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Abstract

A novel approach to model the system test phase of the software life cycle is presented.
This approach is based on concepts and techniques from the theory of automatic control and is
useful in computing the effort required to reduce the number of errors and the schedule slippage
under a changing process environment. Results from these computations are used, and possibly
revised, at specific checkpoints in a feedback-control structure to meet the schedule and quality
objectives. Two case studies were conducted to study the behavior of the proposed model. One
study uses data from the error log reported by Knuth while the other from a commercial project.
The outcome from these two studies suggests that the proposed model might well be the first
significant milestone along the road to a formal and practical theory of software process control.

Keywords: Feedback control, process control, Software test process, software testing, modeling,
state variable.

1 Introduction

Research in software process modeling dates back to the early seventies. A detailed account of
its evolution is given by Ghezzi [5]. In this account, the features of PROSYT, a second genera-
tion Process-centered Software Engineering Environment, are grouped by Ghezzi into three main
areas: (i) process modeling, (ii) process enactment, and (iii) system architecture. Under process
enactment, Ghezzi states: “To better control process execution, PROSYT allows process managers

to specify a deviation handling and a consistency checking policy. Such policies state the level of
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enforcement adopted ... and the actions that have to be performed when the invariants are vio-
lated as a result of deviation, respectively.” The problem of “managing unforeseen situations,” also
referred to as “tolerating deviations,” is formulated and solutions proposed by Cugola [4]. Cugola
has also proposed policies to handle various types of deviations. Though useful in practice, the
policies do not assist in the computation of quantitative values of corrections that are often needed
when deviations occur in process variables that can be, and often are, measured in numerical terms;
project schedule and product quality are examples of such process variables.

Ghezzi et al. [11] explain the need for and the relationship between rigor and formality. They
state “Also, various degrees of rigor can be achieved. The highest degree is what we call formality.
Thus, formality is a stronger requirement than rigor; it requires the software process to be driven
and evaluated by mathematical laws.” Our belief, supported by the vast amount of literature, is
that research since the 70’s has focused more on obtaining added rigor than on bringing formality
to the control of software processes. Contents of Ghezzi’s work [5], and those of most citations
therein, also seem to support our belief.

We are aware of formal approaches to software process modeling, e.g. state models of software
processes. Statistical process control is another formal approach to process control. However, in
practice these and other less formal but rigorous approaches fall far short of the formalisms for
process control that exist in other engineering disciplines. For example, the theory of automatic
control is rich in formalisms that are practical and in regular use in chemical process control.
Temperature control, aircraft wing control, continuous gravimetric control, are only a few examples
of a myriad of control applications in the industry that rely on control algorithms firmly grounded
in theory. One of the issues the theory deals with in a formal manner is the reduction of deviations
from one or more set points characteristic of the process under control; e.g. temperature in a boiler
control system.

Research reported herein is perhaps the first step towards a formal theory of software process
control. The long term objective of this research is to borrow, adapt, and modify when needed,
from the rich theory of automatic control; especially from the theory of state variables. For the
short term, we decided to focus our efforts to one significant phase of the Software Development
Process (SDP), namely the Software Test Process (STP). Though control of other phases of the
SDP is often as important to an organization as the control of the test phase, the following two
reasons motivated us to select the STP: (1) STP lends itself well to the characterization of input,
output, and internal process variables and (2) there is a significant amount of data available from
past and ongoing projects that is a key to the conduct of case studies to investigate the applicability
of our model and approach.

Certainly, the problem of identifying and estimating the key parameters to be included in any
model of the STP is difficult and discussed at length in this paper. Also, testing occurs at different
points during the software life cycle. We focus on the system test phase which we assume occurs
when a product is ready to be tested. There are variations on how the system test phase is
conducted and its relationship to the other phases of the life cycle. Here we focus on one kind of

system test phase where the test and debug cycles alternate not based on a predetermined schedule



but as and when the need arises.

The remainder of this paper is organized as follows. In Section 2 we state a process control
problem that arises within the context of the STP. This problem is by no means the only control
problem that one might need to deal with. It is, however, the focus of our attention in the rest
of this paper. In Section 3 we offer an introduction to feedback control from the point of view of
a software engineer. The modeling approach and the underlying motivation appear in Section 4
which also describes a model based on the use of state variables. Estimation of various parameters
of our model is discussed in Section 6. The behavior of the model under extreme conditions is
analyzed in Section 5. This analyses is the first step towards assessing the accuracy of the model.
Two case studies to analyze the behavior of the model are presented in Section 7. A description of
other modeling approaches and a comparison of these with ours is presented in Section 8. Finally,
in Section 9 we present our conclusions and outline directions for future work in the area of process

modeling using the theory of feedback control.

2 The STP control problem and its context

2.1 The context

The key components of an SDP are exhibited in Figure 1. We focus on the system test phase. The
unit and integration test phases are not accounted for in our model. We focus on the control of
the time and effort required to reduce the errors by a desired fraction. Thus, upon the completion
of coding and unit testing, any effort to test and debug is considered in our model. Such testing
often occurs as the final phase before the application is delivered to the customer for beta testing
or for actual use. Though various phases of the STP can occur concurrently, we assume that such
concurrency affects only the effort applied during the execution of a phase. Also, though inspections
can be, and often are, performed after each phase of the SDP, we do not consider inspections as
part of the STP.

e e e — — — — — — — — — — — — — — —

Figure 1: Different phases in a software development process.

2.2 The STP control problem

To explain the problem of control of an STP, consider an application P under test. We assume that
the quality and schedule objectives are set at the start of the test process. The quality objective

might be expressed in a variety of ways. For example, it might be expressed in terms of the



reliability of P at the end of the test process. It might also be expressed in terms of the number of
errors remaining at the end of the test phase. The schedule might be expressed in terms of a target
date or, more elaborately, in terms of a sequence of checkpoints leading to a target date. Further,
the quality objective could be more refined and specified for each checkpoint.

We assume that a test manager plans the execution of the test phase to meet the quality and
schedule objectives. Such a plan involves several activities including the constitution of the test
team, selection of the test tools to use, identification of training needs and scheduling of training
sessions. Kach of these activities involves estimation. For example, constituting the test team
requires a determination of how many testers to use. The experience of each tester is another
important factor to consider. It is the test team that carries out the testing activity and hence
spends the effort that will hopefully help in meeting the objectives. The ever limited budget is
usually a constraint to contend with. During the initial planning phase, a test manager needs to
answer the question, “How much effort is needed to meet the schedule and quality objectives ?”
Experience of the test manager does help in answering this question. However, we approach this
problem from a mathematical standpoint.

The question stated above is relevant at each checkpoint. We assume that the test manager
has planned to conduct reviews at intermediate points between the start and the target date of
the STP. The question might arise at various other points also, for example when there is attrition
in the test team. An accurate answer to the above question is important not only for continuous
planning but also for process control. A question relevant for control is: “How much additional
test effort is required at a given checkpoint if a schedule slippage of, say, 20% can be tolerated ?”
This question could be reformulated in many ways in terms of various process parameters. A few

other related questions of interest to a test manager are enumerated below.
1. Can testing be completed by the deadline and the quality objective realized ?

2. How long will it take to correct the deviations in the test process that might arise due to
an unexpectedly large number of reported errors, turnover of test engineers, change in code,

etc. ?

3. By how much should the size of the test team be increased if the deadline is to be advanced

without any change in the error reduction objectives ?

To answer the above questions, we propose a model based on the application of the theory of
feedback control using a state variable representation. Our model allows comparison of the output

9

variables of the software test process with one or more “setpoint(s).” Such a comparison leads
to the determination of how the process inputs and internal parameters ought to be regulated to

achieve the desired objectives of the STP.

2.3 The test-debug cycle

There are a variety of ways to organize the system test phase. The action taken by a test team

upon the failure of P on one or more inputs could result in variations in the sequencing of activities



within system test phase. For example, a test team might decide to send P back to the development
team when one or more failures of a critical nature are observed. This might lead to a temporary
suspension of the system test phase. In contrast, a test team might decide to complete the system
test by running all tests as planned, and then send P back to the development team if a sufficiently
large number of failures were detected. In yet another scenario, the test and the development team
could work concurrently.

While modeling the STP, we decided to assume that the test-debug cycle occurs as shown in
Figure 2. According to this figure, a P could be in one of three states: Test, debug, and End. When
in Test, P is executed until a failure is detected. At this point if a debug-mode condition is true
then P enters the debug state, otherwise it remains in Test. The debug-mode condition could be,
for example, “The number of failures detected exceeds a threshold.” As another example, it could
be “A failure that will prevent succeeding tests to run as planned.” P remains in the Debug state
until errors are found and fixed when it returns to the Test state. However, while P is in Debug,
another avatar of it could remain in the Test state. This is when we say that testing and debugging

are taking place simultaneously.

execute/no error

O execute/error & test condition

——«( Application A /not atest stopper error
Execution

U execute/error fixed
execute/error & not(test condition)

execute/quality objective achieved

execute/error not fixed

Figure 2: A test-debug cycle.

Though the test-debug cycle described above is handled effectively by our model, other possi-
bilities could also be handled with some care in collecting the data needed for using the model. A

few such possibilities are discussed later in Section 9.

3 Feedback control in the context of the Software Test Process

When applied to the STP, the objective of feedback control is to assist a test manager in making
decisions regarding the expansion of or reduction in workforce and the change of the quality of the
test process. The control process is applied throughout the STP. Though it does not guarantee
that the STP will be able to meet its schedule and quality objectives, it does provide information

that helps the test manager determine whether or not the objectives will be met and, if not, what



actions to take.

We assume that the schedule objective is specified as: Complete the test process by a specified
time ty. The quality objective is specified as: Ensure that at most ry errors remain in P at time
ty. The quality objective could be stated in several other ways. In our work we assume that any
reduction in software errors that remain in a product improves the quality of that product. In the
work that follows do not distinguish among the various types of errors such as specification errors,
critical and non-critical errors, etc.

Hence we specify the quality objective in terms of the number of remaining errors. The diffi-
culties in estimating the number of remaining errors are overcome using techniques described in
Section 6. We are also aware that an STP might be driven by objectives other than, or in addition
to, the two specified here. However, for the purpose of the control of STP, our current focus is on
schedule and quality.

We also assume that prior to the start of the STP, the project manager sets up a monitoring
schedule that consists of a sequence of k, k > 0 checkpoints over time. The i* checkpoint, denoted
by cp;, is specified as time ¢; when monitoring is to take place and r;, the number of errors expected
to remain in P at time ¢;. The first checkpoint occurs some time after the start of the STP, i.e.
t1 > 0, and the last checkpoint coincides with the deadline. Thus, for the k** checkpoint, ¢ = t ¥
and r; = ry. The economics of a software project will most likely constrain its budget. The budget
is not included explicitly in our model. However, the proposed feedback control mechanism assists
a project manager in tracking possible budget overruns. Also, a project manager need not explicitly
specify r;. Instead, the specification could be in terms of a fraction by which the number of errors is
expected to be reduced. Thus, for example, this fraction could be 0 < f; < 1 at the i” checkpoint.

This would imply that the number of errors expected to remain in P at checkpoint cp; is f; X rj_1.
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Figure 3: Feedback control of the Software Test Process.



The use of feedback control can be understood from Figures 3 and 4. The continuous line in
Figure 4 shows the expected variation in r(¢) over the course of the STP; r(¢) is computed using
the state model described in Section 4.4. As shown by the dashed lines, the test manager uses this
prediction to generate a schedule in terms of the checkpoints. The checkpoints are determined by
the test manager and the expected values of the number of remaining errors at each checkpoint,
denoted by regpected(cP;) at checkpoint cp;, can be read off the r(t) function. The test process is

started at time ¢ = ¢3 at which point P contains r = ry errors.
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Figure 4: Checkpoints in a Software Test Process. cp; denotes the i*" checkpoint.

At checkpoint ¢p; the observed value of the number of remaining errors, denoted by 7opserved, 1S
compared with 7ezpected to generate the input 7error (cp;) to the controller. The controller computes
the changes needed to the workforce, Aw}, and the quality of the test process, A+’ for the objectives
to be met. The test manager uses the changes computed by the controller to decide whether or
not any change is needed in the test process. Thus, for example, the test manager might decide
to ignore the controller output. In this case the STP continues until the next checkpoint without
any changes in wy and -y. However, the manager might decide to make use of the output from the
controller and change only the workforce to w; + Awy and keep <y at its current value. Obviously,
several possibilities exist. In any case, the STP continues with the workforce and process quality
set to, respectively, wy + Awy and v + A~. Note that these updated values of the workforce and
the quality of the test process are also input to the model which in turn re-computes r(t).

The process described above continues until the STP is completed. During this process, the
manager might decide to change the checkpoints and even the objectives of the STP. In any case,
the STP model and the controller are provided with the updated values and generate useful data
throughout the STP. Of course, there is no guarantee that there exists a feasible solution to the
problem of completing the STP with the desired objective being met. However, if a feasible solution

exists, then the model finds it and assists the test manager in steering the STP.



4 Modeling the Software Test Process

4.1 Variables and parameters

A number of variables and parameters are specific to the system test phase. We consider the

following;:

1. (r) - the number of remaining errors.

2. (wy) - size of the test team.

3. (s¢) - program complexity.

4. (t) - time measured in appropriate units.

5. () - a constant characterizing the overall quality of the test process.
6. (ey) - effective test effort.

7. (e;) - error reduction resistance.

One could use any one of the existing complexity measures to obtain a value of s.. Our model
does not prescribe any specific complexity measure. One could use, for example, program size,
cyclomatic complexity [27] or a combination of both to compute s.

The coefficient v characterizes the overall quality of the test process and represents environmen-
tal factors such as pressure due to deadline, test methodology used, structure of the organization
within which testing is carried out, experience and expertise of members of the test team, and
possibly other factors. Although a single coefficient is unable to fully represent the quality of the
testing phase, when appropriately chosen it appears to be adequate.

The effective test effort (ey) is the actual effort expended by the test team to reduce the number
of errors. The test team is often more successful at the beginning of the test phase in finding and
removing errors than towards the later part. The team members also spend time on ancillary tasks
to fulfill their administrative and reporting responsibilities and to learn the use of new software
tools. Such tasks tend to decrease the effective test effort.

The process of error removal might cause the introduction of new errors in the application under
test. This results in wasteful effort by the test team. We use the error resistance, e, to model
this wasted effort. e, is considered as effort that tends to oppose the effect of the effort applied to

remove the errors.

4.2 Key assumptions

Next we present three key assumptions about the system test phase. These assumptions lead to
the fundamental laws that we believe, and justify, govern the STP. The fundamental laws, and the
resulting equations, lead to a state model of the STP. It is the solution of this state model that

allows a test manager to answer schedule related questions mentioned earlier in Section 1.



Assumption 1

The rate at which the speed of decrease of the remaining errors changes is directly
proportional to the net applied effort and inversely proportional to the complezity of

the program under test.

Formally, this assumption is restated in Eqn. 1.

€n

7= = e, =7 S (1)

Sc

where 7 denotes the second derivative of r and e, the net applied effort.

The first assumption is justified as follows. When the same metric or combination of metrics
is used to compute software complexity for two different programs under test, it is reasonable
to expect that more effort will be necessary to test the more complex program. If, for example,
Cyclomatic Complexity [23] and LOC are used to determine s, a larger program with more regions
will likely require more test effort than a smaller program with a small number of regions.

The net applied effort (e,) is the balance of all the effort applied during the test phase. This
results from the difference of the effective effort applied by the test team minus any “frictional”
forces that decrease the applied effort. Since r represents the number of remaining errors, its first
derivative 7 is the error reduction velocity (ve). Consequently, 7, which denotes the rate of change
of 7, is an acceleration. Thus, the concepts of velocity and acceleration have counterparts in the
test phase.

In the world of software, Eqn. 1 is analogous to Newton’s second law of motion for physical
systems where e, is analogous to physical force, 7 to acceleration, and s, to mass. In the physical
world a larger mass requires a greater force to move it a given distance at a desired velocity. In
the world of software, higher program complexity requires larger effort to reduce errors by a given
fraction at a desired error reduction velocity (7).

It is widely believed that the difficulty of finding program errors increases as the test phase pro-
gresses. Assuming a fixed team size, this implies that the effective test effort is directly proportional

to r. This observation suggests Assumption 2.

Assumption 2

The effective test effort is proportional to the product of the applied work force and

the number of remaining errors.

This assumption is represented formally by the following equation
ef=Cwyr (2)

for an appropriate (.
Justification of this assumption follows by analogy with the predator-prey system described by
Volterra [22]. Here, the decline in the prey population is proportional to the number of possible

encounters between the predators and the prey, i.e. the product of the populations of predators
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and prey. Assumption 2 above presents similar characteristics to this widely accepted model. The
probability of finding an error is equivalent to an encounter between a tester and an error. The
tester plays the predator role and errors are the prey. There are w; r possible encounters. The
parameter ¢ defines the decline rate and it may decrease as r gets smaller (( = {(r)). That is, as
the test process continues, the errors become more difficult to find, not only because there are less
of them but also because some errors require a combination of events to be triggered and it is most
likely this combination will be discovered by the testers only in the final phases of testing, if it is
discovered at all. This behavior is captured by changes in ( over different periods of the STP.

Assumption 2 can be understood with another analogy. In a spring the restoring force is
determined by the spring stiffness and by how much the spring is extended beyond its natural
length. Increasing the spring stiffness or the extension increases the restoring force. The effective
test effort can be interpreted in an analogous way. The number of remaining errors is analogous to
the spring length. At the beginning of the test phase r is larger than it is towards the end. Hence,
the effective effort decreases as r decreases. The work force can be related to the spring stiffness.
The larger the work force, the greater the restoring force, i.e., the effective effort. Thus spring
stiffness is analogous to wy and spring extension to the number of errors (r) already found in the
application. In Eqn. 2, ¢ remains constant over a period and must be calibrated for the project
under analysis. The behavior of Assumption 2 is similar to the rate of decrease of errors [16, 29, 31]
when software reliability models are applied to the STP [7].

The effective test effort is opposed by a force intrinsic to the test phase process. This force is

the error reduction resistance, e,. This observation leads to the last of the three assumptions.

Assumption 3

The error reduction resistance opposes and is proportional to the error reduction

velocity and inversely proportional to the overall quality of the test phase.

Assumption 3 is represented formally in Eqn. 3.
1
e,=—-&— 1 (3)
’ 0

for an appropriate constant £&. The negative sign indicates that the error reduction always opposes
7.

The assumption above can be justified by analyzing its behavior under extremal conditions.
For example, a very low quality will induce a large resistance: v - 0 = e, — 00. The same
is true for values of 7: the larger is 7, the larger is the error resistance e,.

This assumption implies that the faster one tries to reduce the remaining errors the more likely
one is to make mistakes which slows the entire process. A physical dashpot can be used to explain
this behavior. The coefficient of viscosity of the liquid inside the dashpot is % Therefore, a small
coefficient of viscosity is analogous to the test phase being conducted in a smooth and careful way
and, thus, the number of new errors inserted is small. Larger coefficient of viscosity is analogous

to the test phase in which more errors are introduced than would be introduced under normal
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circumstances. The velocity component in the dashpot is analogous to the error reduction velocity
(7). Thus, the overall quality of the test phase, denoted by (), and the rate at which errors are
found, determines the error reduction resistance effort which is analogous to the damping force

generated by the dashpot. In Eqn. 3, £ is merely a constant of proportionality.

4.3 A differential equation model of the STP

Assumptions 2 and 3 relate to the test effort in our model while Assumption 1 to the resultant force
balance. Combining the corresponding equations leads to the following force balance equation for
the net effort:

—e; +e = e, (4)

where e; has a negative sign because it opposes the increase in errors. Replacing ey, e, and e, by

their values from Eqns. 1, 2 and 3 results in the following second-order differential equation:

—Cwyr —{%f“:scé‘ (5)

As in our coordinate system we are applying a restoring force creating a velocity with a negative
direction. Thus we thus find on the average that 7 < 0. Hence, |e,| < |ef| for 7 < 0. This leads

to the following equation:
1.
| —Cuwyr —§;T| < [=Cuwyr] (6)

An analogy to a dashpot system will clarify the behavior of Eqn. 5. Consider a physical system
where a mass is attached to an extended spring and a dashpot. The spring is extended by 100 units
and is attached to a wall at the other extreme as it is the dashpot. The spring restoring force will
move the block from the initial position (100 units) to a position as close to zero as possible and the
dashpot will retard this movement. Here we assume an overdamped system and hence the block
will never reach a negative position. This behavior is analogous to what happens in the system test
phase where the dashphot is related to e, and the restoring force to ef. By assumption, the system
test phase starts with a program of complexity s. and with 100% of remaining errors. The ideal
goal is to remove errors until r approaches zero. The effective effort due to w; and r, and the error
reduction resistance due to v and 7, will determine the rate of decrease of r. Table 1 summarizes
our analogy between various elements of a physical system with those of the STP.

The analogy presented in this section is to clarify the behavior of our model. However, it is clear
that the system test phase does not have exactly the same behavior as an arbitrary physical system.
For example, if a spring is removed in a physical system, the inertia keeps the block moving. An
analogous behavior during STP would imply that errors continue being removed from a program
even if the workforce were reduced to zero. Certainly, this is not true at least in the current system

test environments.
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Table 1: Analogy between a physical and a software system.

Physical

Logical

Restoring force in a spring
Spring stiffness

Coefficient of viscosity
Block’s mass

Spring length

Velocity

Acceleration

Effective effort to find errors in a software

Work force applied to test phase and software
complexity

Overall quality of test phase
Software Complexity

Remaining errors during test phase
Error reduction velocity

Rate of change of error reduction velocity

Let ryp denote the number of error remaining in the product at time ¢ = ¢y, i.e. at the beginning

of the system test phase. The initial error reduction velocity is v = 0. Under this condition the

solution to Eqn. 5 is:

ToA2

150

—A1t
r(t) = y—-e
A2 — A1
(a) s, =02
100
[
§ 80
=
o> 60
=
=
T 40
e
o
. 20
o
o} 50 100
t — time in days
(c) s, = 0.4
100
"
S 80
@
o> 60
£
£
< 40
IS
<)
. 20
o
o} 50 100

t — time in days

150

TOAL e v
e
A2 — A
(b) s, =0.3
100
(2
§ 801
@
o 60r
f
=
‘® 401
1S
[
20}
o
o 50 100 150
t — time in days
(d) S, = 0.5
100
"
§ 80}
@
o 60r
f
=
QT 40f
1S
L
20}
o
o 50 100 150

t — time in days

Figure 5: Effect of software complexity on the number of remaining errors as a function of time.

where A; and Ay denote the distinct roots of the characteristic equation of Eqn. 5 [6, 22]. The two

distinct negative roots are due to the assumption of a stable overdamped process. If underdamping

were allowed, r would reach a negative value. This does not make sense in the world of software. The

overdamping requirement restricts the values of 7y to less than

¢ - [10]. This is calculated
2(SC ’u]f 4)5
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by forming the characteristic equation and requiring the discriminant of the associated quadratic
formula to be non-negative.

The behavior of Eqn. (5) is depicted in Figure 5 where one observes the results for s, = 0.2, 0.3,
0.4 and 0.5; initial remaining errors of 100% (ro = 100%); and initial error reduction velocity of 0
(ve = 0). As expected, the number of remaining errors decreases slowly when system complexity is

high, assuming that the overall quality () and the work force (ws) are held constant.
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Figure 6: Number of remaining errors, reduction in the number of remaining errors, rate of reduction

in the number of remaining errors for s, = 0.2, v = 0.005 and w; = 2.

(From Figure 6 we note how the error reduction velocity and the error acceleration change
with a decrease in the number of remaining errors. Errors are easy to find at the beginning of an
STP and therefore the velocity is relatively high. As the STP progresses, error detection becomes
increasingly difficult and hence the velocity decreases to zero as observed in Figure 6b. Therefore,
we have a deceleration until the chance of finding a new error becomes almost zero as in Figure 6(c).
As expected according to Assumption 1, the net applied effort approaches zero as t — oo. This is
depicted in Figure 6(d).

In Figure 6 we observe the results from a determined test team (w; = 2) and in Figure 7 we
observe the results of increasing the test team size by 1 while maintaining the same conditions.
That is, in each of these cases we keep s. and <y constant and vary only the team size.

In our model we consider only two forces acting on the program under test: the effective test
effort (ey) and the error resistance (e;). However, there are other forces that affect a program
during the STP. Hence, it is wise to include in the model forces represented by the auxiliary effort
when a test tool is being used and also an opposite force when the test team spends time to learn
the use of a new test tool during the STP. Other forces, not considered in this paper, include the
communication effort and an adaptation effort.

Because our model captures the dominant dynamics of the STP, leaving certain forces as de-
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Figure 7: Number of remaining errors, reduction in the number of remaining errors, rate of reduction

in the number of remaining errors, and the net applied effort for s, = 0.2, v = 0.005 and w; = 3.

scribed above to be represented by a more complex future model, some error between the model
predicted behavior and the observed behavior may exist. In addition, the STP is often beset by
disturbances that may cause a delay in the process. For example, suppose a test team is using a
populated database to test the product and for some reason the database becomes unavailable for 1
working day, making the team unable to test the program for the entire day. This would constitute
a 100% disturbance if the time unit were days and a 20% disturbance if the time unit were weeks.
In all cases, the disturbance represents a force, say Fy, opposing the effective test effort, e;.[1] Thus
it can be seen as a possibly event dependent percentage of the effective test effort. Of course, as
more elements of the STP are accounted for in the model, then the contribution of say learning and
communication to Fyz will diminish to zero. Nevertheless, incorporation of F; into Eqn. 5 results in
Eqn. 8 below:

1
I R S + Py (8)
Sc Y Sc Sc

Fo=
Eqn. 8 will be the differential equation on which the state model is based.

4.4 A State Model for the STP

The state model developed here assists managers in making decisions about the STP as shown in
Section 7. The state model is a matrix differential equation in a vector of state variables which
in our case are the remaining errors, r, and the error reduction velocity, 7 . These state variables
are sufficient to model the dominant dynamics of the STP and also serve as the output variables

of interest. Hence, with r and v, = 7 as state variables, the following controllable canonical state
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model [6] results from Eqn. 8.

e}

Fy 9)

HEIN

where the matrix multiplying the vector of state variables is called the A-matrix. The model must

»
c|’_‘

be initialized at ¢ = 0 which requires at least an estimate of r(0) = ry and the observation that the
error reduction velocity v.(0) = 7(0) = 0. The value of ry can always be updated as observed data
becomes available over the course of the STP. Indeed data is needed to determine initial estimates
for the proportionality constants £ and (. Also, in this formulation, the workforce variable, wy, is
taken as a parameter in the A-matrix rather than an external input, such as Fy, because in the STP
it is typically constant for a period or several periods of time before a manager may change it to a
different level. For example, if wy = 5 from time ¢; to ¢;, 7 < j, and changes to 6 from ¢;,; to #,
(j+1) < k, we use wy = 5 to observe the behavior for the first period and then switch to a system
with w; = 6 for the second period. To extract w; from the A-matrix and make it an external input
would move the model into the nonlinear category. By viewing wy as a parameter, then the model
remains in the piecewise-constant linear category and is amenable to well known solution techniques
with the use of feedback as a parametric control to achieve management schedule objectives and
reduce the impact of Fj;. In addition, by having a piecewise-constant A-matrix, we may also update

estimates for ¢ and (.

4.5 TUse of feedback control

In this section we show how feedback control can be applied to adjust STP parameters to meet the
desired objective. The objective of an STP is restated below after combining the constraints on
time to completion and the number of remaining errors.

Given that the program under test contains r = ro errors at the start of STP, it is

desired to complete the STP in t, weeks, such that the number of remaining errors

r 18 reduced to a X 1g.
Once the STP objective has been set up, the project manager has two options. Option 1 is to
organize a team of testers and start the STP. Under this option the manager does not estimate any
of the model parameters and hence does not apply the model to check if the desired objective is
indeed feasible.

Option 2 is to estimate the model parameters required to meet the objective and use the model
to test if indeed the objective can be met. If the model indicates that the objective cannot be
met with the estimated set of parameters, then another set is tried. This process continues until
a reasonable set of parameter estimates is found at which point the STP is started. Note that
only wy and < are under the control of the manager. Also, budgetary restrictions might impose

additional constraints on these parameters. The choice of parameters is discussed in Section 6.
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Prior to the start of the STP, a sequence of project review dates, also referred to as checkpoints,
is decided upon. It is on these dates that the progress of the STP is reviewed and the model used
to determine whether or not the originally stated deadline can be met. If not, then the model is

used to determine the changes needed in the STP parameters in order to meet the deadline.

5 Extreme case analysis

We now subject the model in Eqgs. 9 and 10 to an extreme case analysis with F; = 0. The purpose
is to understand how the model behaves under extreme conditions and whether or not this behavior
is consistent with what one would expect of an STP under such conditions. We consider extreme
conditions at the intersections of low and high values of software complexity and quality of the
test phase. Note that it is inappropriate to analyze our model for the effects of extreme values of
the work force because communication amongst testers is not included. Hence, for the purpose of
this analysis we arbitrarily set w; = 5. Table 2 shows the summary results of four extreme cases
considered in this section.

The extreme case analysis proceeds as follows. For each of the four extreme cases identified in
Table 2 we first compute s, and set . These values, and that of wy, are plugged into Eqn. 9 which
is solved. The solution is depicted by a r — ¢t plot. From the plot we read-off ¢y 95 which denotes
the time needed in days to reduce the number of remaining errors to 5% of its initial value. Our
assumption is that s, and y affect ¢ 5. We then compare the values of ¢g.05 to determine the nature

of this effect and compare it with what a software tester would expect intuitively.

Table 2: Summary of model behavior under extreme conditions.

Case | Software Quality Time in days to reduce the | Figure
Complexity | of the test | number of errors to 5% of
(sc) phase(v) their initial value (¢.05).
1 | 0.875 (low) 0.05 (low) 52 8(a)
2 | 0.875 (low) 0.95 (high) | 3 8(b)
3 | 30 (high) 0.05 (low) 1800 8(c)
4 | 30 (high) 0.95 (high) | 95 8(d)

For all four extremal cases the parameter ¢ was set to 100 as a factor of normalization. The
parameter ¢ cannot be estimated because the expected deadline is not available. Thus we set ( to
20/s. to represent the declining rate of { which is affected by software complexity.

For the purpose of our analysis, s. is considered to be a convex combination of Mj, the lines

of code measured in 10 KLOCs, and M> the average of Cyclomatic Complexity per function. The

2
weights for M; and M- are set to, respectively, @1 = 0.75 and ag = 0.25. Thus s, = Zai M;.
i=1
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Figure 8: Variation in the number of remaining errors for four extreme cases based on s, and .

Case 1: Low s, and low 7y

Consider a program with five thousand lines of code and having an average Cyclomatic Complexity
of 2. Thus we have M1 = 0.75, My = 2 and hence s, = 0.5%x0.75 + 0.25x2 = 0.875. We
quantify a low quality test phase by setting v = 0.05. Substituting for parameters in Eqn. 9 and
solving for 7, we observe the behavior exhibited in Figure 8(a). As is evident from Figure 8(a), it

requires 52 days to reduce the number of remaining errors in this product to less than 5%.

Case 2: Low s, and high v

Figure 8(b) represents the behavior predicted by our model for an almost perfect, though unrealistic,
test phase. Some characteristics of such a test phase are: each member of the test team knows
exactly what each part of the product does, can apply 100% of available time to the test effort, does
not communicate with other members of the test team, and requires no learning once testing has
begun. For this test phase we set v = 0.95. We also consider a program containing fifty thousand
lines of code with an average Cyclomatic Complexity of 2. This yields s, = 0.875. These parameter
values lead to a solution depicted in Figure 8(b). From this figure we observe that it will take about
3 days to reach the desired level of error reduction. As one might expect, as s, — Oandy — 1
the time required to reduce the errors also diminishes and becomes proportional to the net applied
effort.

Case 3: High s, and low v

Here we assume that the program under test contains three hundred thousand lines of code and

has an average cyclomatic complexity of 30. This leads to s, = 30%0.75 + 0.25%x30 = 30.
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We set v = 0.05 to represent low quality. The solution to Eq 7 is plotted in Figure 8(c). The plot
reveals that it will take about 1800 days for five testers to reduce the number of remaining errors
to less than 5% of the initial count. As expected, this is considerably longer than in case 2. In
general we can state that as s, =& oo andy — 0 thenT — oo, where T is the time required

to reduce the errors to less than 5%.

Case 4: High s, and high v

In this case we assume a high quality test phase, as described in Case 2 and a high level of complexity
as described in Case 3. The other parameters are set as before. Figure 8(d) reveals that the high
quality of the test phase has a significant impact on the time required to reduce errors. In this case

it will take about 94 days to reach the desired error reduction.

Summary of extreme case nalysis

Table 2 summarizes the behavior of r predicted by our model. This behavior is close to what a
test engineer might expect under extreme conditions. The following common sense expectation of

a test engineer is mimiced well by our model:

Complezity of the application under test, quality of the test team, and the appropri-

ateness of the techniques used have a significant effect on the time to test.

6 Estimating model parameters

The set of parameters listed in Section 4 is representative of the most significant aspects of the
STP. Estimation of these parameter values is essential to a successful application of the state model.
Some parameters are relatively easy to quantify while others are more subjective. Also, different
organizations use different metrics and methodologies in the STP. There are no globally accepted
metrics for the parameters and variables involved in the STP. Most models for the SDP rely on
intuitively and/or empirically derived values for the parameters. This situation suggests a need for
a methodology to help guide the estimation process. In the remainder of this section we discuss

how one could estimate each of the several parameters needed to apply our model.

6.1 Size of the work force

The work force, wy, is defined as the number of testers per unit time. As testers might be added
or taken away as the STP progresses, any variation in w; is accounted for by computing the state

variables over successive periods.

6.2 Estimation of &, (, and rg

The algorithm, described later in this section, is used for computing &, ¢, and ry from data from

the current project. Obviously, this data is not available initially. However, a manager may have
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data from past similar projects that can be used to obtain initial estimates until data from the
current project becomes available when the estimates can be improved.

The state model of Eqn. 9 has the general form of
z(t) = Ax(t) (11)

where z(t) = [r(t) #(t)]" and A is the proper 2 x 2 matrix. It is well known that the solution of
Eqn. 11 is given by z(t) = eA*z(0) for all £ > 0. To compute ¢ and ¢ we need to compute

0 1
4 = _Cwp & (12)
Sc Y Sc

from which we can obtain ¢ and ( as all the other parameters are know at this time.

Initially 7(0) = 0 but r(0) is not known. Further, project data ordinarily consists of the
number of errors found and fixed in a time period of length, say 71, i.e., project data consists of
d®) = r(kT1) —r((k — 1)T1). Although r(t) has the general form specified in Eqn. 7, we use a single

exponential approach to obtain a local approximation for 7(¢), i.e., we locally approximate r(t) as
r(t) = ae™™ (13)

Hence for fixed T7, let m = ae *71, then

d® = r(kT)) —r((k—1)T1) = mr((k — 1)T1) — mr((k — 2)T)) = md*~V

This allows us to generate the following equation based on available data whose solution will

provide a least square fit form:
[d®) a®D _d®] = m [a®D g+ @] (14)

in which case

m = [d® d+=b _a®] [d¢=D) gk _g@)]™" (15)

and « can be computed by

a= [(m2 —m) (m® —m?) ... (m" — m”_l)]_L [d(Q) d® ...d(”)] (16)

where superscript —R and —L represent the Moore-Penrose pseudo right and left inverse, respec-
tively. Having m and « computed as above we obtain A = Tll(ln(a) — In(m)) and therefore
(kT1) = —dae Tt = —\m.

Inherent in the above is a single exponential approximation to obtain a reasonable estimate of
the velocity data. Now we must redo the above development into the proper matrix format. Using
data available and the approximated 7 we compute the difference for a specific period of time as
Dt =[r(@) @) —[r@i—1) 7 — 1)]7. It can be shown that D' = M D! where M = A7,
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T being the time increment between two consecutive measurements of data, and A the A-matrix

of equation 11. Therefore, we can compute M by

Ri=MR — M = R R % (17)

where R = [D" D" 1 D" 2 .. D*D*]; Ry = [D"' D2 Dn=3 .. D3 D?)|.
The Spectrum Mapping Theorem [6] shows that the eigenvalues of M, say A\;™ and \y™, have

= 2T Therefore

the following relation with the eigenvalues of matrix A: MM = eMT and MM
A1 = Aln(MM) and Ay = Fin(A2™). The eigenvalues are the roots of the characteristic polynomial

of A which is

— a2 Sy S

YSe Sc

(18)

A -1
M4(A) = det]\I — A] = det[ Cup g, €

Se Y Se

Since ¢ and ( are the only unknows at this time, we can compute them by matching the roots
of IT4(\) to A; and Ay computed above.

An initial estimate of r(0) can also be computed towards the use of matrix M obtained from
the observed data. Let

M? - M D?
M3 — M? D3 0
P = ) and Z = i and zo = f()
: : 7(0)

M"™ — Mn—l D

We know that Z = Pz and we can compute zq = P~ D. However, this results in a high initial
velocity and penalizes the computation of 7(0). The problem is solved by applying a weighted least
squares approach [19]:

Z = PWay = =z = (PW)I(Pw) ' Pw)Tz (19)

Wy, 0

where W = l ‘| is the weight matrix. The weights w,, and w,, are usually defined

0wy,
as % [19] where o is the standard deviation computed from the observed data for r and from the
estimates of 7. In the case of the STP, due to the exponential decay ¢ will increase as more data
become available. This will make the value of the weights decrease when the opposite behaviog/ 2is
expected. To avoid this problem we defined the weights as w,, = aﬂr and wy, = 0—“:“ forw=14¢ ¢,

where d is the expected deadline and p is the number of observed values used in the computation.
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6.3 Software complexity

Software complexity (s.) has a significant impact on the behavior of our model. In this section
we present a way to define a combination of metrics to represent software complexity. Although
there is no requirement to use a specific software complexity metric, we choose some existing
metrics to exemplify the use of convex combination [20]. This combination offers an opportunity
to simultaneously use multiple metrics for software complexity.

Figure 9 lists six different metrics to compute software complexity and shows how these can
be combined to estimate the value of the parameter s.. Two of these six metrics are based on
structural properties of programs, three on program size, and one is a combination of the other
five. A software complexity metric based on information flow (metric # 1) is defined by Henry and
Kamura [14] to capture the relation between procedure size and information flowing into (fan-in)
and out (fan-out) of procedures. A survey of metrics based on architectural features (metric #
2) are described by Troy and Zweben [30]. These metrics are based on how internal modules are
divided (modularity), how they exchange information (coupling) and how functionally independent

they are (cohesion).

Number of Syntactic
Linesof Code Complexity
McCabe Halstead
@ Cyclomatic —)> <(— Difficulty @
Complexity Metric
Information Architecture
Flow Metrics Metrics

Figure 9: s. as a convex combination of six software complexity metrics. «;’s are the corresponding

weights.

Syntactic Complexity (metric # 4) is defined by Basili [2] based on the attributes product size,
control paths, and product decomposition. These attributes are combined to produce the definition
of a family of control structure based complexity metrics. Halstead [12] (metric # 3) defined
components of software science and program difficulty (D) as a measure of software complexity.
The Cyclomatic Complexity (metric # 6) defined by McCabe [23] is based on the number of regions
contained in the directed graph of the program. For a large program an average of the Cyclomatic
Complexity per method can be used. The number of lines of code (metric # 5) is defined directly
and simply as a size relation proportional to complexity.

Based on the six metrics mentioned above, software complexity (s.) is defined as a convex
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Table 3: Quality factors used in the computation of .

Quality Feature Weight Factor () | Range
Deadline Pressure 0.125 0tol
Work force Experience and Expertise 0.250 0to1l
Test Strategy/Adequacy 0.125 0to1l
Tool Use/Adequacy 0.250 0tol
Test Plan 0.125 Otol
Coverage Criteria 0.125 0to1l
combination
n
Se = Z a; M; (20)
i=1
n
where M; is a normalized software complexity metric and Z a; = 1.

=1
The software complexity ranges from a lower bound of 0 to an upper bound of ¢. Parameter

calibration techniques [21] can be used to define the upper bound ¢ for individual organizations.

6.4 Quality of the test phase ()

We are not aware of any validated and/or widely acceptable metric to measure the quality of the
test phase. We assume that v can be estimated within an organization based on past data and
experience. We believe that an organization with a process maturity level of 4 or above on the
CMM scale is more likely to be able to estimate v than one at lower levels of process maturity.

Based on the convex combination approach presented earlier, we provide a guideline to obtain
an initial estimate of 7. As in the estimation of s., a project manager may freely change values of
a; (restricted to 7' ; @; = 1) based upon experience and knowledge about the company and the
project. For example, a project manager can determine if coverage criteria is more important than
the test plan for a specific project and change the o;’s appropriately. Also, a new quality feature
can be inserted or one that is already in use can be removed.

Table 3 lists features to be considered when determining the overall quality of the test phase
(7). The weight and ranges associated with each feature is also listed. The values provided in
Table 3 are a starting point for a project manager, and new features can be inserted or removed

and the a;’s changed according to company or project characteristics.

7 Case studies

Two case studies were carried out to investigate the performance of the state-based model of the
STP. Case study 1, referred to hereafter as CS 1, used the data reported by Knuth [18]. Case

study 2, hereafter referred to as CS 2, used data from an ongoing commercial effort to transform
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a program written in COBOL into a functionally equivalent program in SAP/R3. There is no
information available in the open literature on this commercial effort and hence a brief description
of the project appears later in this section.

Prior to embarking on a description of the two case studies, we point out a subtle difference
between the behavior of r(¢) as exhibited by our model and what is likely to be observed in a
realistic test process. This difference is illustrated by Figure 10. This figure shows a typical plot
of the decrease in errors in a program during the testing and debugging phase [27]. The glaring
discontinuities are due to the introduction of one or more new errors during the error removal
process. As in Eqn. 6, we assume that the number of errors introduced during the test and debug
cycle is less than the number fixed. Solving the model represented by Eqn. 9 and 10 for r(¢) does
not produce the discontinuities as in Figure 10. Instead, as also shown in Figure 10, our model
produces a smooth 7(¢) whose values can be interpreted as averages of least squares estimates of

the actual process.

100 T

typical decrease in errors

90 L
average of least squares estimatives
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10 ~-\_ 1

Figure 10: A possible variation in the number of remaining errors (r) over time. Note that the
decrease in 7 s not monotonic though the average least squares estimates are decreasing monoton-
ically.

7.1 Case Study I: TEX78

The test phase for TEX78 lasted 20 days. During this phase a total of 237 errors were found and
removed [18]. Having removed these errors, Knuth began using TEX to type Volume 2 of The
Art of Computer Programming and later to produce the TEX manual. About six months after the
beginning of the test phase, other users began using TEX. Considering this information about the
testing of TEX we divide the test/maintenance life cycle of TEX78 into three main periods: (i) the
initial test phase, (ii) the use of TEX78 by Knuth and a small group of users, and (iii) the release

of the product to other users.
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Knuth describes 15 types of errors [18]. Nine of these are considered “true errors” and six as
enhancements. We do not distinguish amongst errors and enhancements and assume that all errors
were detected during the test process.

In Figure 11 we compare the observed rate of decrease of errors for TEX78 (plot 1) and its
predicted global approximation (plot 2) using our model. We use “global approximation” here as
the approximation generated by a non-switched system, i.e. a system in which the parameters are
estimated only once and not in successive periods. We set the software complexity (s.) of TEX78
as 2.6 based on its size which is 2.6 KLOC. Then, the technique described in Section 6.2 is used to
generate the values for the parameters ¢ and (. For this purpose we set v = 0.19 and wy = 1.5.

Values of all parameters used in determining the plots in Figure 11 are listed in Table 4.
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Table 4: Values of parameters used to obtain the plots shown in Figure 15.
global approximation

v 13 ¢ Sc wy
0.19 1.3 0.45 | 2.6 | 1.5

Three segment local approximation
Y £ ¢ Sc | wy
Period 1 0.75 1.34 0.22 | 2.6 1
Period 2 | 0.42 383 | 045 |26 1
Period 3 | 0.0027 | 0.018 | 0.006 | 2.6 | 150

To measure the accuracy of the approximation and to evaluate other approximations, we in-
troduce the integral mean square error between two functions f;(¢) and fo(t). This error, denoted
here by ¢, is computed using the following equation:
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o= \/ [ 150 = 2@ de) (21)

Using the above equation we obtain an ¢g, = 66.49 between fi(7) that represents the observed
data and f(7) that represents the global approximation. A better approximation results when we
use the three test periods defined above. Plot 3 in Figure 11 represents this local three segment
piecewise approximation. During the test phase (period 1) we assume that Knuth focused on finding
errors and consider the quality of the test phase to be high. This leads to v = 0.75 and w; = 1.
During period 2, TEX78 was used by Knuth, to type a book and the TEX manual, and by a small
group of users. Since neither Knuth nor the users were fully dedicated to finding errors in TEX,
we set w; to a nominal value of 1. We consider that in this period many different features of TEX
were used and consequently tested. The quality of the test phase was set to 0.42. During period 3
the quality of the test phase was very low. We consider this phase as an extreme case described
in Section 5. For this phase, we set v = 0.0027 and w; = 150. The values of the parameters £
and ( for the three periods were computed as according to Section 6.2. The values chosen do not
represent actual data, since this data are not available. Our point here is that reasonable parameter
choices result in a good fit of our model to the data.

Computing the error between the observed data and the local approximation results in ¢;, =
25.59. This error is much smaller than the error in global approximation and hence favors using
piecewise approximation to the modeling of the STP. It also implies that changes in the environment
ought to be accounted for and that this could be done by switching to a model with different
parameters. The changes in v and w; in plot 3 of Figure 11 result from this implication. An even
better approximation would be possible if the curve was divided into more segments, but the lack

of data about environment changes does not allow such an alternative for TEXT78.

Table 5: Parameter values used for computing plots in Figure 12.

global approximation

v 13 ¢ Sc | Wf
0.75 1134 1022|261
two segments local approximation
Y 3 ¢ S¢ | Wf
Period1 | 0.6 | 3.26 | 0.36 | 2.6 | 1
Period 2 | 0.9 | 4.29 | 1.08 | 2.6 | 1

We now focus on the initial test phase and predict the output from our model. The predicted
values are plotted in Figure 11 and Figure 12. Note that the times are represented in days. The
quality factor v = 0.75 is computed as a convex combination of two quality factors associated
with this period. At the beginning of the test phase there is a learning curve during which we set

v1 = 0.6. Then, the test phase performance increases as the need for learning decreases and the
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hence we set 9 = 0.9. Using these two values we compute an overall quality for the initial test
phase to be v = %71 + %’)/2 ~ 0.75. This indicates that for about 1/2 of the duration of the initial
test phase the quality of the test phase was 0.6 and 0.9 for the remainder. As shown in Figure 12,
the model closely approximates the observed data if the initial period is divided into two parts.
This result is supported by the fact that the error resulting from single segment approximation, i.e.
global approximation, (¢, = 43.92) is larger than the error that results when two segments are
used (¢, = 11.35).

The discrepancy between the estimates resulting from global and local approximations is because
the latter approach accounts for forces such as “learning.” While using local approximation we
account for learning in the test phase by computing the quality of each period of the test phase
and then taking a convex combination (weighted average) to obtain a nominal quality factor for
the entire period. In addition, the errors found during the test phase do not often contribute to the
total debugging effort. A test team believes that a product is mostly error free after the test phase
only to find later that this is not true. We interpret this misjudgement as an underestimation of
the system complexity.

A total of 239 errors were found by Knuth by the end of the test phase. Suppose that at the
start of the test phase one predicted the number of errors to be 239 and so the test team (Knuth)
stopped working on the test phase after having found all of the predicted errors. We want to know
how good is our model in predicting the initial number of errors 7 Using the parameter estimatiuon
technique from Section 6.2 we obtained a new initial condition of rg = 481 errors which represents
93% of the total number of errors (513) found over the life of TEX78. The new initial condition is
much more accurate than the earlier prediction of 239 errors that represents only 46% of the total

number of errors.
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Figure 13: Effect of work force alternatives on the number of remaining errors in TEX78 .

To investigate how the model can be used to predict changes in parameters that affect the rate
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of error removal, suppose that a good prediction of the total number of errors is available at the
beginning of the STP. We ask: “What is the effect of increase in w; on r?” Figure 13 shows the
decreasing error rate to find almost all errors during the test phase for two cases. In the first case
(dashed line) the prediction is that it will take about 150 days when wy =1 and v = 0.7. As an
increase in the work force often affects the quality of the test phase, for wy = 5 we set v = 0.5.
The model behavior according to this new pair of values can be observed from Figure 13 where
the time spent in testing drops to approximately 50 days. These results are in accordance with the
theory developed by Brooks [3]. This theory predicts that increasing the work force by a factor
of 5 will not decrease the time to achieve the same error reduction by the same factor. Indeed,
under certain circumstances, it will increase the time spent to complete the task. Thus, when
good parameter estimates and accurate data are available, the model presented here can be used

to optimize the desired results according to restrictions on time and budget.

7.2 Case Study II: The COBOL Transformer Project
7.2.1 Project Description

The case study presented in this section uses data from an ongoing commercial project underway
at Razorfish, a company located at Cambridge, MA. Razorfish currently has an application that
contains about 4 million lines of code in COBOL. We will refer to this application as Scopor- This
application is to be transformed into a functionally equivalent application in SAP/R3 hereafter
referred to as Sgap r/3- Razorfish is developing a tool, hereafter referred to as transformer, to
automate this transformation. A general view of the code transformation process and the test
strategy used is depicted in Figure 14. The information presented here about the project was
obtained through interviews with the project manager, developers, and the test team. Razorfish
maintains data on what errors are found in the transformer, by whom and when an error was found,
and who is responsible for fixing the error. This data was tabulated by the project manager and
made available to us.

continue
testing

r, outputl o - output 2 ‘T

run modlfy run

T ' |
Seaa = Trandormer | = Sae
} input }

* Select aTest Profile

Figure 14: Flow of the test process used in the COBOL Transformer project.
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7.2.2 Estimation of model parameters for the COBOL Transformer project

Data from the first 6 weeks of the project was used to obtain an estimate of the initial number
of errors. These estimates constitute proprietary data for Razorfish and therefore the values are
presented here after normalization. Our estimate of rg was considered reasonable by the project
manager. This estimate was subsequently improved when data from weeks 6 to 14 became available.
By the end of the transformer project our estimate was arround 94% accurate. The estimate was

computed using the Parameter Estimation technique described on Section 6.2.

Estimation of software complexity

Software complexity (s.) was computed using the convex combination approach described on Sec-
tion 6. To measure the complexity of the tool under development we decided to use two size ori-
ented metrics M; and Ms. M; is the number of ten’s of KLOC. The transformer has approximately
250,000 lines of code resulting in M; = 25. M, is based on the number of grammar productions
used to specify the COBOL syntax. We assume that a sequence of 10 new productions increases
the software complexity by one. The transformer is designed to deal with different versions and
dialects of COBOL. This requirement increased the language specification and complexity signifi-
cantly. The COBOL specification has around 1,400 productions resulting in Ms = 140. Using the
convex combination of M; and Ms, and setting a; = 0.8 and ay = 0.2 we obtain s, = 48. Here we

assume that KLOC account for 80% of the complexity measure.

Estimation of the quality of the test phase

The next parameter to be determined is v. The testers at Razorfish have significant experience in
testing similar systems. The test team also uses a test tool that we believe increases the quality
of the test phase. The test tool automates the execution of the native COBOL application and
saves the results. It then executes the generated SAP/R3 version and compares the output with
that saved earlier. Any discrepancy in the results is reported and prompts a tester to identify the
cause of the reported discrepancy and file an error report. This error report is then used by the
developers to debug the transformer and fix the error found. Upon fixing the errors a regression
test is carried out to determine if any new errors have been introduced.

In consultation with the project manager we divided the first 14 weeks of the test phase into
three periods. The first period is composed of the first 6 weeks of the test phase. We also decided
to use four features to define the overall quality of the test phase (7). Column 1 of Table 6 lists
these four features. Column 2 lists the effective contribution of the feature to the overall quality.
Notice that the sum of the «;’s indicates the use of a convex combination. The quality value of
each feature will change over the three periods of the project. Each “Period” in Table 6 has two
columns. The first column lists the quality level g;; (0 to 1) of the feature i for period j. The
second column is the product g;j;, i = 1,...,4 and j = 1,2, 3. Thus the average quality for period
7 is E;L:l gijo; = 7y;- The details of the choices are beyond the scope of this paper. It should be

clear that the features are to be defined on a per project/company basis.
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Table 6: Parameters values used in Figure 15.

Quality Features o; Period 1 Period 2 Period 3
qi1 | i1 | Q2 | G20 | i3 | 30y
(1) Experience/expertise of wy | 0.3 | 0.60 | 0.18 | 0.70 | 0.21 | 0.80 | 0.24
(2) Tool use and adequacy 0.2 10.20 | 0.04 | 0.50 | 0.10 | 0.60 | 0.12
(3) Test Plan adequacy 0.2 |0.80 | 0.16 | 0.80 | 0.16 | 0.80 | 0.16
(4) Test cases quality 0.3 | 0.20 | 0.06 | 0.30 | 0.09 | 0.77 | 0.23

Y1 = 0.44 Yo = 0.56 Y3 = 0.75

For period 1 we compute v = 0.44. This value for = is due to the fact that the tool was not
as useful in this period as it was in later periods of the project. This was because the testers were
testing screen conversions and the generated layout could not be checked automatically by the tool.
Also, the testers were using an in vitro data base to test the transformer and hence the quality of
the test cases was not satisfactory.

The second period, weeks 6 to 10, showed improvement due to the use of an improved test set to
test the COBOL application. During this period the testers began using real data from a “small”
company that makes use of the native COBOL application. This led to an increase in the number
of parts of the application that were exercised. An increase in the use of the tool also occurred.
Thus, for this second period we compute v = 0.56. The third period corresponds to weeks 10 to 14
and was demarcated from the previous phase by the fact that test data from a “large” company
using the native COBOL application became available and the system could be exercised more
completely. As in the second period, utilization of the tool increased. Thus, for the third period,
we compute v = 0.75. The values for the test plan adequacy are the same for all periods since it
was followed and seemed to be quite appropriate for the transformer project. The values for work

force experience/expertise increased from 0.6 to 0.8 as the test team adapt to the project.

7.2.3 Size of the work force

The size of the test team remained constant at 3 testers for the period under consideration. This
led us to set wy to 3.

7.2.4 Constant of Proportionality ¢ and (

The values of the constants of proportionality £ and ¢ were computed for the three periods described
early. The values were computed using the Parameter Estimation technique described on Section 6.2
and the results are present in Table 7.

7.2.5 Disturbance force

In Figure 15 we can see the initial expected behavior for the transformer project plotted using

the project manager expectations. We can also see that the observed behavior diverges from the
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expected one for the first 14 weeks of the project. This divergence is due to disturbances present
during the STP and alternatives to correct its effect, using feedback, is discussed later.

As explained earlier in Section 4.4 disturbance is a force opposing the effective test effort (ey).
We are concerned here with the quantification of the disturbance and not with the identification
of its source(s). The disturbance is computed by taking the expected behavior and introducing an
opposite force (Fy) that produces the observed behavior, i.e. matches the collected data. Fy is the
input in our model and so can be computed by the Eqn. 22 below [6]:

Fy(q) = BTo"(t; — q)K '(to,11) [z1 — ®(t1 — to) 0] (22)

where ®(t1,t) = eAti=%0) is the state transition matrix and K (o, 1) is the the controllability

Gramian [6]:

Kot = [0t a8 BT (0~ a)da (23)

The average disturbance for the three periods of the transformer project is, respectively, 62%,
36% and 17% of the ey. This means, for example, that for the first period an opposite force
equivalent to 62% of the effective test effort (ef) was present.

The disturbance is high during the first period and decreases subsequently. The disturbance
is due to communication, adaptation, hardware and software failure, illness and other forces not
accounted for in our model. Disturbances are always present in the software process and so a
disturbance force equivalente to 256% of e; was extrapolated for the remaining period. Although
the disturbance seems to be high, primarily at the beginning of the process, it is usual to have a
40% disturbance under normal conditions as has been pointed out [1]. The high disturbance during
period 1 is due to a temporary slow down in the test process that resulted from the discovery of an
error. During periods 2 and 3 the test team was more focused and able to concentrate on testing
rather than on the source of the error and its removal.

Under certain circumstances the disturbance can increase or decrease due to motivation and
scheduled pressure [1]. Considering that the test team at Razorfish has a experience with similar
projects, we assume the disturbance to decrease as project proceeds and we set an average of 256%

of disturbance for the remaining weeks.

7.2.6 Results

We used our model to understand the behavior of the test process during the first 14 weeks of
the COBOL Transformer project. The results were used to predict the behavior for the remaining
weeks.

Figure 15 depicts the test phase results of the transformer project. The integral mean square
error, computed using Eqn. 21, which produced a 2.14 error norm when data from the real project
is compared to the model approximation for the first 14 weeks. Parameter values used to generate
the data in Figure 15 are listed in Table 7. These parameters and the disturbance inserted during

the process produce the approximation depicted in Figure 15.
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Figure 15: Actual and predicted behavior of the COBOL Transformer project observed in the

change in the fraction of remaining errors.

Table 7: Parameters values used in Figure 15

three segments local approximation

weeks y ¢ ¢ S¢ |wyp | Fy
Period 1 l1to6 |044 1957|025 |48 | 3 | 62%
Period 2 6 to10 | 0.56 | 22.73 | 0.54 | 48 | 3 | 36%
Period 3 10to 14 | 0.75 | 18.86 | 0.75 | 48 | 3 | 1%
Remaining Time | 14 to ... | 0.75 | 18.86 | 0.75 | 48 | 3 | 26%

where Fj is the average disturbance in the period

When analyzing the results shown in Figure 15 two assumptions could be made. First, any error
in the transformer will produce an error in the Ss4p g/3 generated code. Second, not all errors in
the transformer will affect this specific project, i.e., the transformation from Scogor to Ssap r/3
will not be able to exercise all features of the transformer. If the first assumption is valid, then
according to Figure 15 it will not be possible to accomplish the predetermined deadline. Assuming
no change in the test process, i.e. maintaining the same parameters as in the third period described
before and keeping a disturbance at 25%, our model predicts that it will take more than 50 weeks
to deliver a product with a reasonable level of errors.

The second assumption indicates that by the end of the test phase, i.e. after 25 weeks, some
errors will remain in the transformer but the goal of the project would be achieved. Stated differ-
ently, the generated system will be functionally equivalent to the original COBOL system ensuring

a successful project. The remaining errors in the transformer can not be found by testing a specific
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COBOL system and more effort must be spent to decrease the number of remaining errors to a
reasonable level. Thus, the second assumption seems more reasonable than the first one.

It should be clear that the predictions from our model do not depend on any of the above
two assumptions. For the purpose of analysis, we are concerned with the remaining errors in the
Transformer and not in the generated code.

Based on the solution to our model one predicts that it will not be possible to finish the project
by the expected deadline. This becomes evident by comparing the approximation to r with the
expected curve. Hence we ask: “What changes can be made to the STP in order to meet the
deadline ?” The use of feedback helps us answer this question.

We note that by week 14 the number of errors dropped to around 67% of their initial value
and, if the process continues without any alterations, then it will take around 31 weeks to reach
the expected level of error reduction (approximately 14%). Indeed, no adjustments were made in
the project and 32 weeks were passed when the project reached the desired level of errors. This
result show a 3.2% accuracy in our prediction.

Now, suppose the project manager desires to achieve the same results in only 10 weeks. What
“feedback” modifications are necessary?

The largest eigenvalue of a system determines the slowest rate of convergence and dominates
how fast the variables converges. Therefore, we need to adjust the largest eigenvalue of the model
so that the responses converge to the desired values within the remaining weeks.

Equation 24 below can be used to achieve this goal.
r(T+ At) = r(T) emaz At (24)

where r(T) is the number of remaining errors at timer T, r(7T + At) is the desired value for r
after a lapse of At time has occurred, and A4, is the eigenvalue to be computed. In the Razorfish
project we want the system to converge from 67% at week 14 (r(14)=67%) to 14% at end of week
24 (r(144+At)=14%) for At = 10. Solving equation 24 for these values results in A4, = —0.1566.

The eigenvalues of a system are defined by the roots of the characteristic polynomial (IT4(A\) =
det[A\I — A]). Computing the characteristic polynomial of our model produces

I - A = R — )2 f 9
det[\ ] det CS \ fs AT+ Asc)\ + s, (25)

where ¥ =y + Ay and Wy = wy + Ay,

To set the eigenvalue of the model described by Eqn. 9 and 10 to -0.1566 we have to make
changes in the values of these parameters. Considering that no changes can be done in ¢,  and s,
we are left with two options: increase the work force (A, ;> 0) or improve the quality of the test
phase (0 < A, <0.25).

Varying Ay, keeping all other values constant and then finding the roots of the characteristic
polynomial produces the results depicted in Figure 16(a). We can observe that A,q, reaches the
desired value of -0.1566 when A, reaches 0.7. This implies that the wy has to be increased by 0.7

in order to accomplish the deadline, assuming all other parameters are kept constant. The feedback

33



result of increasing the work force by 0.7 is presented in Figure 15. Figure 16(b) presents similar
results achieved from the variation of A,. As can be observed, an increase of 0.11 in vy is needed
to achieve the desired results.
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Figure 16: Relationship that must be maintained between the largest eigenvalue of the system, A,

and A, to achieve the desired number of remaining errors.

Figure 16(c) presents the combined results when A, ranges from 0 to 0.15 and A,,, ranges from
0 to 1.5. A project manager can use these results when more alternatives are available, such as a
deadline extension. In the transformer project we are interested in finishing the test phase within
the predetermined deadline and all possible combinations of increasing w; and/or vy to accomplish
this task are depicted in Figure 16(d).

The model can also be used to analyze different alternatives according to flexibility of the
deadline and resource availability. That is, if 0.7 people are not available, the manager can choose
the alternatives of how many testers can be inserted and how much the deadline can be extended.
It is basically an exercise of maximizing customer satisfiability according to resource limitations. As
stated before, optimization techniques are available in Control Theory [9] to provide these results,
but it is beyond the scope of this paper.

In general we can conclude that our model behavior is reasonably accurate when applied to the
TEX78 error log and the COBOL Transformer project and that feedback can be used to answer

questions related to performance and cost of the STP.

8 Related work

An overview and analysis of four different approaches to modeling the software process is presented
in this section. Our analysis is based on features defined in Section 8.1. The modeling approaches

selected for analysis are the ones most the relevance to our work. Several other approaches to
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modeling the SDP, not reviewed here, are found in the literature. A table listing the characteristics
of the four approaches and a comparison with the classical state variable based approach is also
presented. Though our analysis is concerned with the entire SDP, most of the features analyzed

here can be also considered for the STP itself.

8.1 Characteristics of approaches to modeling the SDP

In this sub-section we describe and compare four approaches to modeling the SDP. The comparison
is based on model characteristics that we believe are most relevant to any approach to modeling

the SDP. These characteristics are described below.

1. Dependency on life cycle model: Some organizations use life cycle models available in the
open literature while others develop their own models. Thus, a software process modeling
approach that is applicable in a variety of life cycle paradigms is needed. The dependency
of the modeling approach on the life cycle model used is intended to measure how much an

approach is committed to a specific life cycle.

2. Optimization: Though software organizations continue to attempt to establish a stable and
predictable SDP environment, optimization is the next natural step towards a reduction in
production costs and improvement in productivity. Optimization aids in the determination of
how simplicity and effectiveness of a modeling approach are related to the use of optimization

methods available to the specific approach.

3. Self requlation: When an expected behavior is available and is accurate enough to guide the
current behavior of a process, a self regulation mechanism can be used to show how this
goal can, if possible, be achieved. The self regulation will present the effects of an overshoot
related to cost and schedule issues. This feature will characterize the availability of a self

regulation mechanism on the approaches.

4. em Coupling and cohesion: The coupling and cohesion determines how an approach handles
various phases of the SDP. Cohesion indicates how independent is the model for one phase
from the model for other phases. Coupling measures the interference of parameters/data
within a phase with the behavior of other phases. A high cohesion and a low coupling are

desired.

5. Completeness: Completeness measures how much of the entire SDP is modeled by the ap-

proach.

6. Caliberation: Calibration measures whether or not an approach includes feasible methods
calibrating the model. Although calibration can be done by “observation”, the presence of a
methodology to guide the user in calibrating the model according to an organization’s needs

is highly desirable.
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7. Friendliness: Friendliness measures the ease of applicability of an approach to an organization
or a project. In this context, some relevant questions are: Can the approach be applied by a
manager having a minimal knowledge of the approach? Is only a knowledge of the software
process enough ? Friendliness also accounts for the amount of effort that ought to be expended

in the acquisition of minimal knowledge about a specific approach.

8.2 Software Project Dynamics

The work by Adbel-Hamid and Madnick [1] makes two major contributions to the modeling of
SDP. The first contribution is in that the the model is integrated and hence provides a macro
understanding of the SDP through the integration of micro components. The second contribution
stems indirectly from the first one. It is in that the model can predict the general behavior of the
SDP by propagating the effect of changes from one phase to the subsequent phases. This ability
to predict enhances our understanding of how a local change will affect the behavior of the entire
project. The model’s suitability to simulation is another useful characteristics of their work. Next,

we provide a brief description of the model.

8.2.1 The Software Development Process

The model developed by Abdel-Hamid and Madnick is divided into four subsystems. The subsys-
tems and the connections amongst them are depicted in Figure 17 . From this figure it is easy to

see that the subsystems are affected by each other. The subsystems are described next.

Human
Resource
Management

Work
Force
Available
Software
Production
Tasks
Completed Schedule
Controlling — Planning
Effort Remaining

Figure 17: Software development subsystems used in the Systems Dynamic Approach of Abdel-
Hamid and Madnick [1].

Progress
Status

Human Resource Management: This subsystem models the control alternatives of how and
when the work force should be hired or transferred and trained. The effects of these actions
propagate to the connected subsystems. Two levels of work force are defined: “newly hired” and
“experienced”. Based on the number of people available from each level and the training and
adaptation time necessary for each one, the Human Resource Management subsystem determines

the nominal work force available.
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Software Production: This subsystem is too complex to be considered as a single unit, and hence
is divided into four interconnected sub-subsystems named sectors. The Manpower Allocation sector
takes the total work force available as a primary input. It accounts for parameters such as deadline
pressure, work to be done, training overhead, and the desired quality to allocate the work force
to quality assurance, rework, software development and testing. The second sector is Software
Development that is based on two primary components: productivity and tasks. That is, based on
the productivity of the work force available to development and the number of tasks at hand, the
model can define a productivity rate and determine the time required to complete the tasks. Quality
Assurance and Rework is the third sector. It manages the generation of errors, their detection and
correction during software development. The last sector is System Testing that models the behavior
of the error detection process. The errors generated and undetected in the previous phases must
be detected in this sector before releasing the product. An error is not a static parameter and
is assumed to propagate from one phase. The model is designed to account the propagation and

multiplication factors to predict the effort needed to detect and correct the errors remaining.

Control: The ability to control a process is dependent on the ability to measure its progress. This
is not easy accomplish as software development is not a quantifiable task. Progress is measured in
the model using two parameters: rate of expenditure of resources and percentage of accomplished
tasks. The first one is used during the early phases of software development and its weight decreases
with the approach of the final phases. Adjustments are needed according to progress or according
to the amount of underestimation. If the project is behind schedule the development team needs to
decide how much work they can absorb by “working harder” and then the model parameters can
be adjusted to absorb the extra work force and its effects. A similar behavior is presented when
the project is ahead of schedule. Underestimation of the project’s size also leads to adjustments,

i.e., more tasks need more effort and/or more time for completion of the project.

Planning: The primary goal of the Planning subsystem is to take initial estimates at the start
of the project and review these as the project continues. Then, in accordance with the work force
needed, the project manager can decide to extend the deadline, hire more people, or increase the

work force level.

8.2.2 Model analysis

The sequence of software development phases assumed in Abdel-Hamid’s model suggests the use
of a waterfall life cycle model. We therefore consider the model to be highly dependent on which
model of life cycle is used. The model is not restricted to any specific methodology. The strategy
of modeling the design and coding phases as one decreases model cohesion and increases coupling.
Therefore a high coupling and medium cohesion was determined for the model. Since the model
does not address all phases of the SDP a medium completeness was defined. The optimization issues
are related to simulation and will have a medium level as Software Process Simulation described on

Sub-section 8.4. The self regulation and calibration features are not addressed in their work and so
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characterized as low. Finally, the model appears to be relatively easy to use and having a medium

level of friendliness.

8.3 Statistical Process Control

Statistical Process Control, as described by Florac and Carleton [8], is not a model in itself. How-
ever, it provides useful tools to improve the controllability of the SDP and hence an understanding
of its concepts is important to our research. Two concepts used in Statistical Process Control most

relevant to our work.

e Stability - a process is under control, or in a stable condition, if its predicted behavior is

within limited to expected variations.

e Capability - a process under control is capable if under the conditions of stability it will be

capable of accomplishing the desired results.

A Control Chart is the most common tool used to analyze whether or not a process is under
statistical control. There are many different types of Control Charts such as X-Bar, Range Charts,
U Charts and Z Charts. Each type of Control Chart is supposed to be used according to specific
conditions related to the data available. We will exemplify the use of a Control Chart by describing
a X-Bar chart.

X-Bar charts are based on averages and applied when data is grouped in subgroups of size 2
or more. Three lines are presented in a X-Bar chart: (CL) center line ; (UCL) upper control limit
; and (LCL) lower control limit. These lines are computed based on observations of the running
process and they represent the observed behavior of the process, not the desired one. The center
line is the average of averaging each subgroup. The upper and lower control limits are computed by
adding and subtracting 3o from the center line, where ¢ is the estimated standard deviation. An
example of a X-Bar chart is depicted in Figure 18. The X-Bar chart represents the average daily
hours per week and it is used to observe if the development effort is according to the predicted one
(40 staff hours per day). The example is the same presented by Florac and Carleton [8].

A process out of control if one of the following tests fail [8].
e Test 1 : a single point is outside the limits set by LCL and UPL.

o Test 2 : at least two out of three successive values fall on the same side of, and more than 20

units away from, the center line.

o Test 3 : at least four out of five successive values fall on the same side of, and more than 1o

unit away from, the center line.
o Test 4 : at least eight successive points fall on the same side of the center line.
It can be observed in Figure 18 that, according to the tests defined above, the process under

observation is not out of control, that is, the process is stable. Although the process is stable,
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Figure 18: A sample control chart used in statistical process control.

the average daily hour observed is around five hours above the expected effort. Thus, we need to
analyze if the process can accomplish the planned task within the predetermined cost and schedule.
A Capability Histogram can be used to accomplish this task by determining if a process is outside
the expected limits. This fact represents a higher probability of generating non-conforming results

and indicates that the process should be adjusted in order to achieve the expected results.

8.3.1 Model Analysis

The applicability of SPC is independent of the life cycle model and the development methodology.
It does require that a measurement process be instituted with the SDP. Optimization of process
parameters can be addressed in SPC though it requires an analysis of many alternatives. That
is, when the number of parameters that affect the SDP is relatively high, the combinations of
possible values are even higher and the analysis of all alternative choices becomes difficult if not
impractical. The problem is not with the analyses of alternatives, but in their enumeration. SPC
does not address self regulation. Cohesion, coupling, completeness, calibration and friendliness are
not applicable to SPC.

8.4 Software Process Simulation

We discuss the software process presented by Hansen [13]. This process assumes the waterfall
model of the software life cycle. The software to be developed had a total of 100 modules divided
into three categories: (i) Type 1 - 20 modules; (ii) Type 2 - 40 modules and half of the time to
be completed when compared to Type 1; and (iii) Type 3 - 40 modules and one-fourth of the time
to be completed when compared to Type 1. It is assumed that all phases in the waterfall module
have dedicated staff. The rework rate and the rate specifications are released to requirements are
also defined.
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Figure 19: Waterfall model with feedback loops as used in the simulation of the software develop-
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Figure 19 shows the waterfall model used where each block is associated with the executable
code that will run the simulation. Each block can be divided into sub-blocks and further forming a
hierarchical and more detailed representation of the process. Figure 19 also depicts the expanded
version of the design phase. The model described by Hansen also provides mechanisms to compute
the cost of each phase given the attributes associated to them.

After modeling the entire SDP, simulation is used to examine alternatives to improve or control
the SDP. Sample questions of interest are: What happens if Type 1 modules have a higher priority
than modules of Type 2 and Type 37 Should this priority be preemptive or not 7 What happens if
there is a decrease in the rate at which specifications are released 7 Simulation provides reasonable
answers to these questions. The answers provide enough data to a manager to select the most

appropriate alternative(s) that satisfy the imposed constraints.

8.4.1 Model Analysis

Software Process Simulation models can be developed in accordance with the life cycle model and
the methodology used. The life cycle is represented by the way and sequence the software phases
are considered and features regarding the methodology can be modeled through parameters and
variables definitions. Thus both features have a low level, as desired. The same comments regarding
optimization issues for Statistical Process Control are valid here. A self-regulation mechanism is
not present in this approach.

Since a model can be defined on a per-company basis, it is possible to achieve a high level of
cohesion and a low level of coupling thereby making Software Process Simulation models attractive.
A new model can be easily defined if changes are detected in the SDP. Restriction regarding the
completeness of a model are due to creative aspects of the initial phases of the SDP and present
the same measurements and evolution problems as other dynamic approaches. The models can

also be caliberated empirically, but, as far as we are concerned, a methodology to do so is not
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available. The use of simulation requires knowledge about how to model and how to analyze the
results obtained. Thus, the simulation approach presents a medium level of friendliness since it

appears not to be natural to represent the SDP.

8.5 Object-Oriented Modeling Approach

The observation that “Software processes are software too” [25] makes object-orientation an attrac-
tive approach to model the SDP. The maintainability and the abstraction levels provided when an
OO approach is used justify its application. All characteristics of object-orientation, such as poly-
morphism, inheritance and encapsulation can be used to properly model the SDP. DRAGOON, an
Ada-like syntax programming language, and Unified Modeling Language (UML) are two examples
of the use of object-oriented techniques for such modeling process [15, 28]. Although UML does
not account for dynamic behavior, when combined with other techniques it can be a reasonable
modeling alternative. Jager et al. describe the application of UML to model the SDP [15].

Using an OO approach, more specifically, the approach described by Riley [28], models for the
phases of the SDP can be defined. Teams and Activities are associated with each defined phase.
Teams, composed by Roles, perform Activities and Artifacts are produced as a result of that.
Each Role is assigned to an employee. Riley presents an object relationship model describing this

structure as can be seen in Figure 20.

Artifact -~
Creates, Modifies

Views

IsAssigned to
ox — 1

Figure 20: Object relationship model for one phase of the Software Development Process.

Activity flows provide the sequence of realizations and the Artifact_base stores the output of
such activities. Many activities can be defined to fully represent the SDP. Besides the development,
coding and testing, one can insert quality assurance activities according to project’s requirements.
A hierarchical structure of some phases of the SDP and their related activities are provided by Riley.
This structure shows how natural and appropriate an objected-oriented approach is to model the
SDP. The DRAGOON approach also provides ways to collect metrics and to support the concurrent
aspects of the SDP.
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8.5.1 Model Analysis

An objected-oriented approach can be used to define any life cycle model of the SDP in a natural
way. Therefore, the OO approaches presents a low level of life cycle dependency and a high level of
friendly. The abstraction level makes OO more appropriate to model the initial phases of the SDP.
Thus, completeness has a high level when OO is under consideration. Also, the object-oriented
features allows a SDP model that can be easily maintained and so achieving reasonable levels of
coupling and cohesion.

It appears that an object-oriented methodology is more appropriate for use when the same
approach is used to model the SDP. Although an OO methodology seems to be the natural choice
in this case, it does not prevent the use of a different methodology to model the software product.
Therefore, we define a medium level of methodology dependency when OO is in use.

Object-oriented languages can be used to simulate the model for the SDP and so this approach

has the same optimization, self regulation and calibration levels as Software Process Simulation.

8.6 Classical control theory

The state variable model presented in this paper is a system representation that allows the use
of techniques from classical control theory. The interconnected four phase feedback structure of
Figure 1 allows for a variety of possible information flows within the SDP. Hence it is sufficiently
rich to represent the software development life cycle paradigms found in the literature [27]. It
can be adapted to specific organizational structures simply by removing irrelevant feedback paths.
For example, remove all paths but the paths connecting two adjacent phases and the feedback
path from test to specification in Figure 1. Determine breakpoints in time, that is, how frequently
the whole cycle will be re-executed. These changes will result in a spiral life cycle model. Similar
changes can be made to fit other life cycles models. Features that depend on a specific development
methodology are accounted for model parameters. That is, the theory developed is applicable to
any phase within the life-cycle and any software development methodology. Therefore a low level
of dependency can be assigned to our approach. The high level of optimization, self-regulation and
system calibration are justified in Section 4.

The completeness of this approach can not be addressed yet because models for the other
phases of the SDP are not available. Although the initial phases of the SDP present a high level
of creativity and will not be easily modeled, according to our experience modeling the STP and
comparing to models from other areas presenting similar problems, we believe it will be possible
to achieve, at least, a medium level of completeness. That is, we believe it is possible to model the
whole SDP but the amount of detail that can be inserted in the model it is not completely clear
for us.

The classical control theory approach is not friendly when presented in a state variable repre-
sentation. Thus, we classify our approach as having a low level of friendliness. Despite that, the
low friendliness presented by this approach can be improved by providing a interface hiding the

details of the equations and just balancing the forces acting on the SDP.
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Table 8: Comparisons

Approaches
Software | Statistical | Software Object | Classical
Features Project Process Process Oriented | Control

Dynamics | Control | Simulation | Modeling | Theory
Life Cycle Dependency H L L L L
Optimization M M H
Methodology Dependency L L L M L
Self Regulation L L L L H
Coupling H NA L L L
Cohesion M NA H H H
Completeness M NA H H NA
Calibration L NA L L
Friendliness M NA M H L

NA-Not Applicable L-Low M-Medium H-High

Table 8 is a summary of our comparison between the modeling approaches described in this
paper. Three rating levels namely, LOW, MEDIUM and HIGH, are used to measure how an ap-
proach fits the desired feature. A rating of LOW is desirable for cohesion, life cycle and methodology
dependency and a rating of HIGH for the remaining features.

As can be observed in Table 8, the Classical Control Theory approach shares the desirable
features of the other approaches while providing improvements in optimization, self-regulation and
calibration. We believe that ratings for friendliness and completeness of the Classical Control

Theory can be improved.

9 Summary and discussion

The widespread use of differential equations and state variable approach to model different types of
systems, combined with the advantages of using classical control theory techniques, encouraged us
to investigate a formal approach to modeling the STP. Results from two case studies suggest that
the formal approach presented in this paper is reasonably accurate in predicting the behavior of the
test process. The use of model switching to handle changes in the environment improves flexibility
and applicability of the model. Even though our model does not account for several features of the
STP, such as adaptation time and communication overhead, we believe that in its present form it is
useful in that it captures the essential behavior of the STP. The model can also be used to reduce
the cost of STP and improve its performance in the presence of perturbations. The behavior the
model for STP enhances our belief that the application of state variable approach is appropriate

and likely to result in an improved understanding of the changes during the software process.
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A comparison of the the state variable approach to four other different modeling approaches
reveals that it shares many of the “good” aspects of other approaches and also presents some advan-
tages over them. These advantages stem from the application of classical control theory and aids
in the improvement of STP controllability. This occurs through the use of a self-regulation mecha-
nism. Good model calibration in a per-project/per-company basis and the usefulness optimization
are also due to its reliance on classical control theory.

The availability of an analytical model, ability to quantify and estimate model parameters, and
an ongoing measurements process are the basic requirements for a successful application of any
modeling approach grounded in classical control theory. Organizations at levels 4 and 5 of the
Capability Maturity Model (CMM) [26] are likely to have a measurements process in-place. Data
collected through this process could be used in the estimation of model parameters. However, the
organization level of a company is not a requirement for a successful application of such approaches.
Even when the SDP is not well defined, the state variable approach can be applied when measure-
ments of the variables to be controlled and estimates of model parameters are available. Therefore,
the model can also be applied to organizations at level 3 or below restricted to measurements avail-
ability. That is, even though organizations at levels 1 to 3 does not share the same environmental
aspects of levels 4 and 5, they can benefit from the use of the model described here. However, we
can not expect the same accuracy as one is likely to achieve within organizations at levels 4 and 5.
If the software development process is not very well defined, is is unrealistic to expect availability
of accurate data. Despite that, the use of our model might force an improvement in the quality of
the data collected and perhaps in the SDP itself.

Several aspects of modeling the STP remain to be investigated. Parameters, such as {, need to
be defined in a more precisely to include more aspects of the STP. A sensitivity analysis of model
parameters is under study and will likely guide us in further refinement of the model. It will show
us how changes in parameters affect the model. By comparing these results with expected behavior,
we will be able to determine how the model ought to change to accomplish the expected behavior.
We believe that success in this research will lead to a process which when implemented rigorously

would lead to reduced delays in product development and higher reliability of the product shipped.

9.1 Barriers to the use of our model

Any theory, specially one that is new, is likely to face barriers to its use. The theory of process
control, based as in this paper on the theory of feedback control, faces several barriers three of

which are identified and discussed below.

Estimation of parameters: Estimation of several parameters is a pre-requisite to the use of our
approach. Lack of standardized definitions and widely accepted procedures for estimation make
parameter estimation an error-prone task. For example, there is no single definition of software
complexity. Thus, as described earlier, one could combine several complexity measures and compute
a composite complexity. However, the inclusion of reusable code adds an added dimension to the

computation of complexity. The quality of the test phase is a subjective measure. No two test
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managers are likely to arrive at an identical quantification. We believe that experience with the
test process and data from previous test processes within the same company could help in arriving at
accurate parameter estimates. A sensitivity analysis of the model is underway and when completed
it would help us understand the impact of errors in the estimates of parameters on the predicted

values of state and output variables.

Background of test manager: Our model is formal and based on a knowledge of mathematics that
very few test managers are likely to possess. Thus, one might argue, how could a test manager
use such an approach in practice? We believe that this barrier could be overcome effectively by
packaging our approach in a tool. This will hide the details, such as the solution of differential
equations, not needed by the test manager. The manager could then interact with the tool by
providing parameter estimates and the tool in turn provides estimates of the output and state

variables. Thus the tool and the test manager could be partners in the feedback control process.

Process elements: humans versus devices: The theory of automatic control was developed, and
is applied, in situations where the various control elements are electromechanical devices and not
human beings. In the software test process, the control signals are, among several things, directly
effecting people such as when the work force is to be increased or when the quality of the test process
is to be increased. Furthermore, the feedback control loop is closed by a human being, namely the
test manager. A natural question to ask is: “How effective will a formal control technique be in
such a human-intensive environment ?” Of course only time will offer an answer to this question.
However, we believe that a sound theory of software process control, that has proven to be effective

in controlled experiments, is more likely than not to encourage test managers to adapt it.
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Appendix: Linear System Theory: an overview

0 £ YO xity = Adx() +Bue) Xit (o) Y0

Figure 21: General structure of a linear feedback model.

Linear state feedback models have provided useful representations for large classes of engineer-
ing, biological, and social processes [6, 9]. Our purpose is to apply aspects of this modeling and
control theory to the software development process with a focus on the testing phase in this paper.
Although our intent is use Linear Time Invariant (LTI) state models, we can always generalize our
methods to nonlinear models [17] as the need arises.

We are interested in linear feedback systems to enable us to model software development pro-
cesses wherein feedback can play a crucial role. Figure 21 shows the input-output relationship in
a system with feedback. We use the following terminology to represent various items of interest

in Figure 21: z(t) € R™ is the state vector representing the dominant variables characterizing
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the process; y(t) € R? is the output/measurable variables; r,..f(t) is a reference input signal; d(t)
is a possible disturbance A, B and C are parameter matrices; and F' is a feedback matrix de-
signed to achieve the desired systems objectives. Various feedback techniques can be found in the

literature [22, 6]. The resulting feedback compensated system is

it) = Az(t) + Bu(t) (26)
y(t) = C (i) (27)
w(t) = Fax(t) + rep(t) + d2) (28)

Incorporating 28 into 26 produces the feedback compensated dynamics in the following form:

#(t) = (A + BF)z(t) + Brey + Bd(t) (29)

Feedback System: An Example

Figure 22: An example of feedback as found in the Ball & Beam problem [24].

A ball and beam system is pictured in Figure 22 having the following linearized differential

equation model:

J .
(ﬁﬁLm)r = —mga (30)
d

(31)

where: m is the mass of the ball, R its radius, d the lever arm offset, g the gravitational acceleration,
L the length of the beam, J the ball’s moment of inertia, r the ball’sposition coordinate, « is the
beam angle coordinate; and 6 is the servo gear angle. The gear and lever arm control the angle 6

which can be adjusted to make the ball roll and stop at a predetermined position along the beam.
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To achieve this goal using state variable control theory, the model of Eqn. (30) and (31) is converted
to the following LTI state model:

Pl |01 r 0 ) .
il T loolls| | - —L(%g-im_) 2
[r]=[1 0] . +[o]e (33)

If we change the angle 6 in the open loop model, the ball will start moving and without a
regulation mechanism it will fall off the beam. Thus we need a self regulating mechanism to
properly position the ball. This can be done by using a state feedback controller

T
0 =Fz+re = | 323.8095 19.0476 | | | +025
T

which results in a “closed loop system”, & = (A + BF)z + Br,.;. The feedback gain matrix F
was designed to obtain a settling time of less than three seconds and an overshoot of, at most,
50%. Hence the eigenvalues of (A + BF) were chosen as —2 + 8j to obtain these results. The
real parts of these eigenvalues determine the settling time and the imaginary part the overshoot.
The relationship between the settling time, overshoot and the reference input (r,.¢) are very well
documented in the literature [9, 6] and hence not described here.

The output for the system described above is shown in Figure (23), where the reference input
(Tref) is 0.25. The feedback gain matrix is determined by means of the “place” command in MatLab
for the eigenvalues defined above. Although the overshoot could be avoided, we set the eigenvalues

to produce a large overshoot to stress the self-regulating mechanism.
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Figure 23: Simulated response of the ball-beam example to a step input.

This small example of classical feedback control does not account for the many advantages of

modern feedback control. Despite that, it is adequate to illustrate some features and problems
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found in the STP. Input variables such as the effort in the STP and the angle 6 in the example, can
be changed/controlled; state variables required to produce the desired output variables can also be
defined for the STP as in the ball-example; and so on. A description of a state model for the STP,
is presented in Section 4.4.

A feedback mechanism was required to solve the ball and bean example. Classical feedback
theory tells us how to choose the “feedback gains” to change inputs and make the measurable
variables attain the desired levels of performance. The same is true for the SDP, i.e., we need to
define a mechanism to change the inputs, to correct the disturbances thatb arise during the process,
and achieve the desired results. Thus feedback system theory can be applied to achieve this goal,

but to do so one needs a good model of the software process.
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