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Abstract

A model is proposed to assist software test man-
agers in controlling the behavior and progress of
the Software Test Process (STP) by allowing them
to compare predicted behavior against observed
progress made at various checkpoints. The model,
whose parameters are based on measured data and
process characteristics, generates the predicted be-
havior. An algorithm for the parameter estima-
tion is set forth. The error between the predicted
and desired behavior is used to drive a parametric
control algorithm that tells the manager how to
correct for schedule deviations.

keywords: Software process, parameter estima-
tion, modeling, software test process, state model.

1 Introduction

Project managers are always facing problems in
the control of phases of the Software Develop-
ment Process (SDP). Two major management ob-
jectives are the accurate prediction of completion
time and the cost of a specific project. Further,
managers want solutions for deviations from these
pre-specified objectives. This paper focuses on
these problems in the context of the Software Test
Process (STP), a sub-phase of the SDP. Many
techniques having been proposed to address these
problems with partial success. That is, models are
available to make initial predictions or to answer
“what if” questions [1]. So far no model for the
STP has a closed feedback solution to correct de-
viations as the STP moves forward. Also, the wide
variability and qualitative approaches in parame-
ter estimation is a major concern when using such
models because in some cases they are based on
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empirical data and are not re-calibrated on a per
project/company basis.

In this paper we present a model that goes be-
yond answering “what if” questions by providing
a space of solutions to correct deviations in the
process. A technique to automatically calibrate
parameters dependent on the process behavior is
presented. Also presented is an approach to com-
pute parameters dependent on the specific soft-
ware product and test team features. A techni-
cal report providing more complete details of the
modeling process is [2].

The remainder of this paper is organized as
follows. Section 2 presents the assumptions and
corresponding justifications upon which the state
model builds. The approaches to compute the pa-
rameters characterizing the STP are described in
Section 3. The results of a case study using data
from a large industrial project are presented in
Section 4. Finally, Section 5 draws the conclusions
of this work.

2 A State Model for the STP

2.1 Parameters of the STP

The dominant behavior of the STP can be cap-
tured by relating variables and parameters in-
trinsic to the STP. The relations are established
through key assumptions (Section 2.2). These pa-
rameters and variables are: (i)r - the number of
remaining errors; (ii)wy - size of the test team;
(iii) s, - program complexity; (iv)¢ - time measured
in appropriate units; and (v)y - a constant char-
acterizing the overall quality of the test process.
As stated before, the parameters above are



used to relate elements acting on the STP. Two
elements or forces are identified as having a great
impact on the STP. The first is the effective test
effort (es) that represents how much of the effort
spent by the work force is translated into the ac-
tual removal of errors. The error resistance (e;)
is the second element and represents an opposing
force related to the quality of the process. The
balance of the forces acting on the process leads
to the net applied effort (e,). The assumptions
describing each of these forces are presented next.

2.2 Key assumptions

The three key assumptions about the STP are pre-
sented and justified below. The assumptions, and
the resulting equations, lead to a state model of
the STP. The solution of this state model allows a
test manager to answer schedule related questions.

Assumption 1:The rate at which the speed of
decrease of the remaining errors changes is di-
rectly proportional to the net applied effort and
inwersely proportional to the complezity of the
program under test, i.e.,
e
F=2 = e,=7s (1)
Sc
where i denotes the second derivative of r and
en, the net applied effort.

The first assumption is justified as follows.
When the same metric or combination of metrics
is used to compute software complexity for two
different programs under test, it is reasonable to
expect that more effort will be necessary to test
the more complex program. If, for example, Cy-
clomatic Complexity [3] and LOC are used to de-
termine s., a larger program with more regions
will likely require more test effort than a smaller
program with a small number of regions.

The net applied effort (e,) is the balance of
all the effort applied during the test phase. This
results from the difference of the effective effort
applied by the test team minus any “frictional”
forces that decrease the applied effort. Since r rep-
resents the number of remaining errors, its first
derivative 7 is the error reduction velocity (ve).
Consequently, 7, which denotes the rate of change
of 7, is an acceleration. Thus 7 (an acceleration)
times s. (the mass of the software product) equals
the net applied effort.

It is widely believed that the difficulty of find-
ing program errors increases as the test phase pro-

gresses. Assuming a fixed team size, this implies
that the effective test effort is directly proportional
to r. This observation suggests Assumption 2.

Assumption 2:The effective test effort is pro-
portional to the product of the applied work force
and the number of remaining errors, i.e.,

ef=Quwsr (2)
for an appropriate (.

Justification of this assumption follows by
analogy with the predator-prey system described
by Volterra [4]. Here, the decline in the prey pop-
ulation is proportional to the number of possible
encounters between the predators and the prey. In
Assumption 2 the probability of finding an error
is proportional to an encounter between a tester
and an error. The tester plays the predator role
and errors are the prey. There are wy x r possi-
ble encounters. The parameter ( defines the de-
cline rate and it may decrease as r gets smaller
(¢ = ¢(r)). That is, as the test process contin-
ues, the errors become more difficult to find, not
only because there are less of them but also be-
cause some errors require a combination of events
to be triggered and it is most likely that this com-
bination will be discovered by the testers only in
the final phases of testing, if it is discovered at all.
This behavior is partially captured by changes in
¢ over different periods of the STP. The behavior
of Assumption 2 is similar to the rate of decrease
of errors [5] when software reliability models are
applied to the STP [6].

The effective test effort is opposed by a force
intrinsic to the STP. This force is the error reduc-
tion resistance, e,.. This observation leads to the
last of the three assumptions.

Assumption 3:The error reduction resistance
opposes and is proportional to the error reduction
velocity and inversely proportional to the overall
quality of the test phase, i.e.,

er=—§%f 3)

for an appropriate constant €. The negative sign
indicates that the error reduction always opposes
.

The assumption above can be justified by ana-
lyzing its behavior under extremal conditions. For
example, a very low quality will induce a large re-
sistance: v - 0 = e, — oo. The same



is true for values of 7: the larger 7, the larger the
error resistance e;.

This assumption implies that the faster one
tries to reduce the remaining errors, the more
likely one is to make mistakes which slows the en-
tire process. A physical dash-pot illustrates such
behavior. The coefficient of viscosity of the liquid
inside the dash-pot is % Therefore, a small coef-
ficient of viscosity is analogous to the test phase
being conducted in a smooth and careful way, i.e.
high quality. A larger coefficient of viscosity is
analogous to a low quality. The velocity com-
ponent in the dash-pot is analogous to the error
reduction velocity (7). Thus, the overall quality
of the test phase, denoted by (), and the rate
at which errors are found, determines the error
reduction resistance effort which is analogous to
the damping force generated by the dash-pot. In
Eqn. 3, £ is an appropriate constant of proportion-
ality.

The net applied effort, e,, of assumption 1
comes from a force balance equation that uses as-
sumptions 2 and 3:

—er +e, = ey 4)

where ey has a negative sign because it opposes
the increase in errors. Replacing ey, e, and e, by
their values from Eqns. 1, 2 and 3 results in the
following second-order differential equation:

—Cwypr —6%%:301" (5)

As in our coordinate system we are applying a
restoring force creating a velocity with a negative
direction. Thus we find on the average that 7 < 0.
Hence, |e,| < |ef| for 7 < 0. This leads to the
following equation:

|~ Cwyr —s%ﬂ < |=Cuwgr|  (6)

which legitimizes the sign choices of Eqn. 5.
Using Eqn. 5 and r and 7 as state variables
produces the following state model for the STP.

0 0 1 r
4 - - quff _'Ygsc r

Fq (M)
where Fj represents a disturbance such as hard-
ware failure.

T 1

Sc

3 Parameter Estimation

3.1 Estimation of &, (, and rg

The algorithm, described later in this section, is
used for computing &, ¢, and 7o for data from the
current project. Obviously, this data is not avail-
able initially. However, a manager may have data
from past similar projects that can be used to ob-
tain initial estimates until data from the current
project becomes available when the estimates can
be improved.

The state model of Eqn. 7 has the general form
of i(t) = Ax(t), where z(t) = [r(t) #(t)]" and
A is the proper 2 x 2 matrix. It is well known
that the solution of this state model is given by
z(t) = e**z(0) for all t > 0. To compute ¢ and
we need to compute the matrix A, from which we
can obtain ¢ and ( as all the other parameters are
know at this time.

Initially #(0) = 0 but r(0) is not known. Fur-
ther, project data ordinarily consists of the num-
ber of errors found and fixed in a time period
of length, say T3, i.e., project data consists of
d® = r(kT)) — r((k — 1)T1). Although r(t) has
the general form specified by a double exponential
solution, we first use a single exponential approach
to obtain a local approximation for 7(t), i.e., we
locally approximate r(t) as

r(t) = ae M ()
Hence for fixed T4, let m = ae~*T*, then

d®) r(kTy) —r((k — 1)T1)

mr((k —1)T1) — mr((k — 2)T1)
(k1)

md

This allows us to generate the following equa-
tion based on available data whose solution will
provide a least square fit:

d® d*=D 4| = m |t gk=D g3

| J=m] )

in which case

m = [d® a®=D .a®] [d#-D gk-2) ...d<2>]7R

and a can be computed as

a = [m*—m) (m®-m?) ..

(m" — m"_l)]_L [d(2) d® ...d(")]
where superscript —R and —L represent the

Moore-Penrose pseudo right and left inverses, re-
spectively. Having m and « computed as above



we obtain A\ = Tll(ln(a) — In(m)) and therefore
#(kTy) & —dae™ Mt = —Am.

Inherent in the above is a single exponential
approximation to obtain a reasonable estimate of
the velocity data. Now we must redo the above
development in the proper matrix format. Using
data available and the approximated 7 we com-
pute the difference for a specific perlod of time as
D' =[r(i) '(')] —[ (i = 1) #(i = 1)]". Tt can be
shown that D = M D! where M = eA ™1,
T: being the time increment between two consec-
utive measurements of data, and A the A-matrix
of equation 7. Therefore, we can compute M as
follows

Ri = MR, = M = R, R " (9)

where R; [ D* D! Dn=2 .. D* D3
Ry, = [D* 1 D2 D3 | D®D?].

The Spectral Mapping Theorem [7] shows that
the eigenvalues of M, say MM and A\,™ | have the
following relation with the eigenvalues of matrix
A MM = eMTrognd A\M = e*Ti. Therefore
A= £In(MM) and Xy = Ain(AM). Since ¢
and ( are the only unknown at this time, we can
compute them by matching the roots of the char-
acteristic polynomial IT4(A) to Ay and As com-
puted above.

An initial estimate of r(0) can also be com-
puted via the use of matrix M obtained from the
observed data. Let

M?-M D?
M3 _ M2 D3
P= . , Z=
Mn _'Mn—l Dn
_ | 0
and z¢o = [1;(0) ]

We know that Z = Pxy and we can compute
zo = P~L'Z. However, this results in a high ini-
tial velocity and penalizes the computation of (0).
The problem is solved by applying a weighted least
squares approach [8]:

Z = PWzxy =
zo = (PW)T(PW)H(PW)TZ (10)
wy, 0 . . .
where W = 0 ] is the weight matrix.
0wy,

The weights wy, and w,, are usually defined as
1 [8] where o is the standard deviation computed
from the observed data for r and from the esti-
mates of 7. In the case of the STP, due to the expo-
nential decay o will increase as more data becomes

available. This will make the value of the weights
decrease when the opposite behavior is expected.
To avoid this problem we defined the weights as

Wr, = 2 and wy, = = forw=1+e€" % where
d is the expected deadhne and p is the number
of observed values used in the computation. This
idea derives from the exponential weighted moving
average [9].

3.2 Software complexity

There is no widely accepted metric to compute
the complexity of a program. Therefore, any of
the existing complexity measures could be used to
obtain a value for s.. Our model does not pre-
scribe any specific complexity measure. For ex-
ample, program size, cyclomatic complexity [3] or
a combination of both could be used to compute
Sc-

Instead of trying to define a new metric to be
used with our model, we decided to use convex
combination of existing metrics providing an op-
portunity to simultaneously use multiple metrics
for software complexity [10].

Number of Syntactic
Linesof Code Complexity
® McCabe Halstead
Cyclomatic —)> < Difficulty (3)
Complexity Metric
Information Architecture
Flow Metrics Metrics

Figure 1: s. as a convex combination of six
software complexity metrics. «;’s are the cor-
responding weights.

Figure 1 lists six different metrics useful in
computing software complexity. The test manager
must choose the weights «; in order to estimate
the value of the parameter s.. Two of these six
metrics are based on structural properties of pro-
grams, three on program size, and one is a com-
bination of the other five. A software complexity
metric based on information flow (metric # 1) is
defined by Henry and Kamura [11] to capture the
relation between procedure size and information
flowing into (fan-in) and out (fan-out) of proce-
dures.

Syntactic Complexity (metric # 4) is defined



by Basili [12] based on the attributes product size,
control paths, and product decomposition. These
attributes are combined to produce the definition
of a family of control structure based complex-
ity metrics. Halstead [13] (metric # 3) defined
components of software science and program dif-
ficulty (D) as a measure of software complexity.
The Cyclomatic Complexity (metric # 6) defined
by McCabe [3] is based on the number of regions
contained in the directed graph of the program.
For a large program an average of the Cyclomatic
Complexity per method can be used. The number
of lines of code (metric # 5) is defined directly and
simply as a size relation proportional to complex-
ity.

Based on the six metrics mentioned above,
software complexity (s.) is defined as a convex
combination

n
Se = Zai M; (11)
i=1

where M; is a normalized software complexity
n
metric and Zai = 1.

i=1
The softzware complexity ranges from a lower
bound of 0 to an upper bound of ¢. Parameter
calibration techniques [14] can be used to define
the upper bound ¢ for individual organizations.

3.3 Quality of the Process

The coefficient 7 characterizes the overall qual-
ity of the test process and represents environmen-
tal factors such as pressure due to deadline, test
methodology used, structure of the organization
within which testing is carried out, experience and
expertise of members of the test team, and possi-
bly other factors. Although a single coefficient is
unable to fully represent the quality of the test-
ing phase, when appropriately chosen it appears
to be adequate. The same observations about the
computation of s. are also pertinent to the qual-
ity of the process (). Therefore we decided to
use the convex combination approach to compute
~. Work force experience and expertise, test strat-
egy/adequacy, tool use/adequacy, adequacy of the
test plan, and coverage criteria are some examples
of quality aspects that can be used in the compu-
tation of 7.

3.4 Size of the test team

The work force, wy, is defined as the number of
testers per unit time. As testers might be added

or taken away as the STP progresses, any varia-
tion in wy is accounted for by computing the state
variables over successive periods.

4 Case Study

Cobol Transformer Project
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Figure 2: Actual and predicted behavior of the
COBOL Transformer project observed in the
change in the fraction of remaining errors.

The case study presented in this section uses
data from a commercial project at Razorfish, a
company located at Cambridge, MA. Razorfish
currently has an application that contains about
4 million lines of code in COBOL. This application
is to be transformed into a functionally equivalent
application in SAP/R3 and a tool was developed
to automate this transformation. The results of
the application of our model to this project are
presented in Figure 2.

The values of the parameters used to obtain
the results of Figure 2 are listed in Table 1, where
Fy is the average disturbance in the period, P1
represents the period for weeks 1 to 6, P2 is the
period from weeks 7 to 10, P3 is the period from
weeks 11 to 14, and P4 is the remaining time pe-
riod. These values were computed using the tech-
niques described in Section 3. A high disturbance
can be observed in the first period. This value is
due to the discover of a major error that prevent
the continuation of the test process as expected.
As more data became available and the parame-
ters were re-calibrated, the disturbance force de-
creased for periods 2, 3 and 4. At week 14, we
predicted that it will not be possible to finish the
project within the expected time (25 weeks). Our
prediction was that it would take 35 weeks to com-
plete the project if no changes were made to accel-
erate it. Despite this, the project manager opted



for no changes in the process and project was com-
pleted in 37 weeks. The prediction for completion
and also a 95% accuracy in the prediction of rg
show the precision of the model. The actual num-
ber of errors is the proprietary data of Razorfish
and is presented here in a normalized fashion.

Table 1: Parameters values used in Figure 2.

| Parameter | P1 | P2 | P3 | P4 |
ol 0.44 0.56 0.75 0.75
& 19.57 | 22.73 | 18.86 | 18.86
¢ 025 | 054 | 075 | 0.75
Se 48 48 48 48
w; 3 3 3 3
Fy 62% 36% 17% 25%

5 Concluding Remarks

The Software Development Process (SDP) has a
degree of controllability that is far behind the de-
gree achieved by physical systems. A great ef-
fort has been done to increase the controllability
of the SDP. By focusing on a specific phase of the
SDP, the STP, the model presented in this pa-
per is the first step towards the achievement of
this goal. The state model for the STP provides
a feedback mechanism to help the test manager
to correct deviations found during the STP. The
feedback mechanism consists of determining the
minimum decay rate needed to meet management
objectives followed by adjustments in w; and/or
7 to achieve the necessary eigenvalues of A.

The rigorous, but not formal, aspects of many
approaches used to model the SDP makes the cal-
ibration of the parameters of the model a difficult
task. In some techniques the calibration is done
in a “trial and error” approach. As described in
this paper, the use of a state variable approach al-
lows the application of System Identification tech-
niques with algorithms to automatically calibrate
some parameters of the model. The other param-
eters are computed using a convex combination
of known software metrics. Thus, the increase of
the degree of controllability combined with the au-
tomated calibration of the parameters makes the
state model proposed here a promising approach.
This fact is supported by the reasonable results
obtained from the case study.
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