high values of software complexity and quality of the
test phase. Note that it is inappropriate to analyze our
model for the effects of extreme values of the work force
because communication among testers is not included. For
the purpose of this analysis, we arbitrarily set wf � 5.

The extreme case analysis proceeds as follows: For each
of the four possible combinations of high/low sc and 
, we
first compute sc and set 
. These values, and that of wf , are
plugged into (8), which is then solved. The solution is
depicted by an r�t� � t plot. From this plot, we read off t0:05,
which denotes the time needed in days to reduce the
number of remaining errors to 5 percent of its initial value.
Both sc and 
 affect t0:05. We then compare the values of t0:05

to determine the nature of their effect and compare it with
what a software tester would expect intuitively.

For all four extremal cases, the parameter � is set to 100
as a factor of normalization. The parameter � cannot be
estimated because the expected deadline is not available.

Thus, we set ��sc� to 20
scb

for b = 1.12 representing a semi-

detached mode project [15].
For the purpose of our analysis, sc is considered to be a

convex combination of M1, the lines of code measured in
10 KLOCs, and M2 the average of cyclomatic complexity
per function. The weights for M1 and M2 are set to,
respectively, �1 � 0:75 and �2 � 0:25. Thus,

sc �
X2

i�1

�iMi:

Case 1Ðlow sc and low 
: Consider a program with
5,000 lines of code with an average cyclomatic complexity of
2. Thus, we have M1 � 0:5, M2 � 2 and, hence, sc �
0:75 � 0:5 � 0:25 � 2 � 0:875. We quantify a low quality test
phase by setting 
 � 0:05. Substituting for parameters in (8)
and solving for r, we observe the behavior exhibited in Fig.
4a. As is evident from Fig. 4a, it requires 52 days to reduce
the number of remaining errors in this product to less than
5 percent.

Case 2Ðlow sc and high 
: Fig. 4b represents the
behavior predicted by our model for an almost perfect,
though unrealistic, test phase. Some characteristics of such a
test phase are: Each member of the test team knows exactly
what each part of the product does, can apply 100 percent of
available time to the test effort, does not communicate with
other members of the test team, and requires no learning
once testing has begun. For this test phase, we set 
 � 0:95.
We also consider a program containing 5,000 lines of code
with an average cyclomatic complexity of 2. This yields
sc � 0:875. These parameter values lead to a solution
depicted in Fig. 4b. From this figure, we observe that it
will take about three days to reach the desired level of error
reduction. As one might expect, as sc ! 0 and 
 ! 1, the
time required to remove the errors diminishes and becomes
proportional to the net applied effort.

Case 3Ðhigh sc and low 
: Here, we assume that the
program under test contains 300,000 lines of code and has
an average cyclomatic complexity of 30. This leads to
sc � 30 � 0:75� 0:25 � 30 � 30. We set 
 � 0:05 to represent
low quality. The solution to (6) is plotted in Fig. 4c. The plot
reveals that it will take about 2,700 days for five testers to
reduce the number of remaining errors to less than 5 percent
of the initial count. As expected, this is considerably longer
than in Case 2. In general, we can state that, as sc !1 and

 ! 0, then T !1, where T is the time required to reduce
the errors to less than 5 percent.

Case 4Ðhigh sc and high 
: In this case, we assume a high

quality test phase, as described in Case 2, and a high level of

complexity, as described in Case 3. The other parameters are

set as before. Fig. 4d reveals that the high quality of the test

phase has a significant impact on the time required to reduce

errors. In this case, it will take about 141 days to reach the

desired error reduction. The behavior observed in Fig. 4 is

close to what a test engineer might expect under extreme

conditions. The following common sense expectation of a

test engineer is mimicked well by our model:

Complexity of the application under test and quality of the
test process have a significant effect on the time to test.
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6 ESTIMATING MODEL PARAMETERS

The set of parameters listed in Section 4 is representative of
the most significant aspects of the STP. Estimation of these
parameter values is essential to a successful application of
the state model. Some parameters are relatively easy to
quantify, while others are subjective. Also, different organi-
zations use different metrics and methodologies in the STP.
There are no globally accepted metrics for the parameters
and variables involved in the STP. Most models for the SDP
rely on intuitively and/or empirically derived values for the
parameters. This situation suggests a need for a methodol-
ogy to help guide the estimation process. In the remainder of
this section, we discuss how one could estimate each of the
several parameters needed to apply our model.

6.1 Size of the Work Force

The work force, wf , is defined as the number of testers per
unit time. As testers might be added or taken away as the
STP progresses, wf is updated at each checkpoint.

6.2 Estimation of �, �, and r0

�, �, and r0 are computed from data obtained from the
current project using an algorithm described in this section.
Obviously, this data is not available at the start of the STP.
However, a manager may have data from similar past
projects that can be used to obtain initial estimates until
data from the current project becomes available, when the
estimates can be improved.

The state model of (8) has the general form of

_x�t� � Ax�t� �Bu�t�; �9�
where x�t� � r�t� _r�t�� �T , A is the proper 2� 2 matrix, B is a
2� 1 vector, and u�t� is the input. It is well-known that the

solution of (9) is given by x�t� � eAtx�0� for all t � 0 for a
zero input. To compute � and �, we need to compute

A � 0 1
ÿ � wf

s
�1�b�
c

ÿ �

sc

" #
; �10�

from which we can obtain � and �, as all the other
parameters are known at this time.

Initially, _r�0� � 0, but r�0� is not known. Further, project
data ordinarily consists of the number of errors found and
fixed in a time period of length, say, T1. This number is
denoted by d�k� � r�kT1� ÿ r��kÿ 1�T1�. Although r�t� has

the general form specified in (6), we use a single
exponential approach to obtain a local approximation for
_r�t�, i.e., we locally approximate r�t� � �eÿ�t. For a fixed T1,
let m � �eÿ�T1 , then

d�k� � r�kT1� ÿ r��kÿ 1�T1�
� mr��kÿ 1�T1� ÿmr��kÿ 2�T1� � md�kÿ1�:

This allows us to generate the following equation based
on available data whose solution will provide a least square
fit form:

d�k�d�kÿ1�:::d�3�
h i

� m d�kÿ1�d�kÿ2�:::d�2�
h i

)

m � d�k�d�kÿ1�:::d�3�
h i

d�kÿ1�d�kÿ2�:::d�2�
h iÿR

and � can be computed by

� � �m2 ÿm��m3 ÿm2�:::�mn ÿmnÿ1�� �ÿL
d�2�d�3�:::d�n�
h i

;

where superscripts ÿR and ÿL represent the Moore-
Penrose pseudoright and left inverse, respectively. Having
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m and � computed as above, we obtain � � 1
T1
�ln��� ÿ

ln�m�� and, therefore, _r�kT1� � ÿ��eÿ�T1 � ÿ�m.
Inherent in the above is a single exponential approx-

imation to obtain a reasonable estimate of the velocity
data. Now, we must redo the above development in the
proper matrix format. Using the data available and the
approximated _r, we compute the difference for a specific
period of time as Di � r�i� _r�i�� �Tÿ r�iÿ 1� _r�iÿ 1�� �T . It
can be shown that Di �MDiÿ1, where M � eAT , T is the
time increment between two consecutive measurements of
data, and A is the A-matrix of (9). Therefore, we can
compute M from

R1 �MR2�)M � R1R2
ÿR; �11�

where

R1 � �DnDnÿ1Dnÿ2 . . .D4D3� and

R2 � �Dnÿ1Dnÿ2Dnÿ3 . . .D3D2�:
The Spectral Mapping Theorem [7] shows that the

eigenvalues of M, say �1
M and �2

M , have the following
relation with the eigenvalues of matrix A: �1

M � e�1T and
�2

M � e�2T . Therefore, �1 � 1
T ln��1

M� and �2 � 1
T ln��2

M�.
The eigenvalues are the roots of the characteristic poly-
nomial of the A matrix, as in (10), which is

�A��� � det��I ÿA� � �2 � �


̂sc
�� �ŵf

s
�1�b�
c

: �12�

Since � and � are the only unknowns at this time, we can
compute them by matching the roots of �A��� to �1 and �2

computed above.
An initial estimate of r(0) can also be computed using M

obtained from the observed data. Let

P �
M2 ÿM
M3 ÿM2

..

.

Mn ÿMnÿ1

2664
3775and Z �

D2

D3

..

.

Dn

2664
3775and x0 � r�0�

_r�0�
� �

:

We know that Z � Px0 and we can compute x0 � PÿLD.
However, this results in a high initial velocity and penalizes
the computation of r�0�. The problem is solved by applying
a weighted least squares approach [23]:

Z � PWx0 ) x0 � ��PW �T �PW��ÿ1�PW �TZ;
where

W � wr0
0

0 wv0

� �
is the weight matrix. The weights wr0

and wv0
are usually

defined as 1
� [23], where � is the standard deviation

computed from the observed data for r and from the
estimates of _r. In the case of the STP, due to the exponential
decay, � will increase with additional data. This will make
the weights decrease when an increase is expected. To

avoid this problem, we defined the weights as wr0
� w

�r
and

wv0
� w

� _r
for w � 1� eÿd=2

% , where d is the expected deadline

and % is the number of observed values used in the
computation.

6.3 Software Complexity

Since software complexity (sc) significantly impacts the
behavior of our model, this section presents a combination
of metrics for its representation. Specifically, we allow for
the contribution of multiple metrics to compute a value for
sc through the use of a convex combination [24]. Assume n
normalized metrics M1 . . .Mn with, respectively, �1 . . .�n
weights are under consideration. sc �

Pn
i�1 �iMi is used to

compute the final value for software complexity withPn
i�1 �i � 1. The software complexity ranges from a lower

bound of 0 to an upper bound of �. Parameter calibration
techniques [25] can be used to define the upper bound � for
individual organizations.

The convex combination approach is similar to the
weighted sum metric by Khoshgoftaar and Muson [26].
Fenton and Pfleeger [27] describe the risks of using such an
approach. However, no complexity metric is widely used
and/or accepted and a single value characterizing the
overall complexity is needed in our model, justifying such a
flexible choice.

6.4 Quality of the Test Phase (
)

A number of factors enter into 
 for a given organization,
including:

1. work force experience and expertise,
2. test strategy/adequacy,
3. coverage criteria,
4. tool use/adequacy, and
5. deadline pressure.

Let us denote each of the factors in 1-5 by, respectively,

1; . . . ; 
5. In our model, we assign each of these a value
between 0 and 1. As in the case of software complexity, we
take a convex combination of these values to obtain 
 �P5

i�1 �i
i under the condition that
P5

i�1 �i � 1. The values
of 
 lie between 0 and 1, with 
 � 1 denoting the highest
quality process. Other criteria can be added or those listed
here deleted, depending on their respective importance.
Note that 
1, 
4, and 
5 have correspondence with
parameters in COCOMO II [15].

7 CASE STUDY: THE COBOL TRANSFORMER

PROJECT

Two case studies were carried out to investigate the
performance of the state-based model of the STP. The first
case study was conducted using data reported by Knuth
[28] during the development of TEX78 [29]. In this section,
we present a second case study using data collected from a
commercial project to transform a program written in Cobol
into a functionally equivalent program in SAP/R3, as
described next.

7.1 Project Description

Razorfish, a company located in Cambridge, Massechu-
settes, was given an application, denoted SCOBOL, that
contains about 4 million lines of code in Cobol to be
transformed into a functionally equivalent application in
SAP/R3, hereafter referred to as SSAPR=3. Razorfish devel-
oped a tool, hereafter referred to as transformer, to automate
this transformation. Errors in the transformer were detected
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by executing and comparing the outputs of both the
generated SSAPR=3 code and the original Cobol code.
Therefore, any difference in the comparison implied an
error in the transformer. Upon fixing the errors, a regression
test was carried out to determine if any new errors were
introduced.

The information presented here about the project was
obtained through interviews with the project manager,
developers, and the test team. Razorfish maintains data on
what errors are found, by whom and when an error was
found, and who is responsible for fixing the error. This data
was tabulated by the project manager and made available to
the authors.

7.2 Parameter Estimation for the
Cobol Transformer Project

Data from the first six weeks of the project was used to
obtain an estimate of the initial number of errors in the
transformer. These estimates constitute proprietary data for
Razorfish and, therefore, the values are presented here after
normalization. Our estimate of r0 was considered reason-
able by the project manager. This estimate was subse-
quently improved when data from weeks 6 to 14 became
available and proved to be 94 percent accurate at the end of
the project. sc, 
, and wf were computed in collaboration
with the project manager. The remaining parameters were
computed using MATLAB [30] based on the procedure
described in Section 6.

Estimation of software complexity: sc was computed as
a convex combination of two metrics: 1) M1, the number of
10s of KLOC, resulting in M1 � 25 and 2) M2, the number of
10s of grammar productions used to specify the Cobol
syntax. The transformer had to deal with different versions
and dialects of Cobol significantly increasing the language
specification and complexity. The Cobol specification had
approximately 1,400 productions, resulting in M2 � 140.
Assuming that KLOC accounts for 80 percent of the
complexity measure,

sc � �1M1 � �2M2 � 0:8� 25� 0:2� 140 � 48:

Estimation of the quality 
 of the test phase: The testers
at Razorfish had significant experience in testing similar
systems and had access to an available test tool that
partially automated the testing process and, hence, sig-
nificantly increased the quality of the test phase.

In consultation with the project manager, we divided the
first 14 weeks of the test phase into three periods, as
indicated in Table 2. Four features (column 1 of Table 1)
were used to define the overall 
. Column 2 lists the
effective contribution of the feature to the overall quality.
The quality value of each feature changed over the three
periods. Each ªPeriodº in Table 1 has two columns:
Column 1 lists the quality level qij (0 to 1) of the feature i
for period j; Column 2 lists the product qij�i, i � 1; . . . ; 4,
and j � 1; 2; 3. 
j, the average quality for period j, is given
by

P4
i�1 qij�i. The details of the choice of qs and �s are

beyond the scope of this paper. We emphasize that the
features needed to be defined on a per project/company
basis.

 � 0:44 for period 1 indicates a low quality. This was

due to the minimal use of the testing tool as the testers were
analyzing screen conversions and the generated layout
could not be checked automatically by the tool. Also, the
testers were using an in vitro data base to test the transformer
and, hence, the quality of the test cases was not satisfactory.

The second period showed improvement (
 � 0:56) due
to the use of an improved test set to test the Cobol
application. During this period, the testers began using real
data from a ªsmallº company that makes use of the native
Cobol application. This led to an increase in the number of
parts of the application that were exercised. An increase in
the use of the tool also occurred. The third period was
demarcated from the previous by the fact that test data from
another company using the native Cobol application
became available and the system could be exercised more
completely with a further increase in tool utilization. Thus,
we set 
 � 0:75. The values for the test plan adequacy are
the same for all periods since test plans were used and
seemed to be quite appropriate for the transformer project.
The values for work force experience/expertise increased
from 0.6 to 0.8 as the test team adapted to the project.

Size of the work force: The size of the test team
remained constant at three testers for the period under
consideration (wf � 3).

Constant of Proportionality � and �: The constants of
proportionality � and � were computed as in Section 6.2 for
Periods 1-3 and appear in Table 2.

Disturbance Force: Fig. 5 shows the initial expected
behavior for the transformer project plotted using the
expectations of the project manager. We can also see that
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the observed behavior diverges from the expected for the
first 14 weeks of the project. This divergence is due to
disturbances present during the STP and alternatives to
correct its effect, using feedback, are discussed later.

As explained earlier, in Section 4.3, disturbance is a force
opposing the effective test effort (ef ). The disturbance is
computed by taking the expected behavior and introducing
an opposite force (Fd) that produces the observed behavior,
i.e., matches the collected data. Fd is the input in our model
and, so, can be computed by:

Fd�q� � BT�T �t1 ÿ q�Kÿ1�t0; t1� x1 ÿ ��t1 ÿ t0�x0� �;

where ��t1; t0� � eA�t1ÿt0� is the state transition matrix and

K�t0; t1� �
Z t1

t0

��t1 ÿ q�BBT�T �t1 ÿ q�dq

is the the controllability Gramian [7].
The average disturbance for the three periods of the

transformer project is, respectively, 59 percent, 61 percent,
and 33 percent of the ef . This means, for example, that, for
the first period, an opposite force equivalent to 59 percent of
the effective test effort (ef ) was present.

The disturbance is high during the first two periods and
decreases subsequently. The disturbance is due to commu-
nication, adaptation, hardware and software failure, illness,
and other forces not accounted for in our model. We believe
disturbances are almost always present in software pro-
cesses. Hence, a disturbance force equivalent to 25 percent
of ef was (minimally) extrapolated for the remaining period
in view of the experience of the test team. Although the
disturbance seems high at the beginning of the process, it is
usual to have a 40 percent disturbance under normal
conditions [22]. The high disturbance during periods 1 and
2 is due to a temporary slow down in the test process due to
a slow debuging process. During period 3, the test team was
more focused and able to concentrate on testing rather than
on the source of the error and its removal.

7.3 Results

Fig. 5 depicts the results of the test phase of the transformer
project. The integral mean square error was computed by

'̂ �
��������������������������������������������������Z 1

0

jf1��� ÿ f2���j2d���
s

:

This produced a 2.302 error norm when data from the real
project is compared to the model approximation for the first
14 weeks. Parameter values used to generate the data in
Fig. 5 are listed in Table 2. These parameters and the
disturbance inserted during the process produce the
approximation shown in Fig. 5.

Two assumptions could be made when analyzing the
results shown in Fig. 5. First, any error in the transformer
will produce an error in the SSAPR=3 generated code.
Second, not all errors in the transformer will affect this
specific project, i.e., the transformation from SCOBOL to
SSAPR=3 will not be able to exercise all features of the
transformer. If the first assumption is valid, then, according
to Fig. 5, it will not be possible to meet the predetermined
deadline. Assuming no change in the test process, i.e.,
maintaining the same parameters as in the third period
described before and keeping the disturbance at 25 percent,
our model predicts that it will take more than 50 weeks to
deliver a product with a reasonable level of errors.

The second assumption indicates that, by the end of
the test phase, i.e., after 25 weeks, some errors will
remain in the transformer, but the goal of the project
would be achieved. Stated differently, the generated
system will be functionally equivalent to the original
Cobol system, ensuring a successful project. The remain-
ing errors in the transformer cannot be found by testing a
specific Cobol system and more effort must be spent to
decrease the number of remaining errors to a reasonable
level. Thus, the second assumption seems more reason-
able than the first one.

It should be clear that the predictions from our model do
not depend on any of the above two assumptions. For the
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purpose of analysis, we are concerned with the remaining
errors in the Transformer and not in the generated code.

Based on the solution to our model, one predicts that it
will not be possible to complete the project by the expected
deadline. This becomes evident by comparing the approx-
imation to r with the expected curve. Hence, we ask: ªWhat
changes can be made to the STP in order to meet the
deadline?º The use of feedback helps us answer this
question.

We note that, by week 14, the number of errors dropped
to approximately 67 percent of their initial value and, if the
process continues without any alterations, it will take
approximately 35 weeks to reach the expected level of error
reduction that is approximately 14 percent. Indeed, no
adjustments were made to the project and, in 37 weeks, the
project reached the desired level of errors. This result shows
a 3.4 percent accuracy in our prediction.

Now, suppose that the project manager desires to
achieve the same results in only 10 weeks. We ask ªWhat
modifications are necessary?º

To answer this question, we note that the largest
eigenvalue of a system determines the slowest rate of
convergence and dominates how fast the variables con-
verge. Therefore, we need to adjust the largest eigenvalue of
the model so that the responses converge to the desired
values within the remaining weeks. This goal can be
achieved by

r�T ��t� � r�T � e�max�t; �13�
where r�T � is the number of remaining errors at time T,
r�T ��t� is the desired value for r after a lapse of �t time
units, and �max is the eigenvalue to be computed. In the
Razorfish project, we want r to converge from 67 percent at
week 14 (r�14� � 67percent) to 14 percent at end of week 24
(r�14��t) = 14 percent) for �t � 10. Solving (13) for these
values results in �max � ÿ0:1566.

The eigenvalues of a system are defined by the roots of
the characteristic polynomial (�A��� � det��I ÿA�). Com-
puting the characteristic polynomial of our model produces

det��I ÿA� � det � ÿ1
� ŵf

s
�1�b�
c

�� �

̂ sc

" #
� �2 � �


̂ sc
�� � ŵf

s
�1�b�
c

;

�14�
where 
̂ � 
 ��
 and ŵf � wf ��wf . To set the eigenvalue
of the model described by (8) to ÿ0:1566, we need to make
changes in the values of these parameters. Considering that
no changes can be made to �, �, and sc, we are left with two
options: increase the work force (�wf > 0) or improve the
quality of the test phase (0 < �
 � 0:25).

Varying �wf , keeping all other values constant, and then
finding the roots of the characteristic polynomial, produces
the results depicted in Fig. 6a. We can observe that �max
reaches the desired value of -0.1566 when �wf reaches 1.5.
This implies that the wf must be increased by 1.5 in order to
meet the deadline, assuming that all other parameters are
kept constant. The result of increasing the work force by 1.5
is presented in Fig. 5. Fig. 6b presents similar results
achieved due to the variation of �
 . As can be observed, a

maximum increase in 
 is not sufficient to achieve the
desired results.

In the transformer project, we are interested in completing
the test phase by the predetermined deadline and all
possible combinations of increasing wf and/or 
 to
accomplish this task are depicted in Fig. 6c.

The model can also be used to analyze alternatives
according to the flexibility of the deadline and the
availability of resources. That is, if 1.5 people are not
available, the manager can choose the alternatives of how
many testers can be inserted and how much the deadline
can be extended. It is essentially an exercise of maximizing
customer satisfaction within the limitations of resources. As
stated earlier, optimization techniques are available in
Control Theory [8], [31] to provide these results, but a
discussion on such techniques is beyond the scope of this
paper.

We note that the test manager did not apply the
suggestions from the model. However, in general, we can
conclude that our model behavior is reasonably accurate
when applied to the Cobol transformer project and that
feedback can be used to answer questions related to
performance and the cost of the STP.

8 RELATED WORK

In this section, we examine some techniques used to model
and/or control one or more phases of the SDP. We focus on
characteristics such as dependency on life cycle model,
ability to do optimization, self-regulation, coupling and
cohesion, completeness, calibration, and friendliness [29].
These features are rated as high, medium, and low.

Software Project Dynamics: The approach developed by
Adbel-Hamid and Madnick [22] makes two major contribu-
tions to the modeling of SDP. The first contribution is that
the model is integrated and, hence, provides a macro
understanding of the SDP through the integration of micro
components. The second contribution stems indirectly from
the first one. It is in that the model can predict the general
behavior of the SDP by propagating the effect of changes
from one phase to the subsequent phases. This ability to
predict enhances our understanding of how a local change
will affect the behavior of the entire project. The model's
suitability to simulation is another useful characteristic of
their work.

The sequence of software development phases assumed
in Abdel-Hamid's model suggests the use of a waterfall life
cycle model. We therefore consider the model to be highly
dependent on which model of life cycle is used. The model
is not restricted to any specific methodology. The strategy of
modeling the design and coding phases as a single phase
decreases model cohesion and increases coupling. The
model does not address all phases of the SDP and, as
ascribed, it does not address issues of optimization. The
self-regulation and calibration features are also not ad-
dressed in their work.

Statistical Process Control (SPC): This control techni-
que, as described by Florac and Carleton [6], is not a model
in itself. However, it provides useful tools to improve the
controllability of the SDP and, hence, an understanding of
its concepts is important to our research. Two concepts used
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in Statistical Process Control are most relevant to our work:
stability and capability [32]. Graphic tools, such as control
charts and capability histograms, are used to analyze the
process.

The applicability of SPC is independent of the life cycle
model and the development methodology. It does require
that a measurement process be instituted with the SDP.
Optimization of process parameters can be addressed in
SPC, though it requires an analysis of many alternatives.
That is, when the number of parameters that affect the SDP
is relatively high, the combinations of possible values are
even higher and the analysis of all alternative choices
becomes difficult if not impractical. The problem is not with
the analyses of alternatives, but in their enumeration. SPC
does not address self regulation.

Software Process Simulation: Discrete event simulation
techniques are commonly used to model and evaluate the
SDP [33]. The phases of the SDP can be modeled
independently and then combined for the entire process.
Simulation helps the managers to answer ªwhat ifº
questions restricted to some constraints. It also provides
reasonable answers to these types of questions.

Simulation models, such as those ones based on Petri
Nets [34], can be developed in accordance with the life cycle
model and the methodology used. The life cycle is
represented by the sequence in which software develop-
ment phases are considered and features regarding the
methodology can be modeled through parameters and
variable definitions. Process optimization is theoretically
feasible though often impractical in a commercial setting. A
self-regulation mechanism is not present in this approach.
Since a model can be defined on a per-company basis, it is
possible to achieve a high level of cohesion and a low level
of coupling, thereby making Software Process Simulation
models attractive. A new model can be easily defined if
changes are detected in the SDP. Restrictions regarding the
completeness of a model are due to creative aspects of the
initial phases of the SDP and present the same measure-
ments and evolution problems as other dynamic ap-
proaches. The models can also be calibrated empirically.
The key question answered by the feedback control model
is ªHow should the process parameters be altered to meet
the process objectives?º Simulation is another method to
answer this question. However, simulation is likely to
became a highly inefficient means to do it when the number
and range of parameters is large.

Identification of parameters, estimation, and model
validation are crucial to a successful application of feedback
control as proposed in this paper. The wealth of literature in
the area of software metrics is likely to be of assistance in
these tasks [15], [27]. We note that the work on cost and
effort estimation is complementary to the work described
herein, but supports different objectives. For example,
COCOMO II can be used to estimate the cost and effort
required for a given software project. Thus, it is a useful
model for project planning and management. The feedback
control as proposed herein is used for the dynamic control
of the software process. It uses data from the test process to
advise a test manager as to what should be done next in
order to achieve the project goals. In contrast, COCOMO II
assists a manager in planning the project budget, schedule,
and resources. Feedback control can use some of this data,
e.g., schedule, as input to assist a manager in maneuvering
the test process.

9 SUMMARY AND DISCUSSION

The widespread use of differential equations and the state
variable approach to model different types of systems,
combined with the advantages of using classical control
theory techniques, encouraged us to investigate a formal
approach to modeling the STP. Results from two case
studies suggest that the formal approach presented in this
paper is reasonably accurate in predicting the behavior of
the test process. The use of parametric control to handle
changes in the environment improves the flexibility and
applicability of the model. Even though our model does not
account for several features of the STP, such as time
required for new personnel to adapt to the process and the
communication overhead, we believe that, in its present
form, it is useful in that it captures the essential behavior of
the STP. The model can also be used to reduce the cost of
STP and improve its performance in the presence of
disturbances. The behavior of the model for the STP
enhances our belief that the application of the state variable
approach is appropriate and likely to result in an improved
understanding of the changes during the software process.

The availability of an analytical model, ability to quantify
and estimate model parameters, and an ongoing measure-
ments process are the basic requirements for a successful
application of any modeling approach grounded in classical
control theory. Organizations at levels 4 and 5 of the
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Capability Maturity Model (CMM) [35] are likely to have a
measurements process in place. Data collected through this
process could be used in the estimation of model para-
meters. However, the organization level of a company is not
a requirement for a successful application of such
approaches. Even when the SDP is not well-defined, the
state variable approach can be applied when measurements
of the variables to be controlled and estimates of model
parameters are available. Therefore, the model can also be
applied to organizations at level 3 or below subject to the
availability of measurements. That is, even though organi-
zations at levels 1 to 3 do not share the environmental
aspects of levels 4 and 5, they can benefit from the use of the
model described here. However, we cannot expect the same
accuracy as one is likely to achieve within organizations at
higher levels. If the software development process is not
well-defined, it is unrealistic to expect availability of
accurate data. Despite that, the use of our model might
force an improvement in the quality of the data collected
and perhaps in the SDP itself.

Several aspects of modeling the STP remain to be
investigated. Also, one case study is currently underway
to further investigate the behavior of the model. A
sensitivity analysis of the model to small variations in
parameters has been completed [36]. It indicates how
changes in parameters affect the model. By comparing
these results with the expected behavior, we are able to
determine how the model ought to change to accomplish
the expected behavior.

Any theory, especially one that is new, is likely to face
barriers to its use. The theory of process control, based, as in
this paper, on the theory of feedback control, faces several
barriers three of which are identified and discussed below.

Estimation of parameters: Estimation of several parameters
is a prerequisite to the use of our approach. The lack of
standardized definitions and widely accepted procedures
for estimation make parameter estimation an error-prone
task. For example, there is no single definition of software
complexity. Thus, as described earlier, one could combine
several complexity measures and compute a composite
complexity metric. However, the inclusion of reusable code
adds a new dimension to the computation of complexity.
The quality of the test phase is a subjective measure. No two
test managers are likely to arrive at an identical quantifica-
tion. We believe that experience with the test process and
data from previous test processes within the same company
could help in arriving at accurate parameter estimates.

Background of the test manager: Our model is formal and
based on a knowledge of mathematics few test managers
are likely to possess. Thus, one might argue, how could a
test manager use such an approach in practice? We believe
that this barrier could be overcome effectively by packaging
our approach in a tool. This will hide the details, such as the
solution to differential equations, not needed by the test
manager.

Process elements: humans versus devices: Control theory
was developed, and is applied, in situations where the
various control elements are electro-mechanical devices and
not human beings. In the software test process, the control
signals are, among several things, directly effecting people

such as when the work force is to be increased or when the
quality of the test process is to be increased. Furthermore,
the feedback control loop is closed by a human being,
namely, the test manager. A natural question to ask is:
ªHow effective will a formal control technique be in such a
human-intensive environment?º Of course, only time will
offer an answer to this question. However, we believe that a
sound theory of software process control that has proven to
be effective in controlled experiments is more likely than
not to encourage test managers to adopt it.

We believe that success in this research will lead to a
process which, when implemented rigorously, would lead
to reduced delays in product development and higher
reliability of the product shipped.
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