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Abstract

This paper reports results of a sensitivity analy-
sis of a state variable model of the Software Test
Process (STP). Given a state model of the STP,
a sensitivity matrix is calculated using tensor al-
gebra. The sensitivity matrix allows computation
of output variations to small perturbations in the
model parameters. The results confirm that the
model behaves in a manner very similar to what
one might expect from a software test process.
Results of this analysis also suggest changes and
enhancements in the model to improve its accu-
racy in predicting the behavior of the software
test process.
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1 Introduction

The use of state variable methods [1, 2] to model
and control the system test phase of the Software
Test Process (STP) has shown strong promise and
applicability [3, 4]. The model, referred to here as
Model S, was applied with encouraging accuracy
to the control of a commercial STP [4]. A distin-
guishing characteristic of Model S is the presence
of a feedback control loop similar to the one found
in a large number of engineering applications such
as in cruise control, rolling mill control, and satel-
lite tracking. By evaluating response curves with
respect to deadlines, etc., one can use parametric
control to adjust decay rates to better meet man-
agement objectives.

The use of a sound mathematical approach to
modeling and the presence of the feedback control
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loop distinguishes our approach to the control of
the STP from a multitude of other models and
approaches such as those found in Total Quality
Management and the ANSI standard for software
V &V plans.[5, 6]

Obviously, the accuracy of any model, such as
Model S, depends on the goodness of parameter
estimates. Hence it is critical to understand how
sensitive is the behavior of Model S to changes in
STP parameters. We therefore conducted a sen-
sitivity analysis of Model S by first computing a
sensitivity matrix and then using this matrix to
study the model behavior to small variations in
parameters.

The remainder of this paper is organized as
follows. Section 2 is an overview of Model S. The
method used to compute the sensitivity matrix for
the STP model is described in Section 3. A dis-
cussion of the results obtained from computations
done with the sensitivity matrix appears in Sec-
tion 3.2. Section 4 summarizes this work and our
conclusions.

2 Overview of the State Vari-
able Model of the STP

A linear model of the STP is based on three as-
sumptions. The assumptions and the correspond-
ing equations are presented below [4, 7]. Note that
these assumptions are based on an analogy of the
STP with the physical process typified by a spring-
mass-dashpot system. The analogy is outside the
scope of this paper and is found in [4].

Assumption 1: The magnitude of the rate at
which the remaining errors are decreasing is pro-
portional to the net applied effort for the test



phase and inversely proportional to the software
complexity.

Ff=— = e,=7%s; 1)

This is analogous to F' = m X a where s. is
analogous to m.

Assumption 2: The magnitude of the effective
test effort is proportional to the product of ap-
plied work force and the number of remaining er-
rors, i.e., for an appropriate (.

et =Cwsr (2)

Here the effective test effort is seen to be a
fraction (¢) of the possible encounters between a
member of the test team and an error (wy x r).

Assumption 3: The error reduction resistance is
proportional to the error reduction velocity and
inversely proportional to the overall quality of the
test phase, for an appropriate constant &.

er=€%f‘ 3)

Combining Egs. 1, 2, and 3 and organizing in a
State Variable format (£ = Az + Bu) produces
the following system.

where Fj represents unforeseen disturbances such
as hardware failures.

3 Sensitivity Analysis

The first step is to construct a sensitivity matrix
for Model S. In the second step the sensitivity ma-
trix is used as a computational tool to investigate
the sensitivity of the number of remaining errors
in the software product to each of the five param-
eters in the state model of the STP.

3.1 Computation of the sensitivity
matrix

For a sensitivity analysis with respect to param-
eter variations, Fy is identically zero. Our objec-
tives then is to characterize variations in the tra-
jectories z(t) with respect to variations in the five

parameters of the 2 x 2 A matrix in Eq. 4. A vec-
tor G of parameters that characterize the STP in
Model S is defined as

Sc

3
Gpxg=1| ¢ forp=5andg=1 (5)
wy

v

Considering the state variables z(t) =
[r(t) #(t)]T and G the vector of parameters, the
sensitivity of z to changes in G is denoted by agg) .
This derivative is the sensitivity matrix defined by

Brewer [8] as:

agg) = gg( 1,2 z(0) + I, ®<I>aagn +
/0 [%(@@B@(T)) +
(I © 9 2= (BE) | dr (©

where & = e is the state transition matrix and

I, is an m x m identity matrix. The symbol ®
represents the Kronecker product [9].

The last two terms of Eq. 6 are zero. The in-
tegral term is zero because we considered no per-
turbations (Fy = 0) and the second term is zero
because the initial condition (z(0)) is not depen-
dent on any parameter of G and hence the partial
0z(0)

oG

Let z(0) = [ro wo]? be the initial condition.
Thus, the term (I; ® 2(0)) reduces to x(0). Next

is zero.

we need to compute ETeh This is done by the use
of Eq. 7 below [8].

_zi i (I, ® A7) 62( ® A") qin(t) (7)
1=0 =

The terms (I, ® A*) and (I, ® A") can be com-

puted easily. The derivative —— results in a 10 x 2

matrix consisting of five 2 x 2 partitions. Each par-

tition (i — k) is defined as , where g is an

0
Ogik
element of vector G.

The term g¢;;(t) is defined as the inverse

Laplace transform of §;(s)8x(s) where

n—k—1

()= 3 % (®)

=0



and where A(s) is the characteristic polynomial of
A defined as

A(s) = iA]- s) =det[s] — A 9)

=0

Computation of Eq. 6 generates a 10 x 1 matrix
with 5 partitions of 2 x 1 matrices.

Rearranging the matrix produced by Eq. 6 in
a 2 x b format results in the sensitivity matrix de-
noted here by SM. The matrix SM can now be
used to compute variations in the state variables
in response to perturbations in specific parameters
or combinations thereof as per Eq. 10:

Ar(t)

= SM|G X Am (10)

nom

AF(1)

where A,, = [As. A& AC Awy Ay]T and G is
the nominal parameter vector.

The variations introduced in one or more pa-
rameters are represented in the vector A,, and
will reflect changes in r(¢) and 7(¢) observed by
the variations in A, and A;.

3.2 Using the sensitivity matrix
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Figure 1: Expected behavior of the process un-
der consideration.

In this section we use the sensitivity matrix
to analyze the sensitivity of the state variables
of Model S to variations in its parameters. Un-
less stated otherwise, the analysis is conducted
using the parameters characterizing the STP of
the transformer project conducted at Razorfish [4].
The values of the parameters are: s, = 48, wy = 3,
v =0.75, ¢ = 0.75 and £ = 18.86. The behavior
of such process, characterized by the normalized

3The actual number of remaining errors is proprietary
data of Razorfish.

number of remaining errors® over time and com-

puted using Model S, is depicted in Figure 1.

To obtain the variations for individual or com-
bined changes in parameters we need to set A,
to the desired value. For example, to analyze the
effects of a 5% change in s. and a -10% change in
7 we only need to set A, to [0.05s. 000 —0.1y]%.
The results are a function of Ar(t). Ar(t') > 0 at
time ¢ = ¢' implies an increase in the number of
remaining errors causing a decrease in the decay
rate of errors indicating a slow down in the pro-
cess. Ar(t') < 0 at time ¢t = t' implies a decrease
in the number of remaining errors (as expected)
causing an increase in the decay rate and an ac-
celeration in the process.

Sensitivity of Ar to changes in wy

AWf =10%
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Figure 2: Sensitivity of the change in remaining
errors (Ar) to a 10% change in wy.

Figure 2 shows the variation of the fraction of
remaining errors (Ar) in the presence of a 10%
(Awy) variation of the nominal wy. To obtain
the results in Figure 2, we set the matrix A,,
zero in all positions except Awy which is set to
Awy = 0.1 wy. Asis observed from Figure 2,
increasing wy by a factor o > 1 does not decrease
r(t) by a. A further examination of Figure 2 re-
veals that changing wy at the beginning of the test
phase is much more effective than changing it near
the end, as expected again. This consistency sug-
gests a high confidence level in the accuracy of the
model.

Equivalently, as the number of remaining er-
rors reduces, an increase in wy is not as effective
as it is at the beginning of the process. Indeed,
if communication overhead were accounted for in



our model, an increase in wy close to the end
of the process would delay the realization of the
STP quality objective. Although not yet explicitly
modeled, communication overhead and learning
can be simulated by increasing wy and decreas-
ing the quality of the process (). As is observed
from Figure 3 these changes will cause a decrease
in the rate of decay and consequently delay the
realization of the STP objective. The delay be-
comes increasingly acute as the STP gets closer to
its end. The behavior of Model S observed from
the sensitivity analysis conforms to the long held
belief popularly known as the Brook’s Law.[10].

Ay=0 .. -15% and Awf=10%
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Figure 3: Sensitivity of the change in remaining
errors (Ar) to a 10% change in wy and a 0 to
-15% change in . The negative change in the
process quality (7y) represents the communica-
tion overhead.

Sensitivity of Ar to changes in s,
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Figure 4: Sensitivity of the change in remaining
errors (Ar) to a 10% change in s..

An increase of 10% in s, represents only an in-
crease of at most 1% in the number of remaining
errors as can be observed in Figure 4. Although
presenting the correct behavior (slow down) at the
beginning, a speed up in the process is observed
after 15 weeks. This behavior is unexpected. Cer-
tainly, increases in software complexity intuitively
lead to greater difficulty in identifying and fixing
errors, thereby slowing down the test process. One
can think of an increase in software complexity
as an increase in ”frictional forces” opposing test-
ing. This type of frictional force is not directly ac-
counted for in Model S. Hence the sensitivity anal-
ysis suggests that Model S [4] needs to more fully
utilize s. in the underlying assumptions. This is
an important consequence of the sensitivity anal-
ysis because s, is presumed to be set without any
error. In practice when two or more metrics are
combined in a convex combination as suggested in
[7], a range of values for s. is possible for a spe-
cific test product. For example, suppose, for the
same product, s. is computed using KLOC(s.1)
and the average Cyclomatic Complexity(s.2) [11]
and that s.1 = 48 and s.2 = 43.2. Thus Model S
must better incorporate s, and be able to predict
a realistic sensitivity with respect to changes in
Se-

AsC =10% and AE = 10%
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Figure 5: Sensitivity of the change in remaining
errors (Ar) to a 10% change in s, and a 10%
change in &.

Nevertheless, within the context of Model S, it
is possible to simulate an increased frictional force
by either reducing the effective work force or by
increase £. Such a simulation for example, i.e.,
a 10% increasing in s. with a 10% ”simulated”
increase in £ leads to the plot of Figure 5 which
has the expected behavior. However, we must be
very cautious about drawing conclusions from the



simulated frictional force.

To date we have assumed that the complexity
of the product under test is computed at the be-
ginning of the test process and remains constant
for the entire process. Certainly, we understand
that this might not be true in all cases and es-
pecially when the removal of an error leads to a
significant change in the product under test. How-
ever, in the case where there is a significant change
in s, during the STP, use of Model S allows the
new value of s, to be computed and plugged in for
future computations.

Sensitivity of Ar to changes in vy

Similar to the variation in wy, changes in the
quality of the process (y) are more effective
at the early stages of the process as observed
in Figure 6. Analysis also reveals that under
the conditions of a low quality process and a
large work force, increasing < has more effect
on Ar than increasing wy. In a opposite sit-
uation, increasing wy is a better alternative.
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Figure 6: Sensitivity of the change in remaining
errors (Ar) to a 10% change in .

The quality of a test process can be increased
in many ways such as those listed below.

1. Improve the quality of test cases.
2. Improve the test plan.
3. Acquire and use a better test tool.

4. Increase the quality of the work force by ex-
changing a tester by one with more experi-
ence.

Ttems 1 and 2, in general, will not impose an
extra effort in communication or learning, while

items 3 and 4 will. Therefore, the increase in the
overall quality of the test process () must be an-
alyzed jointly with the side effects of its change.

Sensitivity of Ar to changes in ¢ and
changes in ¢

The parameters £ and ( are obtained by a weighted
least square [12] solution based on observed data.
If the collection of this data is not precise, noise
is introduced and can affect the computation of
these parameters. For example, noise could be
represented by unreported errors, by a missing or
wrong date when the error was found, etc.. There-
fore, the presence of noise justifies the sensitivity
analysis of Model S for variations in £ and (.

As with the other parameters, changes in Ar
are more sensitive to changes in { at the begin-
ning of the process and represent, like the changes
in wy, as much as a 4.5% increase in the rate of
decay.

The sensitivity of the Model S to changes in
¢ is similar to that for changes in (, but in the
opposite direction. That is, increasing £ slows
the STP. The observations made regarding the
effect of changes in ¢ apply to changes in £ also.
As is observed in Figure 7, the variations in &
and (¢ can account for as much as 9% acceleration
in the process (bottom layer in Figure 7) to the
same slow down variation (top layer in Figure 7).

AE =-10% ... 10% and A= -10% ... 10%
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Figure 7: Sensitivity of the change in remaining
errors (Ar) to a -10% to 10% change in £. The
layers represent variations in A¢ from -10% (top
layer) from 10% (bottom layer).

If data from similar projects is available, £ and
¢ are estimated at the start of the STP, otherwise
one needs to wait until data from the first few ob-
servations of the current project became available.



Indeed it is important to update these parameters
in the course of the testing process. Combining
this with the observation that the process is more
sensitive at the beginning imposes a requirement
of a good initial estimate for the parameters £ and

.

4 Summary and Conclusions

Modeling the STP using a formal technique bor-
rowed from the theory of automatic control al-
lowed us to apply an analytical tool, namely
the sensitivity matrix, to analyze the behavior of
Model S. The advantages of using an analytical
and not a simulation based approach, are in effi-
ciency and precision. The approach is more effi-
cient than for example, the simulation based ap-
proach, because it provides us with closed form
solutions to the equations that characterize the
model that are easy to manipulate using widely
available tools such as MATLAB. The approach is
more accurate because the closed form solutions
are not quantitative approximations that result
when using a simulation-based approach. The re-
sults of the sensitivity analysis conducted in Sec-
tion 3.2 serve two main purposes: an improvement
in our understanding of the behavior of Model S
and the generation of ideas for the improvement
of the model.

The sensitivity analysis of Model S suggests
that

e changes in the process’s parameters are more
effective at early stages of the process;

e under certain conditions, late changes can
make the process slow down instead of speed
up (Brook’s law); and

e in some cases improving the quality of the
process is better alternative than increasing
the size of the test team.

Another lesson learned from the sensitivity
analysis is that good parameter estimates at the
beginning of the process are important. This is
due to the higher sensitivity of Model S at the be-
ginning of the process to variations in ¢ and (. Fi-
nally, the sensitivity analysis exposed weaknesses
in Model S. These weaknesses are related to the
sensitivity of Model S output to changes in s, and
to the lack of explicit accounting for learning and
communication overhead in Model S.

References

[1] R. A. DeCarlo, Linear systems : a state
variable approach with numerical implemen-
tation. Upper Saddle River, New York:
Prentice-Hall, 1989.

[2] D. G. Luenberger, Introduction to Dynamic
Systems: theory, models and applications.
John Wiley & Sons, 1979.

[3] J. W. Cangussu, R. DeCarlo, and A. Mathur,
“A state variable model for the software test
process,” in Proceedings of 13th International
Conference on Software € Systems Engineer-
ing and their Applications(ICSSEA), (Paris-
France), December 2000.

[4] J. W. Cangussu, R. DeCarlo, and A. Mathur,
“A formal model for the software test pro-
cess,” Tech. Rep. SERC-TR-176-P, Purdue
University-SERC, March 2001.

[6] J. J. Marciniak, “Total quality management
in software development,” in Encyclopedia of
Software Engineering, vol. 2, pp. 1359-1376,
Whiley Interscience, 1994.

[6] J. J. Marciniak, “Verification and valida-
tion,” in Encyclopedia of Software Engineer-
ing, vol. 2, pp. 1409-1433, Whiley Inter-
science, 1994.

[7] J. W. Cangussu, R. DeCarlo, and A. Mathur,
“A state model for the software test process
with automated parameter identification,” in
Proceedings of the 2001 IEEFE Systems, Man,
and Cybernetics Conference (SMC 2001),
(Tucson-Arizona), September 2001.

[8] J. W. Brewer, “Matrix calculus and the sen-
sitivity analysis of linear dynamic systems,”
IEEE Transactions on Automatic Control,
vol. 23, pp. 748-751, August 1978.

[9] J. W. Brewer, “Kronecker products and ma-
trix calculus in system theory,” IEEE Trans-
actions on Circuits and Systems, vol. 25,
pp. 772-781, September 1978.

[10] F. P. Brooks, The Mythical Man-Month. Ad-
dison Wesley, 1995.

[11] T. H. McCabe, “A complexity measure,”
IEEE Transactions on Software Engineering,
vol. 2, no. 6, pp. 308-320, 1976.

[12] C.L. Lawson and R. J. Hanson, Solving Least
Squares Problems. Society for Industrial and
Applied Mathematics (STAM), 1995.



