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Abstract

A closed-loop feedback control model of the Software
Test Process (STP) is described. The model is grounded in
the well established theory of Automatic Control. It offers
a formal and novel procedure for using product reliability
or failure intensity as a basis for closed loop control of the
STP. The reliability or the failure intensity of the product
is compared against the desired reliability at each check-
point and the difference fed back to a controller. The con-
troller uses this difference to compute changes necessary in
the process parameters to meet the reliability or failure in-
tensity objective at the terminal checkpoint (the deadline).
The STP continues beyond a checkpoint with a revised set of
parameters. This procedure is repeated at each checkpoint
until the termination of the STP. The procedure accounts
for the possibility of changes, during testing, in reliability
or failure intensity objective, the checkpoints, and the pa-
rameters that characterize the STP. The effectiveness of this
procedure was studied using commercial data available in
the public domain and also from the data generated through
simulation. In all cases the use of feedback control produces
adequate results allowing the achievement of the objectives.

1 Introduction

Software reliability is a well known metric of software
quality [7]. Reliability �����
	 of a software product is the
probability of its failure free operation during the time in-
terval � ��
��
	 for a given operational profile. [13] Failure
intensity of software is the number of failures experienced
per unit time of execution and is denoted by �����
	 . A vari-
ety of models have been proposed to estimate �����
	 using�
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estimates of �����
	 that are derived from failure data obtained
during a test of the software product. The test is conducted
using inputs generated in accordance with an operational
profile which is a probability distribution on the input space
of the software product. [13]

Proposed here is a novel approach, based on feedback
control, that allows a software test manager to make use of
in-test reliability or failure intensity measurements to con-
trol the progress of the test so as to meet the quality objec-
tive by the deadline. The quality objective is specified as a
reliability metric at some time prior to the start of the test
process and is to be met by a deadline. Measurements of
reliability or failure intensity at checkpoints during the pro-
cess are compared with those estimated using the proposed
model and the difference is fed back to a controller. The
controller then computes a finite set of possible changes that
the test manager could select from to alter the test process
so as to possibly meet the quality objective by the deadline.
Two key parameters that the controller allows to be manip-
ulated are the size of the workforce dedicated to the test
process and the quality of the test process.

The strength and novelty of our approach lies in the
(a) use of a controller in the feedback loop that is based
on well proven techniques of feedback control in various
domains of engineering and (b) the flexibility allowed to
the test manager in that the suggested changes may or may
not be ignored and the quality objectives revised in-process.
Feedback allows the model to adjust itself and learn about
the process over time. The ability to ignore recommenda-
tions from the model allows the test manager to postpone
alterations to the process due to one or more of a variety of
reasons such as budgetary constraints, market pressure, etc.
Even in the case where recommendations from the model
are ignored throughout the test process, the model is useful
in that it predicts when the quality objective will likely be
met if no change is made to the process. In a case study



conducted using a similar model, indeed the test manager
ignored all recommendations only to find that the project
was completed 12 weeks later than the date predicted by
the test manager and only 2 weeks later than that predicted
by the model. [3]

The remainder of this paper is organized as follows. Sec-
tion 2 describes Model S and its application to the control
of the STP. The method used to evaluate the model is de-
scribed in Section 3. Results from the evaluation exercises
and their analyses appear in Sections 4 and 5 respectively.
A discussion of this work related to its applicability in prac-
tice is in Section 6.

2 A State Model of the STP

We first review the context in which feedback control
is being used and then describe a state variable model of
the STP. The mathematical background required for a com-
plete understanding of the material in this section is found
in standard texts on automatic control [8, 12]. The estima-
tion of �����
	 using the failure intensity �����
	 , is discussed in
the literature [13, 17]. The proposed control procedure does
not favor or recommend any specific model for the estima-
tion of reliability. In the remainder of this paper we refer to
the proposed model as Model S.

2.1 Feedback Control of the STP

Consider the system test phase of a software product. We
assume that at the start of this phase a Test Manager is given
a quality objective for the end product and the deadline by
which this objective must be met. The quality of a soft-
ware product can be specified using one or more of quality
metrics two of which being its reliability and the number of
remaining errors. In Model S we use failure intensity as
the quality metric since reliability can be directly derived
from it.

We further assume that to plan and monitor the progress
of the STP, the test manager divides the entire phase
into a sequence of � � � checkpoints denoted by
cp ��� cp �����	�	�
� cp � with cp � being the first checkpoint after
testing has begun and cp � the deadline. The realization
of the ultimate quality objective is distributed over these
checkpoints. Thus, checkpoint cp � is specified as a pair
( � � � � 
� ), where � � is some time prior to the deadline and � 
�
is the desired failure intensity of the product at checkpoint
cp � .

The use of feedback control during the STP is illustrated
in Figure 1. The figure shows four key components that
participate in the control process. These are the Actual
STP which consists of the test engineers, tools, documenta-
tion, etc., a State Model of the STP which is Model S,
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Figure 1. Closed loop control of the software
test process using reliability measurements.
� � ���
	 is the estimate of the failure intensity at
checkpoint cp � . ���� ���
	 is the expected failure
intensity of the product computed by Model
S at checkpoint cp � .

a Controller, and the Test Manager. The manage-
ment decides how many testers to employ to test the prod-
uct. This number is the initial value of ��� . The Test Man-
ager estimates the quality � of the test process. The com-
plexity of the software under test is computed as a convex
combination of several well known quality metrics such as
the number of function points, lines of code, and the num-
ber of data flows [3]. An initial estimate of ��� is made of
the software product ready to enter the test phase.

At checkpoint cp � ����� � , the failure intensity � � of the
software product is estimated and compared against the ex-
pected value ���� computed by the State Model. The error
signal ��� ��� � �� 
 � � is input to a controller. Using this
error signal, ��� , ��� , and � , the controller computes a set of
possible changes � �"!� and �#�$! that could be made to ���
and � , respectively, in order for the STP to meet the quality
objective on or before the deadline. The computed changes
are made available to the Test Manager who may or may
not choose to ignore them. Though Figure 1 gives the im-
pression that only a single pair ( � �%!� and �#�
! ) of values is
output by the controller, in reality the controller outputs a
finite set of such pairs from which the Test Manager could
select. The STP resumes with a workforce of ( � �'& �#� � )
and a process quality of ( � & �#� ), where � � � and ��� de-
note the actual changes made by the Test Manager.

The STP model and the Controller work together to form
a feedback control loop in the STP. Unforeseen disturbances
in the STP are accounted for by updating estimates of the
model parameters. The control loop offers the Test Man-
ager opportunities to make alterations to the STP at any
checkpoint. These alterations could come in many forms
such as a change in the number of testers, or in the quality
of the test process, or in the test objectives themselves, or



any combination of these. Thus, the inherent uncertainty
and the variability of the STP is well accounted for in the
feedback control loop.

2.2 The State Model

A linear model of the STP is based on three assumptions
with consequent equations presented below [2]. These as-
sumptions are based on an analogy of the STP with a phys-
ical process typified by a spring-mass-dashpot system. The
widespread use of differential equations to model so many
different types of systems [6, 12] combined with the fact
that most of such models were developed using analogies
to physical systems with assumptions similar [9, 16] to ours
further justify the choice of a second order linear model.

Assumption 1: The magnitude of the rate of decrease of
failure intensity of a software product is proportional to the
net applied effort during the test phase and inversely pro-
portional to the complexity of the product,�� � � �

� �
� � � � �� ���
	 ��� (1)

The first assumption is justified as follows. When the
same metric or combination of metrics is used to compute
software complexity for two different programs under test,
it is reasonable to expect that more effort will be neces-
sary to test the more complex program and consequently
decrease failure intensity ( � ).

The net applied effort ( � � ) is the balance of all the ef-
fort applied during the test phase. This results from the dif-
ference of the effective effort applied by the test team mi-
nus any “frictional” forces that decrease the applied effort.
Since � represents failure intensity, its first derivative

�� is
the failure intensity reduction velocity ( � � ). Consequently,�� , which denotes the rate of change of

�� , is an accelera-
tion. Thus, the concepts of velocity and acceleration have
counterparts in the test phase.

Assumption 2: The magnitude of the effective test effort
is proportional to the product of applied work force and the
failure intensity, i.e., for an appropriated � ,�

��� � ��� � �����
	 (2)

Assumption 2 can be understood with another analogy.
In a spring the restoring force is determined by the spring
stiffness and by how much the spring is extended beyond its
natural length. Increasing the spring stiffness or the exten-
sion increases the restoring force. The effective test effort
can be interpreted in an analogous way. The failure inten-
sity is analogous to the spring length. At the beginning of
the test phase � is larger than it is towards the end. Hence,
the effective effort decreases as � decreases. The work force

can be related to the spring stiffness. The larger the work
force, the greater the restoring force, i.e., the effective ef-
fort. Thus spring stiffness is analogous to ��� and spring
extension to failure intensity ( � ). In Eqn. 2, � remains con-
stant over a period and must be calibrated for the project
under analysis.

Assumption 3: The resistance to a decrease in the failure
intensity is proportional to the the velocity of failure inten-
sity and inversely proportional to the overall quality of the
test phase, for an appropriate constant � ,�
	 � � �

�
�� ���
	 (3)

This assumption implies that the faster one tries to re-
duce the failure intensity the more likely one is to make
mistakes which slows the entire process. A physical dash-
pot can be used to explain this behavior. The coefficient of
viscosity of the liquid inside the dashpot is

�� . Therefore, a
small coefficient of viscosity is analogous to the test phase
being conducted in a smooth and careful way and, thus, the
number of new errors inserted is small. Larger coefficient
of viscosity is analogous to the test phase in which more
errors are introduced than would be introduced under nor-
mal circumstances. The velocity component in the dashpot
is analogous to the failure intensity reduction velocity (

�� ).
Thus, the overall quality of the test phase, denoted by ( � ),
and the rate at which failure intensity is decreasing, deter-
mines the failure intensity reduction resistance effort which
is analogous to the damping force generated by the dashpot.
In Eqn. 3, � is merely a constant of proportionality.

Combining Eqs. 1, 2, and 3 and organizing in a State
Variable format (

�
 ��� 
 &���� ) produces the following
system of equations.��������
	������
	�� � � � ��������� � �"!�#� � � � �����
	������
	 � & � �

�� � �%$ 
 (4)� �����
	������
	 � ��& � �
� �(' � �����
	������
	 � (5)

Model S shown in Figure 1 consists of Eqs. 4 and 5. A
solution to these equations, with appropriate estimates of
parameter values, generates �$�� ���
	 in Figure 1. Using the
relationship in Eq. 6, one computes ���� ���
	 .

���*) 	 � � ��+-, �/.*0 (6)

2.3 Estimation of model parameters

� � is relatively easy to compute as it is defined to be
the number of testers testing the product. The value of �%�
must be adjusted for any part-time and temporary person-
nel. Parameters � � and � are computed by applying a con-
vex combination [10] of available metrics. The remaining



parameters are estimated through the use of System Identi-
fication [11] techniques [5]. An important characteristic of
our approach is that estimates of all parameters are updated
at each checkpoint thereby improving their accuracy with
the passage of time. Changes in the test environment, such
as in the workforce and the quality of the STP, are accounted
for as and when they occur.[3]

2.4 Computing �#�"!� and �#�
!

In a feedback control system, the largest eigenvalue of
the system determines the slowest rate of convergence and
dominates how fast the output variables converge to their
desired values. Therefore, in order to control �����
	 so that it
reaches its desired value by the deadline � � , we must adjust
the largest eigenvalue appropriately. Given ����� 	 , the fail-
ure intensity at time � , and ����� & � �
	 , the desired failure
intensity at time � � later, we use the following equation to
determine the amount by which to adjust the largest eigen-
value ������� .1

����� & � �
	 � ���	� 	 � ��

������� � (7)

We know the values of ���	� 	 , ����� & � �
	 and � � at check-
point cp � ��� � � and hence we solve Eq. 7 and find the
value of ������� . The eigenvalues of a system are defined
by the roots of the characteristic polynomial ( ��� ��� 	 �� � � � ��� 
 ��� ). Computing the characteristic polynomial
of our model leads to

� � � � ��� 
 ��� � � � � � � 
 �������� � � & !�� � � �
� � � & ���$��� � & � �� �

��� (8)

where
�� � � & � � and

�� � � � ��& � ��� . Using Eq. 8 we
compute the variations in the work force and in the quality
of the process necessary to meet the desired quality objec-
tive by the deadline.

3 Evaluation of Model S

Two studies were undertaken to evaluate the perfor-
mance of Model S. One study, referred to as Case
Study I, is based on data available in the public domain.
The other study was conducted using simulation. A sensi-
tivity analysis of our model [4] based on tensor product [1]
indicates its closeness to reality and sensitive to changes in
parameters.

1The symbol � is used in math literature to represent the eigenvalues of
a system. � is also used in the Software Reliability to represent failure in-
tensity. To avoid confusion and keep uniformity with Software Reliability
standards we decided, in this paper, to represent the eigenvalues of system
by the symbol  .

3.1 Case Study I

In one study, hereafter referred to as Case Study I,
the failure data was obtained from the Data & Analysis Cen-
ter for Software (DACS), Software Reliability Dataset, Sys-
tem Code 1.[14] The project is a real time command and
control application with 21,700 delivered object code in-
structions, as described in DACS web-page. A total of 136
failures were found during the system test operations phase.
The check points for this case study were assumed to occur
at regular intervals of 10 days during system test. The ob-
served failure intensity of the product at cp � is computed as
the average failure intensity for the period between cp � � �
and cp � . An execution time model is used in this case, but it
is not a requirement. The expected failure intensity is gen-
erated by Model S with � � �"! � �$# , � � �&% , � � � � ' ,� � � � % and � �)(*( �$#,+ . The value for � � represents the
number of KDOCI (Kilo Delivered Object Code Instruc-
tions) since it is the only complexity metric directly derived
from the information available about the project. The values
for ��� and � were set arbitrarily due to lack of data. This
does not pose a problem when the alterations in �"� sug-
gested by the feedback controller are considered as percent-
ages. Thus, for example, an increase of 1.5 in � � represents
a 50% increase in the actual work force. A similar argu-
ment applies to the quality of the process ( � ). The expected
behavior was intentionally set to have a faster decrease in
failure intensity than the actual project hence justifying the
values chosen for � and � .

3.2 Case Study II
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Figure 2. Expected and disturbed decay of
failure intensity ( � ) at each check point for
a specific software test process.



In the second study simulation was used to generate data
to further evaluate Model S. First, the expected decay of
the failure intensity is computed at each check point (cp � )
using the equation

� cp � � � � � ����� cp � (9)

where � � is the initial failure intensity and
�
� the expected

failure intensity decay. Solving Eq. 9 at each check point
leads to the expected failure intensity for a specific project.
The corresponding reliability is computed by � � �/) 	 �� � + � 0 [13]. An example of the expected failure intensity
decay and the corresponding reliability can be observed in
Figures 2 and 3. The unit of time in both figures is days.
The use of Model S with the values of the parameters set
to � � � ( , � � � % , � � � � ' , � � � �$# and � � ' % produces
results similar to those observed in Figure 2. As described
below, Eq. 9 was used to simplify the introduction of distur-
bance into the simulated test process. Similar results can be
obtained from Model S by producing a random input( $ 
 ).
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Figure 3. Expected and disturbed reliability
(R) growth at each check point for a specific
software test process.

The expected values generated as above are then per-
turbed to produce deviations from the expected behavior.
The deviations are produced by changes in the expected
failure intensity decay parameter. If

�
� is the expected de-

cay, the new values for the disturbed failure intensity de-
cay parameter are generated by

� 
 � cp � 	 ��� � cp � 	 � � �
� 	 ,

where � � cp � 	 � � � 	 ���	�	� � � � ! and
�

is a constant between
� � '�
 � � � � 	 . The results of such perturbation in the failure
intensity decay and the corresponding reliability are shown
in Figures 2 and 3. We assume a negative perturbation,
i.e., a delay in the test process. A less likely positive pertur-
bation can also be observed and was not investigated. We

believe that from a control point of view a delay in the test
process is a more useful case to be handle than a speed up
in the process.
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Figure 4. Observed failure intensity for Case
Study I and the results obtained from the
application of Model S.

After the detection of a deviation from the expected be-
havior, Model S is used to calculate possible changes in
� � and � to correct such deviations. The test manager must
decide on the number of check points ( � � in Eq. 7) that
can be tolerated for the process to converge to the expected
behavior and then feedback can be used as described in Sec-
tion 2.4. A test manager has two alternatives to select from:

1. Ignore the recommendations of the controller and wait
until the next check point to re-evaluate the process.
This is a feasible situation when the deviation from the
expected behavior is not large; when the accuracy of
the collected data is not within safe limits; or when
budget constraints prevent the implementation of the
recommendations.

2. Implement the recommendations partially or fully. If
the test manger decides to fully implement recommen-
dations of the controller, whether or not there will be a
delay in the application of the solutions recommended
by the controller. For example, suppose the controller
finds that the size of the test team should be increase
by 2. In the absence of any delay, i.e. two testers are
available for work during the time following the cur-
rent checkpoint, feedback can be applied directly. If
there is a delay, such as when the Human Resource
Department needs two weeks to hire a tester, Model
S is used to predict the behavior for the next two weeks
when the controller re-evaluates the process to provide



a set of possible solutions. The same considerations
are valid if the test manager decides to apply partially
the recommendations. The difference is that an exten-
sion of the deadline is predicted by the model.

The simulation results presented in Section 4 account for
all the alternatives presented above. Though variation in pa-
rameters is also present in the simulation runs, in this paper
we restrict ourselves to the discussion of simulation results
using the parameter values presented earlier in this section.
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Figure 5. Observed reliability for Case
Study I and the results obtained from the
application of Model S.
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Figure 6. Prediction of Model S with no
changes in the software test process and
the result of the feedback application for the
software test process for Case Study I.
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Figure 7. Prediction from Model S for the de-
crease of failure intensity in a disturbed test
process without the application of feedback.

4 Results

4.1 Results from Case Study I

Figure 4 depicts the expected and observed failure inten-
sities for Case Study I and Figure 5 does the same for
the reliability values. As can be noticed, the observed values
diverge from the expected ones. Though deviations are ob-
served early in the process, we assume that the test manager
has decided to ignore them until check point 5 (i.e. 50 days
from the start of the test process). Figure 6 shows the impact
of no changes in the process and the revised expected dead-
line. Figure 6 also shows the impact of feedback to achieve
the desired failure intensity on or before the deadline.

4.2 Simulation Results

A total of two hundred simulation runs were carried out.
In this section we present the results of one simulation run
to exemplify the behavior of Model S.

Though deviations from the expected behavior are ob-
served from the beginning of the process, in the simulation
runs, actions are taken only at check point 9, i.e. cp � = 90
days from the start of the project. It was decided to post-
pone the application of the model until cp � to make it more
interesting. There is no time restriction to the application
of Model S but the process is more sensitive to changes
at initial periods as described in a sensitivity analysis [4].
Therefore, the choice of postponing the use of the model
does not bias the results in any way.
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Figure 8. Prediction from Model S for reliabil-
ity growth in a disturbed test process without
the application of feedback.

Simulation Case I

The results of applying Model S to a disturbed test pro-
cess are presented in Figures 7 and 8. In this case, it is as-
sumed that the deviation in the test process is observed but
no action is taken by the test manager. The model is used
to predict the new deadline to meet the failure intensity re-
quirements. It can be observed that it will take 47 extra days
to reach the desired � with no changes in the process.
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Figure 9. Result in the decrease of failure
intensity from the immediate application of
feedback control in a disturbed test process.

Simulation Case II

For this case, we assume that the deviation in the test pro-
cess is observed and action taken immediately. This often
implies that resources are promptly available to increase the
size of the test team or to improve the quality of the test pro-
cess. The eigenvalue of the system must set to -0.0357 in
order to correct the deviation at cp � and arrive at the desired
result within 60 days ( � � � ' � ). The feedback alternative
provided by the model to achieve this goal, by increasing
the work force, is shown in Figures 11. The model also
provides all the possible combinations of increasing � � , �
and altering the deadline. However, a discussion of these
alternatives is beyond the scope of this paper. The result of
properly increasing the work force ( � � � ) or increasing the
overall quality of the test process ( �#� ) or any combination
of them are shown in Figures 9 and 10.
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Figure 10. Result in the reliability growth from
the immediate application of feedback control
in a disturbed test process.

Simulation Case III

The results of simulation case III can be observed in Fig-
ures 12 and 13. In this case, the deviation is observed at
check point 9 (cp � ) but resources are not promptly avail-
able and a delay in improving the process performance is
expected. A three week delay is assumed. The delay can be
due to the hiring process in case the test manager choose to
increase the size of the test team or due to the acquisition
of a better testing tool and the training process associate
with it. Under such conditions, Model S is used to predict
the expected behavior for the subsequent three weeks and
then feedback is applied to compute the alternatives to ob-
tain the desired results prior to the deadline. To achieve this
goal, the eigenvalue of the system needs to be -0.0415. A
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Figure 11. Eigenvalue relationship for
changes in �#��� for simulation case II.

increase of 3.2 in the work force ( � � � ) is associated with
this eigenvalue. The quality of the test process ( �#� ) can not
be increase as much as necessary to place the eigenvalue of
the system in the desired position. Therefore, case a 3.2 in-
crease in the work force is not available, a combined solu-
tion of increasing both ��� and � should be applied. Again,
Model S provides all possible alternatives for changes in
�#��� and �#� , but an analysis of these results is beyond the
scope of this paper.
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Figure 12. Result in the decrease of failure in-
tensity from the application of feedback con-
trol in a disturbed test process after a three
week delay.
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Figure 13. Result in the reliability growth from
the application of feedback control in a dis-
turbed test process after a three week delay.

5 Analysis

In a mature development environment the accuracy of
the data collected is likely to be high due to the use of data
and experience from past similar projects and due to a stan-
dardize development process. Such environments are likely
to be found in companies at Levels 4 or 5 of the Capability
Maturity Model (CMM) [15]. The accuracy of the data and
the standardize development process makes the application
of Model S more trustworthy but is not a requirement for
the application of the model.

5.1 Analysis of Case Study I

As observed in Figure 6 the time needed to achieve the
desired level of failure intensity ( �$� ) increases to 107 days
if no changes are made in the process at cp � . At this point,
the maximum eigenvalue of the system must be set to -
0.1018 to make the test process converge to � � within 32
days. The increase in � � needed to achieve this goal is pre-
sented in Figure 14. This goal can not be achieved by mak-
ing changes only to � , i.e., even if �#� is set to its maximum
value it is not possible to complete the project by the ex-
pected deadline. A multidimensional solution of combined
changes in � � and � is presented in Figure 15.

5.2 Analysis of the Simulation Results

An analysis of the results of the three simulation cases
presented in Section 4.2 is given in this section.
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Figure 14. Eigenvalue relationship for
changes in �#��� for Case Study I.

Analysis of Simulation Case I

Though presenting a deviation from the expected failure in-
tensity decay, changes in the process are not allowed for
simulation case I and Model S is used to predict the be-
havior for the remaining period. This fact imposes a delay
of 47 days to achieve the desired failure as observed in Fig-
ure 7. In this case the new deadline for the project has to be
extended to day 197.

Analysis of Simulation Case II

At check point 9 (cp � ) the observed failure intensity is 6.52
and the desired one is 2.53. Therefore, the test manager
must take some action to correct the deviation. Assume
the test manager has decided in favor of a passive, i.e.,
has decided to correct the deviation in six check points and
thus reach the desired failure intensity only by the dead-
line (cp � � ). The eigenvalue needed to achieve this goal is
-0.0357 and an increase of 2.3 in the size of the work force
( � � � � ! � % ) is one solution, as depicted in Figure 11,
assuming that there are no changes in � . The analysis of
simulation case II also cloncludes that it is not possible to
achieve the desired results by increasing the quality of the
test process while retaining the work force at its current
value. � has a 0.6 value for the process under considera-
tion. Therefore, in this case, �#� ranges from 0 to 0.4 and
even its maximum value does not produce the desired eigen-
value. Alternatives to increase both ��� and � ( � ��� � �
and �#� ��� ) to place the system eigenvalue at -0.0357 are
presented in Figure 16.
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Figure 15. Alternatives of combined changes
in � � � and �#� to achieve the desired results
within the deadline for Case Study I.

Analysis of Simulation Case III

The difference between simulation case II and III is a three
week delay to implement the changes in the STP. At cp �

the failure intensity value is 6.52 and must drop to 2.53
within 60 days. Due to the delay, feedback can not be di-
rectly applied in this case. Model S is then used to predict
the failure intensity value of 4.9 for three weeks after cp � .
Feedback is then applied so as to set the system eigenvalue
at -0.0415 and make the process converge from 4.9 to 2.53
in 45 days. The work force needs to be increased by 3.2,
though once again it is not possible to achieve the desired
results by only increasing � . The set of alternatives to in-
crease � and ��� and place the system eigenvalue at -0.0415
is not presented here but the results are similar to the ones
in Figure 16. In general we can conclude that: the longer
the delay, the larger the changes needed to make the system
converge to the desired value. Indeed, under certain circum-
stances it can slow down a test process instead of acceler-
ating it as is indicated by the sensitivity analysis reported
elsewhere [4].

6 Discussion

Model S is a state model for the control of the test pro-
cess with failure intensity as the control variable. With lit-
tle modification, the approach can be used to control a test
process based on the estimated reliability or failure inten-
sity ( � ) of the product. Any one or more models for the
computation of reliability could be used. Model S relates
the effort and quality of the process to the failure inten-
sity/reliability level and provides mechanisms to correct de-



0 0.5 1 1.5 2 2.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

∆ 
γ

∆ w
f

Figure 16. Alternatives of combined changes
in � � � and �#� to achieve the desired results
within the deadline for simulation case II.

viations in the process. A set of solution to correct such
deviations is provided by the model. The use of Model S
enhances the controllability and predictability of the STP
emerging as a powerful tool to be used by test managers.

The results from the simulation runs and the case study
using data in public domain offer evidence in support of the
applicability of the model. Certainly additional experiments
and case studies are needed to further study the model be-
havior, results presented here are encouraging.

A sensitivity analysis of our model [4] suggests changes
to account for frictional forces related to the complexity of
the product under test. Such changes will make the model
behavior more accurate and more sensitive to changes in the
� � parameter.
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