
Effect of Disturbances on the Convergence of Failure Intensity

João W. Cangussu
Department of Computer Science

University of Texas at Dallas
Richardison-TX 75083-0688, USA

cangussu@utdallas.edu

Aditya P. Mathur
�

Department of Computer Sciences
Purdue University

West Lafayette-IN 47907-1398, USA
apm@cs.purdue.edu

Raymond A. DeCarlo
Department of Electrical and

Computer Engineering
Purdue University

West Lafayette-IN 47907-1285, USA
decarlo@ecn.purdue.edu

Abstract

We report a study to determine the impact of four types of
disturbances on the failure intensity of a software product
undergoing system test. Hardware failures, discovery of
a critical fault, attrition in the test team, are examples of
disturbances that will likely affect the convergence of the
failure intensity to its desired value. Such disturbances are
modeled as impulse, pulse, step, and white noise. Our study
examined, in quantitative terms, the impact of such distur-
bances on the convergence behavior of the failure inten-
sity. Results from this study reveal that the behavior of the
state model, proposed elsewhere, is consistent with what
one might predict. The model is useful in that it provides
a quantitative measure of the delay one can expect when a
disturbance occurs.

1 Introduction

The system test phase of the software life cycle is sub-
ject to various types of disturbances, both unforeseen and
known a priori. When a disturbance occurs during the test
phase, it may cause a delay in the realization of the objec-
tives. In the study reported here, the failure intensity of the
software product under test is of interest to us. Thus we
want to understand, and predict, how will the convergence
of failure intensity to its desired value be affected due to a
disturbance. This study is based entirely on a model of the
software test process proposed elsewhere [1].
�
Financial support provided in part by SERC and NSF.

1.1 System test, reliability growth, and the prob-
lem of interest

The system test phase (STP) in a software life cycle is
intended to test a software system for conformance with
both functional and non-functional requirements. Accord-
ing to Donnely et al. “System test and field trial activ-
ities certify that the software requirements of the product
are met and that the product is ready for general use by the
customer.”[2]. During the system test phase, one may con-
duct various types of tests such as reliability growth test,
regression test, and feature test. We focus on reliability
growth test.

Now suppose that a test manager is given a failure inten-
sity objective

���
that must be met by a deadline � � . Sup-

pose also that at some time ����� � the failure intensity of
the product under test is

�
	 ���� ���
. Under this scenario,

the following two questions are of interest to us.

Is there a need to alter the parameters of the
test process so that the objective is met by � � ?

If the answer to the above question is in the
affirmative then what changes, in quantitative
terms, should be made to the test process in
order for the objective to be met ?

An answer to the questions above has been proposed us-
ing a state variable approach [1]. This approach allowed the
development of a first order linear model of the system test
phase that is used during the test process to obtain answers

to the two questions above. With respect to this state model,
our interest is in obtaining an answer to the following two
questions.

Disturbance modeling: How does one model
quantitatively the disturbances that can affect
the convergence of the test process to the ob-
jective ?

Impact of disturbances: How does a distur-
bance effect the convergence of the test pro-
cess towards the failure intensity objective ?

1.2 Problem context

The use of feedback control during the STP is illustrated in
Figure 1. The figure shows four key components that par-
ticipate in the control process. These are the Actual STP
which consists of the test engineers, tools, documentation,
etc., a State Model of the STP which is Model S, a
Controller, and the test manager. The manage-
ment decides how many testers to employ to test the prod-
uct. This number is the initial value of ��� . The test manager
estimates the quality � of the test process. The complexity
of the software under test is computed as a convex combina-
tion of several well known complexity metrics such as the
number of function points, lines of code, and the number
of data flows [3]. An initial estimate of the failure inten-
sity

�
	�� ��� �	�
is made of the software product ready to

enter the test phase. Furthermore, we assume that to plan
and monitor the progress of the STP, the test manager di-
vides the entire phase into a sequence of
 �

checkpoints
denoted by cp �� cp ����������� cp � with cp � being the first check-
point after testing has begun and cp � the deadline. The re-
alization of the failure intensity objective is distributed over
these checkpoints. Thus, checkpoint cp � is specified as a
pair (� � � �

�
�), where � � is some time prior to the deadline and� �� is the desired failure intensity of the product at check-

point cp � .
At checkpoint cp ����� �

,
� � of the product is estimated

and compared against the expected
���� computed by the state

model. The error signal � � ��� ������ � � is input to a con-
troller. Using this error signal, �! , � � , and � , the controller
computes a set of possible changes �"�$#� and �"�%# that could
be made to � � and � , respectively, in order for the STP to
meet the reliability objective on or before the deadline. The
computed changes are made available to the test manager
who may or may not choose to ignore them. Though Fig-
ure 1 gives the impression that only a single pair (�"�&#� and
�'�%#) of values is output by the controller, in reality the con-
troller outputs a finite set of such pairs from which the test
manager could select. The STP resumes with a workforce
of (� �'(�)� �) and a process quality of (� (�"�), where

Initial Setting

Manager
Test

fγ(0)
w’

’

fwf
∆

∆γ(cp)
i∆γ

(cp)
i

∆

f ∆w

(cp)

(cp)
i

(cp)
i

w

i

∆w

w

(cp)
i (State Model

of the STP)

λ i∆

λ i
e

λ

f

sc

sc

f

w (0)

f

i

+

+

Controller

STP
γ + ∆γ

+

γ + ∆γ

+i-1

i-1

i-1

i-1

(cp)

(cp)

(cp)

(cp)

00λ

Model S

λ
0

Figure 1. Closed loop control of the software
test process using reliability measurements.� � 	 ��� is the estimate of the failure intensity at
checkpoint cp � . �*�� 	 ��� is the expected failure
intensity of the product computed by Model
S at checkpoint cp � .

�)� � and �'� denote the actual changes made by the test
manager.

The STP model and the controller cooperate to form
a feedback control loop. Unforeseen disturbances in the
STP are accounted for by updating estimates of the model
parameters. The control loop offers the test manager op-
portunities to make alterations to the STP at any check-
point. These alterations could come in many forms such as
a change in the number of testers, in the quality of the test
process, in the test objectives themselves, or any combina-
tion of these. Thus the inherent uncertainty and the vari-
ability of the STP is accounted for in the feedback control
loop.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of the state model that serves as
the basis for studying the impact of disturbances on the con-
vergence of the failure intensity. The mathematical back-
ground required for a complete understanding of the mate-
rial in this paper is beyond the scope of this paper and is
found in standard texts on automatic control [4, 5]. The def-
initions of different types of input signals, unforeseen per-
turbations in Model S, and their correlation to the STP are
provided in Section 3. The results of stimulating Model S
with impulse, pulse, step, and white noise inputs are pre-
sented in Section 4 and analyzed in Section 5. Section 6
summarizes this work.

2 Review of State Model of the STP1

A linear model of the STP is based on three assumptions
presented below [3]. These assumptions are based on an
analogy of the STP with the physical process typified by a

1Section mostly extracted from author’s previous work [1].

spring-mass-dashpot system and the predator-prey system.
A complete description and justification of this analogy and
the choice of a linear model is outside the scope of this pa-
per and is found elsewhere. [3]

The widespread use of differential equations to model
many different types of systems [5, 6] combined with the
fact that most of such models were developed using analo-
gies to physical systems with assumptions similar [7, 8]
to ours further justify the choice of a second order linear
model.

Assumption 1: The magnitude of the rate of decrease of
failure intensity of a software product is proportional to the
net applied effort during the test phase and inversely pro-
portional to the complexity of the product.�� � � �

�
� � � � �� 	 ��� � (1)

The first assumption also follows from the observation
that complex programs require more test effort than rela-
tively simpler programs for approximately the same reduc-
tion in their respective failure intensities. While the value
of the fault exposure ratio (FER) defined in [9] does play an
important role in how the failure intensity changes, we be-
lieve that FER itself is a function of the quality of the test
process and need not be treated as an independent parameter
in the model. For example, a test process that uses advanced
methods for test generation, such as those that use coverage
measurement tools, is likely to lead to a higher fault expo-
sure ratio, than one that uses only black-box functional test-
ing for the generation of tests. Justification for our belief
comes from data presented in earlier work [10].

The net applied effort (� �) is the balance of all the ef-
fort applied during the test phase. This results from the dif-
ference of the effective effort applied by the test team mi-
nus any “frictional” forces that decrease the applied effort.
Since

�
represents failure intensity, its first derivative

��
is

the failure intensity reduction velocity (� �). Consequently,��
, which denotes the rate of change of

��
, is an accelera-

tion. Thus, the concepts of velocity and acceleration have
counterparts in the test phase.

Assumption 2: The magnitude of the effective test effort
is proportional to the product of applied work force and the
failure intensity, i.e., for an appropriated � .� � � � 	 � � ��� �
	 ��� (2)

where � 	 � � � �
� �� . Parameter � depends on the software

project characteristics and will have the values: i- � �
	 � ���
for an organic mode project; ii- � �	 � 	�� for an semi-
detached mode project and; iii- � ��	 � � � for an embedded
mode project. This classification and the respective values

were defined and empirically validated for the COCOMO
model [11].

Assumption 2 can be understood with another analogy.
In a spring the restoring force is determined by the spring
stiffness and by how much the spring is extended beyond its
natural length. Increasing the spring stiffness or the exten-
sion increases the restoring force. The effective test effort
can be interpreted in an analogous way. The failure inten-
sity is analogous to the spring length. At the beginning of
the test phase

�
is larger than it is towards the end. Hence,

the effective effort decreases as
�

decreases. The work force
can be related to the spring stiffness. The larger the work
force, the greater the restoring force, i.e., the effective ef-
fort. Thus spring stiffness is analogous to � � and spring
extension to failure intensity (

�
). In Eqn. 2, � remains con-

stant over a period and must be calibrated for the project
under analysis.

Assumption 3: The resistance to a decrease in the failure
intensity opposes, is proportional to the the velocity of fail-
ure intensity, and inversely proportional to the overall qual-
ity of the test phase, for an appropriate constant � .��� � ��� 	� �� 	 ��� (3)

This assumption implies that the faster one tries to re-
duce the failure intensity the more likely one is to make
mistakes leading to possible slowdown in the overall test
process. A physical dashpot can be used to explain this be-
havior. The coefficient of viscosity of the liquid inside the
dashpot is

�� . Therefore, a small coefficient of viscosity is
analogous to a carefully conducted test phase and thus the
number of new errors inserted is small. Larger coefficient
of viscosity is analogous to the test phase in which more
errors are introduced than would be introduced under nor-
mal circumstances. The velocity component in the dashpot
is analogous to the failure intensity reduction velocity (

��
).

Thus, the overall quality of the test phase, denoted by (�),
and the rate at which failure intensity is decreasing, deter-
mines the failure intensity reduction resistance effort which
is analogous to the damping force generated by the dashpot.
In Eqn. 3, � is merely a constant of proportionality.

Combining Eqs. 1, 2, and 3 in a force balance equation
(� � � (��� � � �) and organizing it in a state variable
format (

�� ��� � (����) leads to the following system of
equations.� �� 	 ����� 	 ����� �

�
� 	 "!$#"%&('*),+.- 0/�1& ' �

�
� 	 ����� 	 ��� � (

�
�
�&2' �43 � (4)�

� 	 ����� 	 ��� � �65 	 �
� 	87 � �
	 �����
	 ��� � (5)

Model S shown in Figure 1 consists of Eqs. 4 and 5. A
solution to these equations, with appropriate estimates of

parameter values, generates
���� 	 ��� in Figure 1. Using the

relationship in Eq. 6, one computes � �� 	 ��� .
� 	�� � � � �������	�
 (6)

2.1 Estimation of model parameters

� � is relatively easy to compute as it is defined to be
the number of testers testing the product. The value of � �
must be adjusted for any part-time and temporary person-
nel. Parameters � and � are computed by applying a con-
vex combination [12] of available metrics. The remaining
parameters are estimated through the use of System Identi-
fication [13] techniques [14]. An important characteristic of
our approach is that estimates of all parameters are updated
at each checkpoint thereby improving their accuracy with
the passage of time. Changes in the test environment, such
as in the workforce and the quality of the STP, are accounted
for as and when they occur.[14]

2.2 Computing �"� #� and �"� #

In a feedback control system, the largest eigenvalue of
the system determines the slowest rate of convergence and
dominates how fast the output variables converge to their
desired values. Therefore, in order to control

� 	 ��� so that it
reaches its desired value by the deadline � � , we must adjust
the largest eigenvalue appropriately. Given

� 	�� � , the fail-
ure intensity at time

�
, and

� 	�� (� ��� , the desired failure
intensity at time � � later, we use the following equation to
determine the amount by which to adjust the largest eigen-
value ������ .2

� 	�� (� ��� � �
	�� � � ������������ (7)

We know the values of
�
	�� � , � 	�� (� ��� and � � at check-

point cp � ��� �
and hence we solve Eq. 7 and find the

value of ����� . The eigenvalues of a system are defined
by the roots of the characteristic polynomial (�! 	 � �" � �$# &% � ��'). Computing the characteristic polynomial
of our model leads

" � �$# &% � ��' � " � � � � 	!)(#"%&�*) +.-�+' (/(� &2' �
� � (�,�%� (� ,� �

� � ��- � 	 (8)

where
,� � � (� � and

,� � � � � (� #"% . Using Eq. 8 we
compute the variations in the work force and in the quality
of the process necessary to meet the desired quality objec-
tive by the deadline.

2The symbol . is used in math literature to represent the eigenvalues of
a system. . is also used in the Software Reliability to represent failure in-
tensity. To avoid confusion and keep uniformity with Software Reliability
standards we decided, in this paper, to represent the eigenvalues of system
by the symbol / .

3 Modeling Unforeseen Perturbations

3.1 Disturbances

It is assumed that at the start of the reliability growth test-
ing, a test manager is given a failure intensity objective for
the end product and the deadline by which this objective
must be met. We use failure intensity as the failure inten-
sity objective; the reliability itself can be computed directly
from the failure intensity.[9] A model to help the test man-
ager control the reliability growth testing using feedback
has been proposed [1] and is summarized in Eqn. 4 and 5.
In this model, the size of the test team (� �) and the quality
of the test process (�) are the two control variables avail-
able for manipulation by the test manager to control the
progress of the system test phase towards the desired objec-
tive. However, the system test process is subject to various
disturbances described in the following section.

3.2 Modeling disturbances

Input signals are, in general, used to drive a system from one
state to another. The parameters � and � � are the driving
forces of the state variable model for the STP. Eqn. 4 indi-
cates that these parameters are not part of the input. The
use of � or ��� as an input would place the system in a non-
linear space making it difficult to apply the techniques from
control theory and producing a relatively difficult to under-
stand model. Furthermore, changes in ��� and � are usually
not as frequent as are the unforeseen perturbations modeled
by 3 � . This observation further justifies the application of
parametric control and the use of 3 � as the input signal for
Model R.

Any function can be used to specify the input signal. A
square or sinusoidal waive with different frequencies, an ex-
ponentially shaped, and a constant value input are a few ex-
amples. Though all types of signals are of some concern
to the STP, in this work, we focus on four different types
of input signals presented in Figure 2. The relationship be-
tween these four input signals and actual events in the STP
is described next.

3.3 Impulse input

An impulse input is an instantaneous stimulus to a system
to drive it from state � � to state � � . This stimulus is rep-
resented mathematically by a Dirac delta function that dif-
fers from zero for an instant but whose integral over time is
unity. Eqn. 9 and Figure 2 are, respectively, a mathematical
and a pictorial representations of an impulse.

The question of interest to us is: “What disturbance in
an STP can be modeled reasonably by an impulse ?” A
hardware failure due to power outage prior to the overnight

Fd

time

Pulse Input ∆t = constant

Fd

time

White Noise Input

∆ t1/

∆ t

∆ t

∆t 0

time

Fd

Step Input

Impulse Input

of a component of the system

migrate the system from the
developer’s to the user’s environment

Fd

time

Example: Fd modeled as the time to

Example: Fd modeled as the replacement

Example: Fd modeled as an increase
in the communication level of the
test team for the remaining period

Example: Fd modeled as a combination
of unforeseen perturbations that
occur during the STP

Figure 2. Different types of inputs to represent
unforeseen perturbations in a STP.

backup that causes the loss of important files for one day,
seems to be a reasonable disturbance to be model by an im-
pulse. Suppose that at the beginning of the day the fail-
ure intensity is

�
	 � � � � � � and at the end of the day, prior
to the power outage, the failure intensity is

� 	 � � � � � � ,
for � � � � � . An instantaneous stimulus due to the power
outage will drive the system from state

� 	 � � � � � � to� 	 � � - � � � � .
Another example of an impulse input for the STP is

the replacement of a pre-tested component of the soft-
ware product by a different, though supposedly function-
ally equivalent, component. Such replacement may occur
due to a need to improve the performance of the application
under test. Asuming that most defects in the old compo-
nent have been removed, this replacement, which serves as
an instantaneous stimulus, will likely increase the failure
intensity from the current level

� 	 � � � � � � to a higher
level

�
	 � � - � � � � (� ��� , where
� ��� is an estimate of

the failure intensity of the new component. One might ar-
gue that the new component may be more reliable than the
one it replaced. However, we assume that this is not likely
since both components were developed under similar cir-
cumstances and the second component had to meet the per-
formance requirements. Therefore, in this case, we need to
compute the input 3 � in Eqn. 4 that will drive the system
from

� 	 � � � � � � to
� 	 � � - � � � � (� � � . The next subsec-

tion addresses this issue. In the remainder of this paper we
use the scenario of this second example as the cause of an

impulse input signal disturbing the process.

Computing the response to an impulse input

The general format of an impulse input is presented in
Eqn. 9. Since the values of the Dirac-delta function are
known, we need to compute the vector # � ������� � � � ' of
coefficients of

� � � 	 	 ��� .� 	 ��� � � ��
�
	 � � � � � � 	 	 ��� � � � � 	 ��� (����� (� � � � � � � 	 	 ��� (9)

where
� 	 ��� is the Dirac-delta function and

� � � 	 	 ��� is the � ���
derivative of

� 	 ��� .
Theorem 1 (Characterization of the Solution)[6]: For the
time invariant system dynamics

�� � � � (� � and a given� 	 � � , suppose that the input assumes the format as de-
scribed in Eqn. 9. Let � # � � � ����� � � � � ' be the
controllability matrix. Then

# � 	 � - � � � 	�� � ' � �� # � � � � ����� � � � '�� (10)

Theorem 1 relates # � � ����� � � � ' � to the values of � 	 � - �
and � 	 � � , and the controllability matrix , but it does not
assert the existence of the vector # � ������� � � � ' . The exis-
tence of a solution is addressed in the following corollary.

Corollary [6]: Let � # � � � ����� � � � � ' be
��
 . For
each � 	�� - � , there exists a unique impulse input, defined in
Eqn. 9, which will drive the � 	 � � to � 	�� - � if and only if" � � 	 ���� �

.

The MATLAB function in Figure 3 is used to compute
the vector of coefficients # � � � � ' � for the impulse input for
the system described in Section 2.

function ret = Comp_Impulse(sc,zeta,wf, ...
b,chi,gamma,x0,x1)

A(1,1) = 0 ; A(1,2) = 1 ;
A(2,1) = -(wf*zeta)/(scˆ(1+b)) ;
A(2,2) = -(chi)/(sc*gamma) ;
B = [0 1/sc]’;
D = [0];
C = [1 0] ;
sys = ss(A,B,C,D) ;
Q = ctrb(sys) ;
X = x1 - x0 ;
ret = pinv(Q)*X ;

return

Figure 3. MATLAB function for the computa-
tion of # � � � � ' � that composes the impulse
input to drive the system from state � � to � � .

3.4 Pulse input

The difference between an impulse and a pulse signal is
their respective durations. Whereas � � is a finite non-zero
quantity for a pulse, it tends to 0 for an impulse. The fre-
quency of a pulse might also vary. Though the study of the
response of Model R to pulses of different frequencies is
an important exercise, we focus on a single pulse of fixed
length.

A pulse may be used to model an unexpected one-half
day training session for the entire or part of the test team.
In this case, the disturbance is assumed zero prior to time
� # �

, i.e. before the start of the training session. 3 �assumes a positive non-zero value at � # . This value of 3 �is kept constant over the entire duration of the training after
which 3 � is reset to zero. The structure of a single pulse
input signal is depicted in Figure 2.

Another example of a disturbance that is modeled as a
pulse is the migration of the product from the developer’s
environment to the user’s environment. Suppose, for exam-
ple, that the migration period is one week. The test process
does not progress while the system is under migration and a
pulse is an appropriate model for this delay. The difference
between this example and the training session is in the side
effects related to the user’s environment. That is, the esti-
mated failure intensity will most likely increase when the
product is tested in the user’s environment.

3.5 Step input

A step input is a pulse with an infinite width. In our study
a step input is modeled by setting 3 � to zero prior to some
time � #�� �

and setting it to some constant � soon after ��# .
A step input is shown in Figure 2.

One disturbance in STP that can be modeled using a
step input is the increase in the communication and doc-
umentation level due to the replacement of the test man-
ager. Assume that the new test manager requires additional
regular meetings and demands more effort in collecting
data and documenting the process. Though these changes
may increase the overall quality of the process, they may
also slow it down. There is a tradeoff in how much can
communication and documentation increase without slow-
ing down the process. In this case we assume an over-�

communication/documentation � resulting in deceleration.

3.6 White noise

White noise is a random input signal that never repeats and
has a flat frequency spectrum. Usually, there is a large num-
ber of sources of disturbances in a STP. A combination of
disturbances generated by these sources is modeled as white
noise. Sources of disturbances that are assumed to combine

into a white noise include personal problems such as illness,
software/hardware problems related to the environment in
which the test is being conducted, and a fatal failure of a
critical hardware component. These problems may or may
not occur and there is no easy way to predict the frequency
or intensity of any of them or their combination. Therefore,
a random signal (white noise) seems to be an appropriate
model of such unforeseen perturbations in the STP.

4 Results

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100
Impulse Input

t − time

λ
−

fa
ilu

re
 in

te
ns

ity

desired λ

no disturbance
impulse input disturbance at t=10
impulse input disturbance at t=50
impulse input disturbance at t=90

Figure 4. Effect of an impulse input on the
failure intensity of a software product. The
impulse is modeled so as to cause a 5% in-
crease in

�
	 ��� at the time of occurrence. The
impulse occurs at the TADs specified earlier.

The impact of various disturbances on the convergence
of the failure intensity

�
	 ��� was studied by setting 3 � in
Model R to appropriate values and solving the model for� 	 ��� . The impact was studied in isolation for each of the
four input types, namely impulse, pulse, step, and white
noise. Each input was applied (i) early in the test pro-
cess, (ii) somewhere in the middle of the test process, and
(iii) close to the end of the test process. This variation in
the time of the application of the input allows us to deter-
mine the differences in

�
	 ��� due to the different times when
the disturbances actually occur during the STP. As the terms
“early”, “somewhere in the middle”, and “close to the end”
are fuzzy, we arbitrarily set the times (in days) at which the
disturbance is applied to # 	 � ����� � ' . We refer to these three
times as “time of the application of a disturbance” or, sim-
ply, TADs.

Unless stated otherwise, the following parameter val-
ues are assumed during the computations: the workforce

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100
Proportinal Pulse Input

t − time

λ
−

fa
ilu

re
 in

te
ns

ity

desired λ

no disturbance
pulse input disturbance at t=10
pulse input disturbance at t=50
pulse input disturbance at t=90

Figure 5. Effect of a pulse input on the fail-
ure intensity. The pulse is applied at different
TADs. The input at each TAD are equivalent
to, respectively, � � 	 	 � ��� � � 	�� � , � � 	 �!� ��� � � � � � and� � 	 � � ��� � � � � � . The duration of each pulse is 8
days.

� � � 	 � , quality of the test process � � � � � , complex-
ity of the application under test � � � � , model parame-
ters � ��� � , � � 	 	�� , and � ��	 � ��� . The parameter val-
ues have been selected arbitrarily and kept constant in this
study. The desired reduction in the failure intensity is mea-
sured in terms of percent of the initial value, exact values
of the failure intensity are not of concern in this study. It is
assumed that the test manager is interested in reducing the
failure intensity to 5% of its initial value. Thus, for example,
if
�
	�� � � � � failures/day then

� 	 � � � � 	 failure per day,
where � � denotes the deadline by which the system test is to
be completed.

4.1 Impulse input

An impulse input models, for example, the replacement of
an already tested component by an untested one. We as-
sume that such a replacement causes an increase of 5% in� 	 ��� soon after the disturbance occurs. Eqn. 9 is a precise
model of the impulse input. To obtain the value of

�
	 ���
in response to the impulse input we need to compute the
vector # � � � � ' � to drive the system from its current state� 	 � � � # � 	 ��� � 	 ��� ' � to � 	 � - � � # � 	 ��� (� � ' � . Comput-
ing these values using the script from Figure 3 results in the

following impulse inputs for � � # 	 � ������� ' .� 	 	 � � � 	 � 	 � �	� ��
 � � 	 	 � � (� � � � ��
 � � # 	 	 � �� 	 �!� � � 	 � � � � 	 �
 � � 	 �!� � (� � � � �
 � � # 	 �!� �� 	 ��� � � � � � � �	���	� � � 	 � � � (� � � � � # 	 � � �
Figure 4 shows the effects of various impulse inputs on� 	 ��� . As observed from this figure, the expected time to

reduce
�
	 ��� to 5% of the value at the start of the test process

is 107 days. However, when an impulse occurs at time � �	 � the desired reduction takes place with a delay of 5 days.
The corresponding delays in the reduction of

� 	 ��� to 5% of
its initial value are, respectively, 12 and 28 days, for � � ���
and � � ��� .

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
Constant Pulse Input

t − time

λ
−

fa
ilu

re
 in

te
ns

ity

desired λ

no disturbance
pulse input disturbance at t=10
pulse input disturbance at t=50
pulse input disturbance at t=90

Figure 6. Results of the perturbation of the
systems by an pulse input signal at TADs.
The input signal generated is equivalent to� � 	 	 � � for all the three time instances and it
persists for 8 days.

4.2 Pulse input

Two examples of disturbances in STP that can be modeled
by a pulse are presented in Section 3.4. Next we determine
the impact of these disturbances on

� 	 ��� . As shown in Fig-
ure 5, a training period of 8 days for the entire test team de-
lays the progress of the test process by the same number of
days. The value of 3 � is computed by generating an equiv-
alent, though opposite, force to the effective test effort � � ,
i.e., 3 � 	 ��� � � � � 	 ��� � � � � � ����� ��� (�� � � � 	 � � �!� � ��� � .
Notice that the absolute value of 3 � is not a constant, but its
relative value is proportional to the value of � � .

Unlike the behavior exhibited in Figure 5, the values of3 � in Figure 6 remain constant over a period of 8 days. For

the three time instances used, 3 � is computed as the equiva-
lent of � � 	 	 � � , i.e., 3 � 	 ��� � � � � 	 	 � � ��� � � � ����� � � (�� � �� 	 � � ��� � � � � . Therefore, the absolute value of 3 � is the
same for the three periods and the respective delays to
achieve the same goal are 9, 21 and 44 days as is observed
from Figure 6.

4.3 Step input

An increase in the communication overhead and documen-
tation is modeled as a step input. The step input is applied
to the STP at TADs specified earlier. Two different ways
are used to to generate the step input. The first way rep-
resents an increase in communication equivalent to 60% of
the effective test effort, i.e., 3 � 	 ��� � � � � ��� � � 	 ��� � � �
� � ����� ��� � � � � 	 � � ��� � ��� � and is named “proportional
step.” The effects of this step input on

� 	 ��� are shown in
Figure 7 where delays of 43, 33, and 16 days are observed,
respectively, for the three TADs.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
Proportional Step Input

t − time

λ
−

fa
ilu

re
 in

te
ns

ity

desired λ

no disturbance
step input disturbance at t=10
step input disturbance at t=50
step input disturbance at t=90

Figure 7. Results of the perturbation of the
systems by an step input signal at TADs.
The input signals for these time instances are
equivalent to � � 	 	 � ��� � � � , � � 	 � � ��� � � � and � � 	 � � ��� � � � ,
respectively.

The second way to generate the step input is to use an
absolute step input. In this case, 3 � is computed as a force
equivalent to 15% of the effective test effort at time � �	 � , i.e., 3 � 	 ��� � � � � 	 � � � � 	 	 � � � � � � � ����� ��� � � �� 	 � � ��� � � � � . The effects of step input on

� 	 ��� are shown in
Figure 8.

4.4 White noise input

We model white noise by setting 3 � 	 ��� � ��� 	 ��� �� � 	 ��� � � � � � ����� ��� � � � � 	 � � �!� � � � � . Parameter � is

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
Constant Step Input

t − time

λ
−

fa
ilu

re
 in

te
ns

ity

desired λ

no disturbance
step input disturbance at t=10
step input disturbance at t=50
step input disturbance at t=90

Figure 8. Results of the perturbation of the
systems by an step input signal at TADs. The
input signal generated is equivalent to � � 	 	 � �
for all the three time instances and it persists
for the remaining period.

distributed normally over the range
� ����� � . The mean value

of � fluctuates around 1 with a standard deviation of ap-
proximately 0.4 for each of the three cases. The effects of
applying a white noise at TADs are shown in Figure 9. The
delays associated with each of the three cases is 60, 47, and
24, respectively.

5 Analysis

We now analyse the results presented above. Of primary
concern is the delay associated with each type of input. Any
side effects associated with the input signal are also consid-
ered. The delays due to various disturbances are summa-
rized in Table 5.

Impulse input

We observe from Figure 4 that the impact of an impulse
input that drives # �
	 � � ��
	 � � � ' � at � to # � 	 � - � (� � ' �
increases with the TAD. To explain why suppose that com-
ponent

���
is replaced by component

� � . During the early
phase of the test cycle it is likely that

���
and its interface

with the other components has not been tested. Thus, it
is reasonable to assume that the change in failure intensity
due to the replacement of

� �
by

� � will be only due to the
possibly poor quality of

� � leading to a 5% increase in the
failure. However, later in the process, additional testing has
occurred and the failure intensity of the application is likely
to be much less than what it was during the early part of

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100
White Noise Input

t − time

λ
−

fa
ilu

re
 in

te
ns

ity

desired λ

no disturbance
white noise input disturbance at t=10
white noise input disturbance at t=50
white noise input disturbance at t=90

Figure 9. Effects of white noise on the fail-
ure intensity. 3 � 	 ��� � ��� � � � 	 ��� , where � is
distributed normally over

� ����� � .
the test cycle. Thus, relacement at this time causes a larger
increase in the failure intensity and is due to failures asso-
ciated with

� �
and with the interfaces between

� �
and the

remainder of the system.
Figure 10 shows the delay in the convergence of the fail-

ure intensity to its desired value which is 5% of its initial
value. The delay increases with the time at which the im-
pulse is applied. Eventually the failure intensity does con-
verge to its desired value as in Figure 10(a). Replacement of
a component when

� 	 ��� is close to zero leads to an increase
in
�
	 ��� . The time to get

�
	 ��� back to its value prevailing just
before this increase is nearly constant and explains the even-
tual convergence in Figure 10(a). The later the replacement
of a component the larger the interface failures introduced
leading to the overshoot behavior in Figure 10(b). Similar
argument justifies the stabilization of the delay.

Pulse input

As pointed out earlier, the pulse is represented in two dif-
ferent ways. The delay due to proportional pulse input does
not change with TAD. To explain why, suppose that such
disturbance is due to a training period of 8 days for the en-
tire test team. The training will likely delay the process by
the same number of days but will not increase or decrease
the failure intensity. Therefore, the time when it occurs does
not impose any side effect on the test process as can be no-
ticed from Figure 5. Note that training will likely increase
the quality of the test process (�) and thus speed up the con-
vergence of

� 	 ��� to its desired value. However, in this study
we retain � to its original value and hence the proportional

Table 1. Delay, measured in “days”, in the
convergence of the failure intensity to 5% of
its initial value. The disturbances occur at
times � � � 	 � � �!� � � � � . The expected time for
convergence without any disturbance is 107
days.

Type of Delay
Disturbance � � 	 � � � ��� � � � �

Impulse 5 12 28
Proportional Pulse 9 9 9
Constant Pulse 9 21 44
Proportional Step 43 33 16
Constant Step 73 73 73
White Noise 60 47 24

pulse causes a constant delay regardless of the time of its
occurrence in the STP.

The constant pulse input is related to the migration of the
system from the test environment to the user’s environment.
In our study we assumed a total of 8 days for the migration.
As seen in Table 5, the delay in convergence is affected by
TAD. This is due to the side effects during migration. Dur-
ing migration, at the beginning of the test process, most of
the features related to the environment have not been tested
and hence the delay in the completion of the test is propor-
tional to the migration time, which is 8 days in this case.
If the migration occurs in the middle of the process, i.e. at
� � �!� , some of the environment features have already been
tested and an increase in

�
results due to the differences be-

tween the two environments that exist before and after the
migration. This increase in

�
results in an increase in the

delay as noticed in Figure 6. Any increase in
�

is consid-
ered an overshoot because we assume that the migration per
se does not affect

�
.

A behavior similar to the one presented by the impulse
input in Figure 10 is observed in Figure 11. The delay in-
creases with TAD until it stabilizes at a certain level as de-
picted in Figure 11(a). Figure 11(b) is the counterpart of
Figure 10(b) for the impulse input. The differences are not
in the shape of the curve, but in the values. The delays for
the impulse and pulse inputs stabilize at 158 and 187 days,
respectively. Also, the overshoot associated with the pulse
reaches a maximum value of 15.62, almost five times larger
than the overshoot of 3.29 for the impulse input. This be-
havior is consistent with what one might expect and is due
to the longer persistence of the pulse when compared to that
of an impulse input.

0 50 100 150 200 250 300 350 400
0

50

100

150

200
(a)

impulse time

d
el

ay

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

3.5
(b)

impulse time

o
ve

rs
h

o
o

t

Figure 10. (a)-Delay associated with an im-
pulse input stimulating the system at a cer-
tain time � . (b)-Overshoot associated with an
impulse input stimulating the system at a cer-
tain time � .

Step input

In our study the step input models an increase in the com-
munication overhead. For the proportional step input, 3 � 	 ���assumes a value proportional to � � � � 	 ��� and inflicts a large
delay when it occurs early in the process because it persists
throughout the STP. The delay associated with a step input
starts at 43 days even though the input occurs at � ��	 � .
The delay decreases to 33 and 16 days, respectively, when
the step input occurs at � � ���

and � � ���
. Figure 12

shows the decrease in convergence delay as TAD moves to-
wards the end of the STP. We are aware of the tradeoff in
increased communication and here we consider the level of
communication has crossed the border of being beneficial.
There is no overshoot due to a step input as one would not
expect any increase in the failure intensity due to an increase
in communication overhead.

A saturation effect can be observed in Figure 8 when the
step input assumes a constant value. There is no condition
linked to the increase of the communication level that would
lead to a saturation in the test process. It is well known that
such behavior is related to the criteria used and the quality
of the test process. It is inappropriate to model the commu-
nication overhead using a constant value step input.

White noise input

Figure 9 shows that the delay associated with TAD of a
white noise input ranges from 0 to 2 times the value of the
effective test effort. As expected, the earlier the noise starts

0 50 100 150 200 250 300 350 400
0

50

100

150

200

(a)

pulse time

d
el

ay

0 50 100 150 200 250 300 350 400
0

5

10

15

20
(b)

pulse time

o
ve

rs
h

o
o

t

Figure 11. (a)-Delay associated with a pulse
input stimulating the system at a certain time
� . (b)-Overshoot associated with a pulse input
stimulating the system at a certain time � .

the longer the delay. The delay is 60 days when the noise
signal is applied at � � 	 � and drops to 47 and 24 days,
respectively, for � � ���

and � � �
�
. However, we believe

that the disturbances that can be modeled as white noise are
more prevalent during the early part of the STP than during
its later part. Therefore, the frequency of the noise seems to
be a more interesting parameter to consider.

Figure 13 shows the delay associated with a white noise
input applied starting always at the start of the STP. The x-
axis represents how frequently the disturbance modeled by
the white noise occurs and ranges from 0 to 1, i.e., from
0% to 100%. As before, the value of the noise is computed
as 3 � 	 ��� � ��� 	 ����� � � 	 ��� , for � ranging from 0 to 2. As
observed from Figure 13, the delay increases with the fre-
quency of the white noise input. This behavior appears to
be consistent with reality.

6 Summary

A study was undertaken to examine the impact of various
types of disturbances that might occur during a system test
phase on the convergence of the failure intensity of the prod-
uct under test. Disturbances are modeled as impulse, pulse,
step, and white noise inputs to the STP. These inputs are
then applied to a state model of the STP, proposed in an
earlier work, and the effect observed on the failure inten-
sity. Results confirm the commonly observed phenomenon
that the delay in the convergence of the failure intensity to
its desired value depends on the type of the input and its
time of occurrence. The use of the state model assist in the

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

step time

d
el

ay

Figure 12. Delay associated with a step input
stimulating the system at time � .

quantification of the delays. The study was conducted by
isolating various types of disturbances. This allowed us to
individually study the impact of each type of input on the
convergence of the failure intensity.

References

[1] J. W. Cangussu, R. A. DeCarlo, and A. P. Mathur,
“Feedback control of the software test process through
measurements of software reliability,” in Prooced-
ing of 	�� ��� International Symposium on Software
Reliability Engineering, (Hong Kong), pp. 232–241,
November 2001.

[2] M. Donnely, B. Everrett, J. Musa, and G. Wilson,
Handbook of Software Reliability Engineering, M.
R. Lyu, Editor, ch. “Best Current Practice of SRE”,
pp. 219–254. New York: McGraw-Hill, 1996.

[3] J. W. Cangussu, R. A. DeCarlo, and A. P. Mathur,
“A formal model for the software test process,”
IEEE Transaction on Software Engineering, vol. 28,
pp. 782–796, August 2002.

[4] G. C. Goodwin, S. F. Graebe, and M. E. Salgado.,
Control system design. Upper Saddle River, New Jer-
sey: Prentice Hall, 2001.

[5] D. G. Luenberger, Introduction to Dynamic Systems:
Theory, models and applications. John Wiley & Sons,
1979.

[6] R. A. DeCarlo, Linear systems : A state variable ap-
proach with numerical implementation. Upper Saddle
River, New York: Prentice-Hall, 1989.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

white noise frequency

d
el

ay

Figure 13. Delay associated with the fre-
quency a white noise occurs during the test
process.

[7] F. Lanchester, “Aircraft in warfare, the dawn of the
fourth arm,” Constable, London, 1916.

[8] P. A. Samuelson, “Interactions between the multiplier
analysis and the principle of acceleration,” Rev. Eco-
nomic Statistics, vol. 21, pp. 75–78, May 1939.

[9] J. Musa, Software Reliability Engineering. McGraw-
Hill, 1999.

[10] A. P. Mathur, F. D. Frate, P. Garg, and A. Pasquini,
“On the correlation between code coverage and soft-
ware reliability,” in Proceedings of the Sixth Interna-
tional Symposium on Software Reliability Engineer-
ing, (Toulouse, France), pp. 124–132, IEEE Press, Oc-
tober 24-27 1995.

[11] B. W. Boehm and et. al., Software Cost Estimation
with Cocomo II. Prentice Hall, 2000.

[12] S. R. Lay, Convex Sets and their Applications. New
York: John Wiley & Sons Inc., 1982.

[13] L. Ljung, System identification: Theory for the user.
Englewood Cliffs, New Jersey: Prentice-Hall, 1987.

[14] J. W. Cangussu, R. A. DeCarlo, and A. P. Mathur,
“A state model for the software test process with au-
tomated parameter identification,” in Proceedings of
the 2001 IEEE Systems, Man, and Cybernetics Con-
ference (SMC 2001), (Tucson, Arizona), pp. 706–711,
October 2001.

