
DESIGN OF MUTANT OPERATORS FOR

THE C PROGRAMMING LANGUAGE†

Hiralal Agrawal

Richard A. DeMillo

Bob Hathaway

William Hsu

Wynne Hsu

E.W. Krauser

R. J. Martin

Aditya P. Mathur

Eugene Spafford

Contact:

Aditya P. Mathur (apm@purdue.edu)
Department of Computer Science
Purdue University
W. Lafayette, IN 47907

SERC–TR–41–P

Revision 1.04

April 12, 2006

†This work was supported by Rome Air Development Center Contract No. F 30602-85-C-0255
and Georgia Institute of Technology subcontract B-10-653-1.

“Mutation decides the course of humanity.”

Not a software engineer

2

3 Mutation operators for ANSI C

Contents

LIST OF FIGURES 6

LIST OF TABLES 7

ABSTRACT 8

1. INTRODUCTION 9

2. AN OVERVIEW OF MUTATION BASED TESTING 9

3. THE RAISON D´ÊTRE OF A MUTANT OPERATOR 11

4. MUTANT OPERATOR CLASSIFICATION 13

5. NAMING CONVENTIONS 14

5.1. General . 14

5.2. Naming of Binary Operator Mutations . 14

6. WHAT IS NOT MUTATED? 16

7. OPTIMIZATIONS 18

8. CONCEPTS AND DEFINITIONS 19

8.1. Functions Introduced by Mutant Operators . 19

8.2. Range of Applicability . 19

8.3. Linearization . 20

8.4. Execution Sequence . 22

8.5. Effect of An Execution Sequence . 27

8.6. Global and Local Identifier Sets . 27

8.7. Global and Local Reference Sets . 28

9. STATEMENT MUTATIONS 31

9.1. Trap on Statement Execution: STRP . 32

9.2. Trap on if Condition: STRI . 33

9.3. Statement Deletion: SSDL . 34

9.4. return Statement Replacement: SRSR . 35

4 Mutation operators for ANSI C

9.5. goto Label Replacement: SGLR . 37

9.6. continue Replacement by break: SCRB . 38

9.7. break Replacement by continue: SBRC . 38

9.8. Break Out to nth Enclosing Level: SBRn . 38

9.9. Continue Out to nth Enclosing Level: SCRn . 39

9.10. while Replacement by do-while: SWDD . 39

9.11. do-while Replacement by while: SDWD . 40

9.12. Multiple Trip Trap: SMTT . 40

9.13. Multiple Trip Continue: SMTC . 41

9.14. Sequence Operator Mutation: SSOM . 42

9.15. Move Brace Up or Down: SMVB . 43

9.16. Switch Statement Mutation: SSWM . 45

10. OPERATOR MUTATIONS 48

10.1. Binary Operator Mutations: Obom . 49

10.2. Unary Operator Mutations: Ouor . 50

10.2.1. Increment/Decrement: Oido . 50

10.2.2. Logical Negation: OLNG . 51

10.2.3. Logical context negation: OCNG . 52

10.2.4. Bitwise Negation: OBNG . 53

10.2.5. Indirection Operator Precedence Mutation: OIPM 54

10.2.6. Cast operator replacement: OCOR . 55

11. VARIABLE MUTATIONS 56

11.1. Scalar Variable Reference Replacement: Vsrr . 57

11.2. Array Reference Replacement: Varr . 57

11.3. Structure Reference Replacement: Vtrr . 58

11.4. Pointer Reference Replacement: Vprr . 58

11.5. Structure Component Replacement: VSCR . 59

11.6. Array reference subscript mutation: VASM . 60

11.7. Domain Traps: VDTR . 60

11.8. Twiddle Mutations: VTWD . 61

12. CONSTANT MUTATIONS 62

12.1. Required Constant Replacement: CRCR . 62

5 Mutation operators for ANSI C

12.2. Constant for Constant Replacement: Cccr . 63

12.3. Constant for Scalar Replacement: Ccsr . 64

13. COMPARISON OF MUTANT OPERATORS FOR C AND FORTRAN 77 64

14. FUTURE WORK 66

15. Proteum/C 66

ACKNOWLEDGEMENTS 66

REFERENCES 66

APPENDIX A : INDEX TO MUTANT CATEGORIES/OPERATORS 68

APPENDIX B : CLASSIFICATION OF MUTANT OPERATORS 72

APPENDIX C : REVISION HISTORY 73

6 Mutation operators for ANSI C

List of Figures

1 Naming convention for categories. 15

2 Naming convention for statement level mutation operators. 15

3 Naming convention for C-operator level mutation operators. 16

4 Naming convention for variable and constant level mutation operators. 17

5 Linearization example. (+ denotes one or more derivation steps.) 23

6 Another linearization example. (+ denotes one or more derivation steps.) 24

7 Mutant operators for C operators. 50

8 Binary operator mutation operator. 51

9 Classification of variable mutations. 57

7 Mutation operators for ANSI C

List of Tables

1 List of Functions Introduced by Mutant Operators 19

2 List of Functions Introduced by Mutant Operators 20

3 Classification of Binary Operators in C . 49

4 Domain and Range of Mutant Operators in Ocor 52

5 Domain and Range of Mutant Operators in Oior 53

6 Domain and Range of Mutant Operators in Oior (continued). 54

7 Domain of Mutant Operators in Variable Mutations Category 58

8 Functions Used by the VDTR Operator . 62

9 A Comparison of Fortran 77 and C Mutant Operators 65

8 Mutation operators for ANSI C

Abstract

Mutation analysis is a method for reliable testing of large software systems. It provides powerful

test adequacy criteria empirically found to be as much or more effective in revealing faults than any

other control and data flow-based adequacy criteria. This report describes the mutant operators

designed for the proposed ANSI C programming language. Mutant operators are categorized using

syntactic criteria. Such a classification is expected to be useful for an implementor of a mutation

based testing system.

Another classification, useful for the tester, is based on the nature of tests that can be conducted

using mutation analysis. This classification exposes the generality and completeness of mutation

based testing.

Each mutant operator is introduced with illustrative examples. The rationale supporting each

operator is also provided. An appendix provides a cross-reference of all mutant operators for ease

of referencing.

The design described here is the result of long deliberations amongst the authors of this report

in which several aspects of the C language and program development in C were examined. We

intend this report to serve as a manual for the C mutant operators for researchers in software

testing.

9 Mutation operators for ANSI C

1. INTRODUCTION

This report documents the classification, definition, rationale, and semantics of the mutant opera-

tors designed for the (proposed) ANSI C programming language [Kern88]. Led by Richard DeMillo,

The design of mutant operators was carried out by the authors of this report over a six month period

starting August, 1988.

Throughout the report, the following conventions are used: (a) keywords in C are emboldened,

(ii) non-terminal symbols from the C grammar are italicized, (iii) mutant operators are emboldened

and appear in upper case letters, (iv) mutant operator category names are emboldened and begin

with an upper case letter followed by three lower case letters, and (v) P denotes the program under

test and hence the program to be mutated. In general, P will consist of several functions that could

be mutated individually or as a group depending on how much of P is being tested.

This report assumes that the reader is familiar with the underlying theory and techniques of

mutation analysis. However, the next section provides an overview of mutation analysis. [DeMi79]

and [DeMi87] contain the in depth background material.

The remainder of the report is organized into 13 sections. The next section provides an overview

of mutation analysis; details are available elsewhere [DeMi79]. Section 3 enumerates the reasons

responsible for the mutant operators reported here. Section 4 presents a classification of the mutant

operators. We hope such a classification to be useful to designers of tools for mutation analysis

such as Mothra [DeMi88] and Proteum/C [Dela93] and for the software tester.

Section 5 consolidates the naming conventions used while naming the large number of mutant

operators. The conventions are designed to simplify the expansion of the four letter mnemonics for

all mutant operators. Not all entities in a program are subject to mutation. Section 6 lists all such

entities and the rationale for not mutating them. Section 7 lists various mutate-time and execute-

time optimizations that can be performed by a tool to reduce the computational requirements of a

software testing experiment.

Some concepts and definitions needed to describe the mutant operators are listed in section 8.

Sections 9-12 describe all the mutant operators for C. Section 13 compares the mutant operators

for Fortran 77 and C. Finally, section 14 outlines the on-going and planned work in mutation based

testing of large C programs.

Three appendices at the end respectively provide index to mutant operators, classification of

mutant operators, and a revision history of this report.

2. AN OVERVIEW OF MUTATION BASED TESTING

Mutation is a means for the adequacy assessment and enhancement of a test set. It is a fault

based technique and relies on an empirically validated observation that programmers often make

simple mistakes that lead to simple errors (or faults) in programs. This class of faults (F) is used to

generate a a set O of mutant operators that model one or more of the faults in F . For example, use

of a wrong variable is a fault. The scalar variable reference replacement set of operators, described

in section 11.1, model this fault.

A mutant operator is applied on the program P under test. Such an application transforms P

into a similar, though a different program, known as a mutant. In general, one application of a

10 Mutation operators for ANSI C

mutant operator can generate more than one mutant. If P contains several entities that are in the

domain of a mutant operator, then the operator is applied to each such entity, one at a time. Each

application generates a distinct mutant. As an example, consider the mutant operator that deletes

a statement from P . All statements in P are in the domain of this operator. When applied, it will

generate as many mutants as there are statements in P . Each mutant will have all statements in P

except the one deleted by the mutant operator. Such mutants can be considered to be fault induced

versions of P .

Certain mutants are instrumented versions of P . The instrumentation is designed to reveal some

kind of coverage. For example, a mutant operator that provides domain coverage for variables,

generates one mutant for each occurrence of a scalar reference. When executed, this mutant

informs the tester whether or not the desired domain was covered for that reference.

Once generated, a mutant M is executed against a suite T of test cases. For a fault induced

mutant, if for any t ∈ T , the output of M differs from that of P , we say that M is killed. An instru-

mented mutant is killed when the trap function, inserted into P by the mutant operator, terminates

mutant execution. The trap functions are described in section 8.1. A mutant not killed by any t ∈ T

is considered to be live. A live mutant M implies that either (a) T needs to be augmented with

additional test cases that can kill M or (b) M is equivalent to P . T is considered adequate if it is

able to kill each of those mutants that are not equivalent to P . Thus, mutation analysis is often

referred to as a technique for determining the adequacy of a test suite [DeMM87].

Several control flow and other coverage techniques popular amongst software testers, are sub-

sumed by mutation analysis. For example, statement coverage, branch coverage, and domain

coverage are provided by mutation analysis. The STRP, STRI, and VDOM operators described

in this report, provide statement, branch, and domain coverage for C programs. Several coverage

operators provide partial path analysis. For example, the SMTT operator provides iteration cov-

erage by ensuring that each loop in a C program is executed at least n times, where n is a tester

defined parameter.

As mentioned earlier, a mutant is generated by the application of one mutant operator on one

entity in its domain in P . Mutants so generated are also known as first order mutants. In princi-

ple, however, it is possible to apply simultaneously more than one mutant operator or one mutant

operator on more than one entity in its domain. Such an application will generate k-order mutants

for k > 1. However, past experimental [Budd80] work has shown that such mutants do not pro-

vide any significant advantage with respect to the construction of a better test suite T . Further,

the generation and execution of such mutants can be computationally expensive. Thus, mutation

analysis is generaly accredited with the generation of first-order mutants. If higher order mutants

11 Mutation operators for ANSI C

are generated, then mutation analysis subsumes path analysis.

A tool based on mutation analysis, such as Mothra [DeMi88] and Proteum [Dela97], automates

several of the tasks implicit in the above description. For example, both Mothra and Proteum

perform the tasks associated with mutant generation, mutant execution, live/kill analysis, test case

management, and automatic test case generation.

3. THE RAISON D´ÊTRE OF A MUTANT OPERATOR

Errors could be introduced into a program in a variety of ways. Given the competent programmer

hypothesis [DeMi79], we can conclude that errors are introduced into a program through syntactic

aberrations, also known as faults. These aberrations alter the semantics of the program so that it

fails to perform the desired input-output mapping. Note that we are not concerned with syntactic

aberrations that result in syntax errors. Such errors are obviously caught by the compiler. Instead,

we are concerned with aberrations that cause a change in the intended semantics of the program,

thereby inducing an incorrect input-output behavior. A few examples of such errors appear below.

1. Incorrect use of a variable name in a specific context, e.g. using the state-

ment next line = 1 instead of new line = 1, where next line and new line

denote variables, with similar though different meanings, declared in the

program.

2. Using an incorrect relational operator in a loop condition, e.g. using the

loop formulation while (dosage > max-value) instead of while (dosage < max-

value).

3. Misplacing a statement, e.g. using the sequence:

x satellite position = x satellite position + x shift

x satellite position = x satellite position - x shift

break

instead of the sequence:

x satellite position = x satellite position + x shift

break

x satellite position = x satellite position - x shift

12 Mutation operators for ANSI C

The intent of software testing is to reveal as many such syntactic aberrations as feasible in a pro-

gram. Mutation analysis aids in this process by identifying the common syntactic aberrations and

using mutant operators to model them. The identification itself is carried out primarily by using past

programming experience.

A mutant operator mutates one syntactic entity of a program. Further, only one mutant operator

is applied at a time to the program under test. The intent of a mutant operator is to make simple

syntactic changes. Mutation analysis as a testing technique hopes to reveal errors in the program

by showing that either the syntactic change that has been induced by a mutant operator is incorrect

or the syntactic entity mutated is the incorrect one. Thus, mutation analysis helps in both the

revelation of errors and in establishing the confidence of the tester in the program.

In general, it is difficult to show how a mutant operator can help reveal an error in a program.

On the other hand, a mutant operator encourages the tester to construct test data that reveals that

the syntactic change induced is indeed incorrect. If the programmer fails to do so, or fails to show

that the syntactic change generates an equivalent mutant, then the existence of an error becomes

highly probable.

While designing the mutant operators for C, we had the following goals in view:

1. A mutant operator should cause single-step changes. Thus, only simple

faults are induced. Transforming

next line = next line + 1

to

next line = next line - 1

is a single-step change carried out by replacing + by –. However, trans-

forming

next line = next line + 1

to

new line = new line + 1

is a two step change as two instances of the syntactic entity next line are

replaced.

13 Mutation operators for ANSI C

2. A mutant operator should generate a syntactically correct program. This

ensures that mutants can be compiled and executed.

3. Mutant operators should be designed and classified so that the tester

using a tool based on such operators, can selectively apply them. This

ensures that the tester has complete control over the organization and

the computational requirement of the test.

For example, according to the current classification, a tester can decide

to mutate only binary arithmetic operators, such as + and –, in the pro-

gram under test. However, if there was only one mutant operator that

would systematically mutate all operators in the program under test, such

a selective application would not be possible.

4. MUTANT OPERATOR CLASSIFICATION

To aid in the understanding, documentation, and use during testing, mutant operators have been

classified using a hierarchical structure. The structure is syntax-directed. It is intended for the

implementors of a tool that uses the mutant operators described in this report.

Appendix B exhibits the complete syntax-directed classification. According to this classification,

each mutant operator belongs to one of the following categories:

1. statement mutations,

2. operator mutations,

3. variable mutations, and

4. constant mutations.

Mutant operators in these categories are designed to model errors made by programmers in:

1. selection of identifiers and constants while formulating expressions;

2. composition of expression functions; and

3. composition of functions using iterative and conditional statements.

Note that the faults modeled by mutant operators belong to both the commission and omission

categories first proposed by Basili [Basi84]. For example, mutant operators in the Vsrr category

14 Mutation operators for ANSI C

model some faults that belong to the commission category. Mutant operator OCNG models a fault

that belongs to the omission category.

Another classification, useful for a tester, also appears in Appendix B. According to this classifi-

cation, mutant operators are designed either for providing coverage or for inducing faults. Coverage

operators aid the tester in obtaining statement, iteration, branch, and domain coverage. A combi-

nation of these operators provide partial path coverage. Fault inducing operators induce possible

faults in the program under test. Faults in statements, operators, variables, and constants are

modeled by such operators.

This classification reveals the fact that mutation analysis encompasses several other commonly

used testing techniques such as statement coverage, branch coverage, and path analysis.

5. NAMING CONVENTIONS

In this section we describe the naming conventions for mutant operator sub-categories and mutant

operators. These naming conventions have been set up to provide easy elicitation of the function

of a mutant operator from its mnemonic. Due to a plethora of mutant operators in C, it has not been

possible to adhere to 3-letter mnemonics used for Fortran 77 mutant operators. Instead, a 4-letter

mnemonic has been developed for each mutant operator.

5.1. General

For each mutant operator we distinguish between its category and subcategory. There are four

syntax-directed categories mentioned above. These are denoted by letters S, O, V, and C for,

respectively, statement, operator, variable, and constant level mutations. The remaining three let-

ters either serve as a mnemonic for the mutant operator or are further classified, depending on the

category and subcategory. Figs. 2–4 exhibit this classification.

A subcategory of mutant operators also has a 4-letter mnemonic. The first letter denotes the

category to which it belongs. The remaining three letters serve as the mnemonic for the subcat-

egory. To enable easy distinction between subcategory and mutant operator mnemonics, the last

three letters of a subcategory mnemonic are in lower case letters. The operator mutations have a

more elaborate naming convention below.

5.2. Naming of Binary Operator Mutations

The binary operator mutations are described in section 10. As shown in Fig. 3, each mutant oper-

ator has a 4-letter name starting with the letter O. The naming conventions for the remaining three

15 Mutation operators for ANSI C

W YX Z

3-letter mnenomic depends
on category code.

Lowercase for category/subcategory

Uppercase for mutant operator

Category codes:

S: Statement

O: Operator

V: Variable

C: Constant

Figure 1: Naming convention for categories.

S X ZY

cinomenm rettel-3
yrogetacbus/yrogetac rof esacrewol

rotarepo tnatum rof esacreppu

Figure 2: Naming convention for statement level mutation operators.

letters are as follows:

• Non-assignment type: The mutant name has the structure: OXYN. Here

X and Y could be any of A, L, R, or B for, respectively, arithmetic, log-

ical, relational, and bitwise operators. For mutant operators that belong

to the Ocor category, X = Y. Thus, for example, OBBN mutates opera-

tors amongst the set of bitwise operators defined in Table 3. As another

example, OABN mutates operators in the arithmetic operators set with

those in the bitwise operators set.

• Assignment type: The mutant name has the structure: OXYA. For mu-

tant operators that belong to Ocor category, X=Y. Here X and Y can be

A, S, or B for, respectively, arithmetic, bitwise, plain, and shift assignment

operators. See Table 3 for a list of these operators.

For the Oior category, X and Y could also be E. For example, OBBA

16 Mutation operators for ANSI C

O X ZY

= A, B, L, R, or S if Z = N

= A, B, E, or S if Z = A

= N : Non-assignment-type
operators

= A : Assignment-type binary
operators

Examples: OAAN : Mutate Arithmetic

operators to Arithmetic operators

OESA : Mutate plain (=) assignment to

shift assignment

Figure 3: Naming convention for C-operator level mutation operators.

mutates C operators in the bitwise assignment operator set. OASA mu-

tates elements of arithmetic assignment set to elements of shift assign-

ment set. OSEA mutates C operators belonging to the set of shift as-

signment operators to the plain assignment operator (=).

6. WHAT IS NOT MUTATED ?

Every mutation operator has a possibly infinite domain on which it operates. The domain itself con-

sists of instances of syntactic entities, that appear within the program under test, mutated by the

operator. For example, the mutation operator that replaces a while statement by a do-while state-

ment has all instances of the while statements in its domain. This example, however, illustrates a

situation in which the domain is known.

Consider a C function having only one declaration statement int x, y, z. What kind of syntactic

aberrations can one expect in this declaration ? One aberration could be that though the program-

mer intended z to be a real variable, it was declared as an integer. Certainly, a mutation operator

can be defined to model such an error. However, the list of such aberrations is possibly infinite and,

if not impossible, difficult to enumerate. The primary source of this difficulty is the infinite set of type

and identifier associations to select from. Thus, it becomes difficult to determine the domain for any

17 Mutation operators for ANSI C

W X ZY

snoitatum elbairaV : V =

snoitatum tnatsnoC : C =

cinomenm rettel– 3

)labolg rof(G = X

)lacol rof(L =

Figure 4: Naming convention for variable and constant level mutation operators.

mutant operator that might operate on a declaration.

The above reasoning leads us to treat declarations as universe defining entities in a program.

The universe defined by a declaration, such as the one mentioned above, is treated as a collection

of facts. Thus, the declaration int x, y, z states three facts, one for each of the three identifiers.

Once we regard declarations to be program entities that state facts, we cannot mutate them be-

cause we have assumed that there is no scope for any syntactic aberration. With this reasoning

as the support, we decided not to mutate any declaration in a C program. We expect that errors in

declarations would manifest through one or more mutants.

Following is the complete list of entities that are not mutated:

• declarations,

• the address operator (&),

• format strings in input-output functions,

• function declaration headers,

• control line,

• function name indicating a function call (note that actual parameters in

a call are mutated, but the function name is not. This implies that I/O

function names such as scanf, printf, open, etc. are not mutated), and

• preprocessor conditionals.

18 Mutation operators for ANSI C

7. OPTIMIZATIONS

In certain situations, it is possible that two mutant operators generate mutants that are equivalent

to each other. A simple example is provided by the VTWD operator described in section 11.8.

When applied to the expression (a + b), it will mutate a to a + 1 and b to b + 1. This generates two

equivalent mutants. We assume that the mutant generation tool will detect this equivalence and

generate only one of these mutants.

As another example, consider a C function containing the following statement1:

...

if (x < 0)

x = x-y; F 1
...

One of the mutant operators, namely SSDL defined in section 9.3, will mutate the above statement

to the following:

...

if (x < 0)

; M 1
...

and

...

; /* Entire if statement replaced by a null statement. */ M 2
...

The mutants so generated are equivalent as can be concluded by examining the two mutated

statements above. It is expected that a tool that implements various mutant operators will attempt

not generate a mutant that is equivalent to the one already generated.
1Program fragments used in examples, are numbered sequentially as F1, F2,... . Mutants

of program fragments are numbered M1, M2,

19 Mutation operators for ANSI C

8. CONCEPTS AND DEFINITIONS

8.1. Functions Introduced by Mutant Operators

Several mutant operators introduce a function into the source program. A list of all such functions

appear in Tables 1 and 2. We assume that the source program contains no functions with the same

name as the function introduced by the mutant operator.

Table 1: List of Functions Introduced by Mutant Operators

Function Number of Purpose Introduced
arguments by

break out to level n 1 To terminate the execution of each
one of the n loops immediately enclos-
ing this function.

SBRn

continue out to level n 1 To terminate the execution of all im-
mediately enclosing (n− 1) loops and
resume the next iteration of the loop
that nests this function n levels.

SCRn

trap on domain functions 2 To terminate the execution if the do-
main of the argument satisfies a given
condition. See section 9.2 and Table 8
on page 62 for details.

VABS

8.2. Range of Applicability

In this report, the well accepted definition of a C program is assumed. According to this definition, a

C program consists of a collection of functions and variables. These may be grouped into different

files.

We define the range of applicability of a mutant operator, hereafter referred to as RAP, to be a

subset of all functions in the program under test. Such a RAP is defined, under directions from the

tester, by the tool. The grouping of functions into different files does not affect the RAP.

A mutant operator is considered to be applicable only to all the program entities in its domain

within the RAP. For example, the mutant operator SSDL that delete statements from a program,

will apply to all statements inside functions that are in the RAP. It is possible for different mutant

20 Mutation operators for ANSI C

Table 2: List of Functions Introduced by Mutant Operators

Function Number of Purpose Introduced
arguments by

trap on case 2 If the first argument is equal to the
second, then the mutant is killed, oth-
erwise it returns the value of the first
argument.

SSWM

trap on statement 0 To terminate mutant execution STRP

false after nth loop iteration 1 To force the loop body to execute at
most n times

SMTC

trap after nth loop iteration 1 Returns true for each of the first n it-
erations. Terminates program execu-
tion at the beginning of the (n + 1)th

iteration.

SMTT

operators to have different RAPs. However, this fact does not affect the definition of a mutant

operator in any way.

8.3. Linearization

In C, the definition of statement is recursive. For the purpose of understanding various mutant op-

erators in the statement mutations category, we introduce the concept of linearization and reduced

linearized sequence.

Let S denote a syntactic construct that can be parsed as a C statement. Note that statement

is a syntactic category in C. For an iterative or selection statement denoted by S, cS denotes the

condition controlling the execution of S . If S is a for statement, then eS denotes the expression

executed immediately after one execution of the loop body and just before the next iteration of the

loop body, if any, is about to begin. Again, if S is a for, then iS denotes the initialization expression

that is executed exactly once for each execution of S. If the controlling condition is missing, then cS

defaults to true.

Using the above notation, if S is an if statement, we shall refer to the execution of S in an

execution sequence as cS. If S denotes a for statement, then in an execution sequence we shall

refer to the execution of S by one reference to iS, one or more references to cS, and zero or more

references to eS. If S is a compound statement, then referring to S in an execution sequence merely

21 Mutation operators for ANSI C

refers to any storage allocation activity.

Example 1

Consider the following for statement:

for (m=0, n=0; isdigit(s[i]); i++)

n =10* n +(s[i]) - ’0’);

Denoting the above for statement by S, we get,

iS: m=0, n=0

cS: isdigit(s[i]), and

eS: i++.

If S denotes the following for statement,

for (; ;){
...

}

then we have,

iS: ; (the null expression-statement),

cS: true, and

eS: ; (the null expression-statement).

Let Tf and TS , respectively, denote the parse trees of function f and statement S. A node of TS

is said to be identifiable if it is labeled by any one of the following syntactic categories:

• statement

• labeled statement

• expression statement

22 Mutation operators for ANSI C

• compound statement

• selection statement

• iteration statement

• jump statement

A linearization of S is obtained by traversing TS in preorder and listing, in sequence, only the

identifiable nodes of TS . Figs. 5 and 6 provide examples of linearized statements.

For any X, let Xi
j , 1 ≤ j ≤ i denote the sequence Xj Xj+1 . . . Xi−1 Xi. Let SL = Sl

1, : l ≥ 0

denote the linearization of S. If SiSi+1 is a pair of adjacent elements in SL such that Si+1 is the direct

descendent of Si in TS and there is no other direct descendent of Si, then SiSi+1 is considered to

be a collapsible pair with Si being the head of the pair. A reduced linearized sequence of S,

abbreviated as RLS, is obtained by recursively replacing all collapsible elements of SL by their

heads. The RLS of a function is obtained by considering the entire body of the function as S and

finding the RLS of S. The RLS, obtained by the above method, will yield a statement sequence in

which the indices of the statements are not increasing in steps of 1. We shall always simplify the

RLS by renumbering its elements, so that for any two adjacent elements Si Sj , we have j = i + 1.

We shall refer to the RLS of a function f and a statement S by RLS(f) and RLS(S), respec-

tively. Figs. 5 and 6 list reduced linearization sequences of sample statements.

RLS(f) is of the form S1 S2 . . . Sn R, n ≥ 0, where R is either a return statement or an implicit

return implied by the closing brace in the definition of f . The Si, 1 ≤ i ≤ n and R are referred to as

the elements of RLS. The number of elements in RLS is its length and is denoted by l(RLS). We

shall use an RLS to define mutant operators and describe execution sequences.

8.4. Execution Sequence

Though most mutant operators are designed to simulate simple faults, the expectation of mutation

based testing is that such operators will eventually reveal one or more errors in the program. In this

section we provide some basic definitions that are useful in understanding such operators and their

dynamic effects on the program under test.

When f executes, the elements of RLS(f) will be executed in an order determined by the test

case and any path conditions in RLS(f). Let E(f, t) = sm
1 , m ≥ 1 be the execution sequence of

RLS(f) = Sn
1 R for test case t, where sj , 1 ≤ j ≤ m− 1 is any one of Si, 1 ≤ i ≤ n and Si is not a

return statement. We assume that f terminates on t. Thus, sm = R′, where R′ is R or any other

return statement in RLS(f).

23 Mutation operators for ANSI C

S eerT)S(SLR SdeziraeniL

S(tnemetats 1)

S(tnemetats-noisserpxe 2)

noisserpxe ;

noisserpxe-tnemngissa

noisserpxe-yranu rotarepo-tnemngissa noisserpxe-tnemngissa

++

a b= + c

a=b+c; S
1
S

2
; S

1

Figure 5: Linearization example. (+ denotes one or more derivation steps.)

Any proper prefix sk
1 , 0 < k < m of E(f, t), where sk = R′, is a prematurely terminating execution

sequence (subsequently referred to as PTES for brevity) and is denoted by Ep(f, t). sm
k+1, is

known as the suffix of E(f, t) and is denoted by Es(f, t). El(f, t) denotes the last statement of the

execution sequence of f . If f is terminating, El(f, t)=return.

Let E1 = Sj
i and E2 = Ql

k be two execution sequences. We say that E1 and E2 are identical if

and only if i = k, j = l, and Sq = Qq, i ≤ q ≤ j. As a simple example, if f and f ′ consist of one

assignment each, namely, a = b + c and a = b− c, respectively, then there is no t for which E(f, t)

and E(f ′, t) are identical. It must be noted that the output generated by two execution sequences

may be the same even though the sequences are not identical. In the above example, for any test

case t that has c = 0, Pf (t) = Pf ′(t).

Example 2

Consider the function trim defined below.

24 Mutation operators for ANSI C

S Tree Linearized S RLS (S)

if (a < b)
 while (p < q)
 p = p - q;

 statement (S1)

 selection-statement (S2)

if (expression) statement (S3)

 a < b iteration-statement (S4)

 while (expression) statement (S5)

 p < q expression-statement (S6)

 p = p - q

(S1 S2) (S3 S4) (S5 S6) S1 S2 S3

+

+

+

Figure 6: Another linearization example. (+ denotes one or more derivation
steps.)

/* This function is from p 65 of [Kern88]. */

int trim (char s [])

S1 {
int n; F 2

S2 for (n = strlen(s)-1; n >= 0; n- -)

S3 if (s [n] != ’ ’ && s [n] != ’\t’ && s [n] != ’ \n’)

S4 break;

S5 s [n+1] = ’\0’;

S6 return n;

}

We have RLS(f) = S1 S2 S3 S4 S5 S6. Let the test case t be such that the input parameter s evalu-

ates to ab (space follows b), then the execution sequence E(f, t) is: S1
iS2

cS2
cS3

cS2
cS3 S4 S5 S6.

S1 S2 is one prefix of E(f, t) and S4 S5 S6 is one suffix of E(f, t). Note that there are several other

prefixes and suffixes of E(f, t). S1
iS2

cS2 S6 is a proper prefix of E(f, t).

25 Mutation operators for ANSI C

Analogous to the execution sequence for RLS(f), we define the execution sequence of RLS(S)

denoted by E(S, t) with Ep(S, t), Es(S, t), and El(S, t) corresponding to the usual interpretation.

The composition of two execution sequences E1 = pk
1 and E2 = ql

1 is pk
1 ql

1 and is written as

E1 ◦E2. The conditional composition of E1 and E2 with respect to condition c, is written as E1 |c E2.

It is defined as:

E1 |c E2 =
{

E1 if c is false,
E1 ◦ E2 otherwise.

In the above definition, condition c is assumed to be evaluated after the entire E1 has been exe-

cuted. Note that ◦ has the same effect as |true. ◦ associates from left to right and |c associates from

right to left. Thus, we have:

E1 ◦ E2 ◦ E3 = (E1 ◦ E2) ◦ E3

E1 |c1 E2 |c2 E3 = E1 |c1 (E2 |c2 E3)

E(f, ∗) (E(S, ∗)) denotes the execution sequence of function f (statement S) on the current val-

ues of all the variables used by f (S). We shall use this notation while defining execution sequences

of C functions and statements.

Let S, S1, and S2 denote a C statement other than break, continue, goto, and switch, unless

specified otherwise.. The following rules can be used to determine execution sequences for any C

function.

R 1 E({ },t) is the null sequence.

R 2 E({ }, t) ◦ E(S, t) = E(S, t) = E(S, t) ◦ E({ })

R 3

E({ }, t) |c E(S, t) =|c E(S, t) =
{

null sequence if c is false,
E(S, t) otherwise.

R 4 If S is an assignment-expression, then E(S, t) = S.

R 5 For any statement S, E(S, t) = RLS(S), if RLS(S) contains no

statements other than zero or more assignment-expressions. If RLS(S)

contains any statement other than the assignment-expression, the above

equality is not guaranteed due to the possible presence of conditional

and iterative statements.

26 Mutation operators for ANSI C

R 6 If S = S1 ; S2; then E(S, t) = E(S1, t) ◦ E(S2, ∗).

R 7 If S = while (c) S′
1, then

E(S, t) =|c (E(S′
1, ∗) ◦ E(S, ∗))

If RLS(S) = Sn
1 , n > 1, and Si = continue, 1 ≤ i ≤ n, then

E(S, t) =|c E(Si
1, ∗) ◦ (|(El(Si

1,∗) 6=continue) E(Sn
i+1, ∗)) ◦ E(S, ∗)

If RLS(S) = Sn
1 , n > 1, and Si = break, 1 ≤ i ≤ n, then

E(S, t) =|c E(Si
1, ∗) ◦ (|(El(Si

1,∗) 6=break) (E(Sn
i+1) ◦ E(S, ∗)))

R 8 If S = do S1while(c); then

E(S, t) = E(S1, t) |c E(S, ∗)

If RLS(S) contains a continue, or a break, then its execution sequence

can be derived using the method indicated for the while statement.

R 9 If S = if (c) S1, then

E(S, t) =|c E(S1, ∗).

R 10 If S = if (c) S1 else : S2, then

E(S, t) =
{

E(S1, t) if c is true,
E(S2, t) otherwise.

Example 3

Consider S3, the if statement, in F 2. We have RLS(S3) = S3 S4. Assuming the test case of the

Example on page 23 and n = 3, we get E(S3, ∗) = cS3. If n = 2, then E(S3, ∗) = cS3 S4.

Similarly, for S2, the for statement, we get E(S2, ∗) = iS2
cS2

cS3
cS2

cS3 S4. For the entire

function body, we get E(f, t) = S1 E(S2, ∗) ◦ E(S5, ∗) ◦ E(S6, ∗).

27 Mutation operators for ANSI C

8.5. Effect of An Execution Sequence

As before, let P denote the program under test, f , a function in P , to be mutated, and t a test

case. Assuming that P terminates, let Pf (t) denote the output generated by executing P on t. The

subscript f with P is to emphasize the fact that it is the function f being mutated.

We say that E(f, ∗) has a distinguishable effect on the output of P , if Pf (t) 6= Pf ′(t), where

f ′ is a mutant of f . We consider E(f, ∗) to be a distinguishing execution sequence (hereafter

abbreviated as DES) of Pf (t) with respect to f ′.

Given f and its mutant f ′, for a test case t to kill f ′, it is necessary, but not sufficient, that E(f, t)

be different from E(f ′, t). The sufficiency condition is that Pf (t) 6= Pf ′(t) implying that E(f, t) is a

DES for Pf (t) with respect to f ′.

While describing the mutant operators, we shall often use DES to indicate when a test case is

sufficient to distinguish between a program and its mutant. Examining the execution sequences of

a function, or a statement, can be useful in constructing a test case that kills a mutant.

Example 4

To illustrate the notion of the effect of an execution sequence, consider the function trim defined in

F 2. Suppose that the output of interest is the string denoted by s. If the test case t is such that s

consists of the three characters a, b, and space, in that order, then E(trim, t) generates the string

ab as the output. As this is the intended output, we consider it to be correct.

Now suppose that we modify f by mutating S4 in F 2 to continue. Denoting the modified function

by trim′, we get:

E(trim′, t) = S1
iS2

cS2
cS3

eS2
cS3

eS2
cS3 S4

eS2
cS3 S4

eS2 S5 S6

The output generated due to E(trim′, t) is different from that generated due to E(trim, t). Thus,

E(trim, t) is a DES for Ptrim(t), with respect to the function trim′.

DES’s are essential to kill mutants. To obtain a DES for a given function, a suitable test case

needs to be constructed such that E(f, t) is a DES for Pf t with respect to f ′.

8.6. Global and Local Identifier Sets

For defining variable mutations in section 11, we need the concept of global and local sets, defined

in this section, and global and local reference sets, defined in the next section.

Let f denote a C function to be mutated. An identifier denoting a variable, that can be used

inside f , but is not declared in f , is considered global to f . Let Gf denote the set of all such

28 Mutation operators for ANSI C

global identifiers for f . Note that any external identifier is in Gf unless it is also declared in f . While

computing Gf , it is assumed that all files specified in one or more # include control lines have been

included by the C pre-processor. Thus, any global declaration within the files listed in a # include,

also contributes to Gf .

Let Lf denote the set of all identifiers that are declared either as parameters of f or at the head

of its body. Identifiers denoting functions do not belong to Gf or Lf .

In C, it is possible for a function f to have nested compound statements such that an inner

compound statement S has declarations at its head. In such a situation, the global and local sets

for S can be computed using the scope rules in C.

We define GSf , GPf , GTf , and GAf as subsets of Gf which consist of, respectively, identifiers

declared as scalars, pointers to an entity, structures, and arrays. Note that these four subsets are

pairwise disjoint. Similarly, we define LSf , LPf , LTf , and LAf as the pairwise disjoint subsets of

Lf .

8.7. Global and Local Reference Sets

Use of an identifier within an expression is considered a reference. In general, a reference can be

multilevel implying that it can be composed of one or more sub-references. Thus, for example, if

ps is a pointer to a structure with components a and b, then in (∗ps).a, ps is a reference and ∗ps

and (∗ps).a are two sub-references. Further, ∗ps.a is a 3-level reference. At level 1, we have ps, at

level 2 we have (∗ps), and finally at level 3 we have (∗ps).a. Note that in C, (∗ps).a has the same

meaning as ps−>a.

The global and local reference sets consist of references at level 2 or higher. Any references

at level 1 are in the global and local sets defined earlier. We shall use GRf and LRf to denote,

respectively, the global and local reference sets for function f .

Referencing a component of an array or a structure may yield a scalar quantity. Similarly, deref-

erencing a pointer may also yield a scalar quantity. All such references are known as scalar refer-

ences. Let GRSf and LRSf denote sets of all such global and local scalar references, respectively.

If a reference is constructed from an element declared in the global scope of f , then it is a global

reference, otherwise it is a local reference.

We now define GS′
f and LS′

f by augmenting GSf and LSf as follows:

GS′
f = GRSf ∪GSf

LS′
f = LRSf ∪ LSf

29 Mutation operators for ANSI C

GS′
f and LS′

f are termed as scalar global and local reference sets for function f , respectively.

Similarly, we define array, pointer, and structure reference sets denoted by, respectively, GRAf ,

GRPf , GRTf , LRAf , LRPf , and LRTf . Using these, we can construct the augmented global and

local sets GA′
f , GP ′

f , GT ′
f , LA′

f , LP ′
f , and LT ′

f .

For example, if an array is a member of a structure, then a reference to this member is an array

reference and hence belongs to the array reference set. Similarly, if a structure is an element of an

array, then a reference to an element of this array is a structure reference and hence belongs to the

structure reference set.

On an initial examination, our definition of global and local reference sets might appear to be

ambiguous specially with respect to a pointer to an entity2. However, if fp is a pointer to some

entity, then fp is in set GRPf or LRPf depending on its place of declaration. On the other hand, if

fp is an entity of pointer(s), then it is in any one of the sets GRXf or LRXf where X could be any

one of the letters A, P, or T.

To illustrate our definitions, consider the following external declarations for function f :

int i, j; char c, d; double r, s;

int *p, *q [3];

struct point {
int x;

int y;

};

struct rect {
struct point p1;

struct point p2; F 3

};

struct rect screen;

struct key {
char * word;

int count;

} keytab [NKEYS];

The global sets corresponding to the above declarations are:
2An entity in the present context can be a scalar, an array, a structure, or a pointer.

Function references are not mutated.

30 Mutation operators for ANSI C

Gf = {i, j, c, d, r, s, p, q, screen, keytab}

GSf = {i, j, c, d, r, s}

GPf = {p}

GTf = {screen}

GAf = {q, keytab}

Note that structure components x, fy, word, and count do not belong to any global set. Type names,

such as rect and key above, are not in any global set. Further, type names do not participate in

mutation due to reasons outlined in section 6.

Now, suppose that the following declarations are within function f :

int fi; double fx; int *fp, int (*fpa) (20)

struct rect fr; struct rect *fprct;

int fa [10]; char *fname [nchar]

Then, the local sets for f are:

Lf = {fi, fx, fp, fpa, fr, fprct, fa, fname}

LAf = {fa, fname}

LPf = {fp, fpa, fprct}

LSf = {fi, fx}

LTf = {fr}

To illustrate reference sets, suppose that f contains the following references (the specific statement

context in which these references are made is of no concern for the moment):

i * j + fi

r + s - fx + fa [i]

∗p += 1

∗q [j] = *p

31 Mutation operators for ANSI C

screen.p1 = screen.p2

screen.p1.x = i

keytab [j] . count = *p

p = q [i]

fr = screen

*fname [j] = keytab [i].word

fprct = &screen

The global and local reference sets corresponding to the above references are:

GRAf = { }

GRPf = {q [i], keytab [i].word, & screen}

GRSf = {keytab [j].count, ∗p, ∗q [j], screen.p1.x}

GRTf = {keytab [i], keytab [j], screen.p1, screen.p2}

LRAf = { }

LRPf = {fname [j]}

LRSf = {∗fname[j], fa [i] }

LRTf = { }

The above sets can be used to augment the local sets.

Analogous to the global and local sets of variables, we define global and local sets of constants:

GCf and LCf . GCf is the set of all constants global to f . LCf is the set of all constants local to f .

Note that a constant can be used within a declaration or in an expression.

We define GCIf , GCRf , GCCf , and GCPf to be subsets of GCf consisting of only integer,

real, character, and pointer constants. GCPf consists of only null. LCIf , LCRf , LCCf , and

LCPf are defined similarly.

9. STATEMENT MUTATIONS

In this section we shall describe each one of the mutant operators that mutate entire statements

or their key syntactic elements. For each mutant operator, in this and subsequent sections, its

definition and the error modeled is provided. The domain of a mutant operator is described in terms

of the syntactic entity affected. While mentioning this syntactic entity we have used the grammar

32 Mutation operators for ANSI C

described in [Kern88]. An appendix provides an index for easy location of a mutant operator. This

appendix also lists the domain of all mutant operators.

Note that the operator and variable mutations described in subsequent sections, also affect

statements. However, they are not intended to model errors in the explicit composition of the

selection, iteration, and jump statements.

9.1. Trap on Statement Execution: STRP

This operator is intended to reveal unreachable code in the program.

Each statement is systematically replaced by trap on statement(). When trap on statement is ex-

ecuted, mutant execution terminates. The mutant is treated as killed. For example, consider the

following program fragment:

while (x != y)

{
if (x < y) F 4

y -= x;

else

x -= y;

}

When STRP is applied to the above statement, a total of four mutants are generated as shown in

M 3, M 4, M 5, and M 6. Test cases that kill all these four mutants are sufficient to guarantee that all

the four statements in F 4 have been executed at least once.

trap on statement(); M 3

while (x != y)

{
trap on statement(); M 4

}

while (x != y)

33 Mutation operators for ANSI C

{
if (x < y) M 5

trap on statement();

else

x -= y;

}

while (x != y)

{
if (x < y) M 6

y -= x;

else

trap on statement();

}

If STRP is used with the RAP set to include the entire program, the tester will be forced to

design test cases that guarantee that all statements have been executed. Failure to design such

a test set implies that there is some unreachable code in the program. Recall that in the popular

testing literature, such testing is often referred to as obtaining statement coverage [Howd87]

9.2. Trap on if Condition: STRI

STRI is designed to provide branch analysis for any if-statements in P . When used in addition to

the STRP, SSWM, and SMTT operators, complete branch analysis can be performed.

When applied on P , STRI generates two mutants for each if statement. For example, for the

statement: if (e)S, the two mutants generated are:

v = e

if (trap on true(v)) S M 7

v = e

if (trap on false(v)) S M 8

In the above examples, v is assumed to be a new scalar identifier not declared in P . The type of v

34 Mutation operators for ANSI C

is the same as that of e.

When trap on true (trap on false) is executed, the mutant is killed if the function argument value

is true (false). If the argument value is not true (false), then the function returns false (true) and the

mutant execution continues.

STRI encourages the tester to generate test cases so that each branch specified by a if

statement in P , is exercised at least once.

For an implementor of a mutation-based tool, it is useful to note that STRP provides partial

branch analysis for if statements. For example, consider a statement of the form: if (c) S1 else S2.

The STRP operator will have this statement replaced by the following statements to generate two

mutants:

• if (c) trap on statement() else S2

• if (c) S1 else trap on statement()

Killing both these mutants implies that both the branches of the if - else statement have been

traversed. However, when used with a if statement without an else clause, STRP may fail to

provide coverage of both the branches.

9.3. Statement Deletion: SSDL

SSDL is designed to show that each statement in P has an effect on the output. SSDL encourages

the tester to design a test set that causes all statements in the RAP to be executed and generates

outputs that are different from the program under test.

When applied on P , SSDL systematically deletes each statement in RLS(f). For example, when

SSDL is applied on F 4, four mutants are generated as shown in M 9, M 10, M 11, and M 12.

; M 9

while (x != y)

{
M 10

}

while (x != y)

{

35 Mutation operators for ANSI C

if (x < y) M 11

;

else

x -= y;

}

while (x != y)

{
if (x < y) M 12

y -= x;

else

;

}

To maintain the syntactic validity of the mutant, SSDL ensures that the semicolons are retained

when a statement is deleted. In accordance with the syntax of C, the semicolon appears only

at the end of (i) expression-statement and (ii) do-while iteration-statement. Thus, while mutat-

ing an expression-statement, SSDL deletes the optional expression from the statement, retaining

the semicolon. Similarly, while mutating a do-while iteration-statement, the semicolon that termi-

nates this statement is retained. In other cases, such as the selection-statement, the semicolon

automatically gets retained as it is not a part of the syntactic entity being mutated3.

9.4. return Statement Replacement: SRSR

When a function f executes on test case t, it is possible that due to some error in the composition

of f , certain suffixes of E(f, t) do not affect the output of P . In other words, a suffix may not be

a DES of Pf (t) with respect to f ′ obtained by replacing an element of RLS(f) by a return. The

SRSR operator models such errors.

If E(f, t) = sm
1 R, then there are m + 1 possible suffixes of E(f, t). These are shown below:

3We considered naming the statement deletion operator statement replacement by null

statement. As null statement is not a syntactic category (a non-terminal or a terminal) in C

grammar, we decided against it.

36 Mutation operators for ANSI C

s1 s2 . . . sm−1 sm R

s2 . . . sm−1 sm R

sm−1 sm R

...

R

In case f consists of loops, m could be made arbitrarily large by manipulating the test cases. The

SRSR operator creates mutants that generate a subset of all possible PMES’s of E(f, t).

Let R1, R2, . . . , Rk be the k return statements in f . If there is no such statement, a parameterless

return is assumed to be placed at the end of the text of f . Thus, for our purpose, k ≥ 1. The

SRSR operator will systematically replace each statement in RLS(f) by each one of the k return

statements. The SRSR operator encourages the tester to generate at least one test case that

ensures that Es(f, t) is a DES for the program under test.

Example 5

Consider the following function definition:

/* This is an example from p 69 of [Kern88].*/

int strindex(char s[], char t[])

{
int i, j, k ;

for (i = 0; s[i] != ‘\0’; i++){
for (j=i; k=0; t[k] != ‘\0’ && s[j] == t[k] ; j++ ; k++)

; F 5

if (k>0 && t[k] == ‘\0’)

return i;

}
return -1;

}

The above function will generate a total of six mutants, two of which are M 13 and M 14.

37 Mutation operators for ANSI C

int strindex(char s[], char t[])

{
int i, j, k ;

/* The outer for statement replaced by return i.

return i; ← /* Mutated statement. */ M 13

return -1;

}

/* This mutant has been obtained by replacing

the inner for by return -1.

int strindex(char s[], char t[])

{
int i, j, k ;

for (i = 0; s[i] != ‘\ 0’; i++){
return -1; ← /* Mutated statement. */ M 14

if (k>0 && t[k] == ‘\ 0’)

return i;

}
return -1;

}

Note that both M 13 and M 14 generate the shortest possible PMES for f .

9.5. goto Label Replacement: SGLR

In a function f , the destination of a goto may be incorrect. Altering this destination is expected to

generate an execution sequence different from E(f, t).

Suppose that goto L and goto M are two goto statements in f . We say that these are two dis-

tinct goto’s if L and M are different labels. Let goto l1, goto l2, . . ., goto ln be n distinct goto

statements in f . The SGLR operator systematically mutates label li in goto li to (n − 1) labels

l1, l2, . . . , li−1, li+1, . . . , ln. If n = 1, no mutants are generated by SGLR.

38 Mutation operators for ANSI C

9.6. continue Replacement by break: SCRB

A continue statement terminates the current iteration of the immediately surrounding loop and

initiates the next iteration. Instead of the continue, the programmer might have intended a break

that forces the loop to terminate. This is one error that SCRB models. Incorrect placement of

continue is another error that SCRB expects to reveal.

SCRB replaces the continue statement by break.

If S denotes the innermost loop that contains the continue statement, then the SCRB operator

encourages the tester to construct a test case t to show that E(S, ∗) is a DES for PS(t) with respect

to the mutated S.

9.7. break Replacement by continue: SBRC

Using break instead of a continue or misplacing a break are the two errors modeled by SBRC.

The break statement is replaced by continue. If S denotes the innermost loop containing the break

statement, then SBRC encourages the tester to construct test data t to show that E(S, t) is a DES

for PS(t) with respect to S′, where S′ is a mutant of S.

9.8. Break Out to nth Enclosing Level: SBRn

Execution of a break inside a loop forces the loop to terminate. This causes the resumption of

execution of the outer loop, if any. However, the condition that caused the execution of break, might

be intended to terminate the execution of the immediately enclosing loop, or in general, the nth

enclosing loop. This is the error modeled by SBRn.

Let a break (or a continue) statement be inside a loop nested n levels deep.4 The SBRn operator

systematically replaces break (or continue) by the function break out to level-n(j), for 2 ≤ j ≤ n.

When a SBRn mutant executes, the execution of the mutated statement causes the loop, inside

which the mutated statement is nested, and the j enclosing loops, to terminate.

Let S′ denote the loop immediately enclosing a break or a continue statement and nested

n, n > 0, levels inside the loop S in function f . The SBRn operator encourages the tester to

construct a test case t to show that Es(S, t) is a DES of f with respect to Pf (t) and the mutated

S. From the execution sequence construction rules listed in section 8.4. The exact expression for

E(S, t) can be derived for f and its mutant.

The SBRn operator has no effect on:
4A statement with only one enclosing loop is considered to be nested one level deep.

39 Mutation operators for ANSI C

• break or continue statements that are nested only one level deep.

• A break intended to terminate the execution of a switch statement. Note

that a break inside a loop nested in one of the cases of a switch, is

subject to mutation by SBRn and SBRC.

9.9. Continue Out to nth Enclosing Level: SCRn

This operator is similar to SBRn. It replaces a nested break or a continue by the function con-

tinue out to level n(j), 2 ≤ j ≤ n.

The SCRn operator has no effect on:

• break or continue statements that are nested only one level deep.

• A continue intended to terminate the execution of a switch statement.

Note that a continue inside a loop nested in one of the cases of a switch

is subject to mutation by SCRn and SCRB.

9.10. while Replacement by do-while: SWDD

Though a rare occurrence, it is possible that a while is used instead of a do-while. The SWDD

operator models this error.

The while statement is replaced by the do-while statement.

Example 6

Consider the following loop:

/* This loop is from p 69 of [Kern88]. */

while (−−lim>0 && (c=getchar()) != EOF && c !=‘\n’)

s[i++]=c; F 6

When the SWDD operator is applied, it will be mutated to the loop shown in M 15.

do {
s[i++]=c; M 15

}

40 Mutation operators for ANSI C

while (−−lim>0 && (c=getchar()) != EOF && c !=‘\n’)

9.11. do-while Replacement by while: SDWD

The do-while statement may have been used in a program when the while statement would have

been the correct choice. The SDWD operator models this error.

A do-while statement is replaced by a while statement.

Example 7

Consider the following do-while statement in P:

/* This loop is from p 64 of [Kern88].*/

do {
s [i++] = n % 10 + ‘0’; F 7

} while ((n /= 10) > 0);

It will be mutated by the SDWD operator to:

while ((n /= 10) > 0) {
s [i++] = n % 10 + ‘0’; M 16

}

Notice that the only test data that can kill the above mutant is one that sets n to 0 just before the loop

begins to execute. This test case ensures that E(S, ∗), S being the original do-while statement, is

a DES for PS(t) with respect to the mutated statement, i.e. the while statement.

9.12. Multiple Trip Trap: SMTT

For every loop in P , we would like to ensure that the loop body

• C1: has been executed more than once, and

• C2: has an effect on the output of P .

The STRP operator replaces the loop body with the trap on statement. A test case that kills such a

mutant implies that the loop body has been executed at least once. However, this does not ensure

41 Mutation operators for ANSI C

the two conditions mentioned above. The SMTT and SMTC operators are designed to ensure

C1 and C2.

The SMTT operator introduces a guard in front of the loop body. The guard is a logical function

named trap after nth loop iteration(n). When the guard is evaluated the nth time through the loop,

it kills the mutant. The value of n is decided by the tester.

Example 8

Consider the following for statement:

/* This loop is taken from p 87 of [Kern88]. */

for (i = left+1; i <= right; i++)

if (v [i] < v [left]) F 8

swap (v, ++ last, i);

Assuming that n = 2, this will be mutated by the SMTT operator to the loop in M 17.

for (i = left+1; i ≤ right; i++)

if (trap after nth loop iteration)(2){
if (v [i] < v [left]) M 17

swap (v, ++ last, i);

}

For each loop in the program under test, the SMTT operator encourages the tester to construct

a test case so that the loop is iterated at least twice.

9.13. Multiple Trip Continue: SMTC

An SMTT mutant may be killed by a test case that forces the mutated loop to be executed two

times. However, it does not ensure condition C2 mentioned earlier. The SMTC operator is de-

signed to ensure that C2 is satisfied.

SMTC introduces a guard in front of the loop body. The guard is a logical function named

false after nth loop iteration(n). During the first n iteration of the loop, false after nth loop iteration()

evaluates to true, thus letting the loop body execute. During the (n + 1)th and subsequent itera-

tions, if any, it evaluates to false. Thus, a loop mutated by SMTC will iterate as many times as the

42 Mutation operators for ANSI C

loop condition demands. However, the loop body will not be executed during the second and any

subsequent iterations.

Example 9

The loop in F 8 will be mutated by the SMTC operator to the loop in M 18.

for (i = left+1; i ≤ right; i++)

if (false after nth loop iteration()){
if (v [i] < v [left]) M 18

swap (v, ++ last, i);

}

The SMTC operator may generate mutants containing infinite loops. This is specially true when

the execution of the loop body affects one or more variables used in the loop condition.

For a function f , and each loop S in the RAP(f), SMTC encourages the tester to construct

a test case t which causes the loop to be executed more than once such that E(f, t) is a DES of

Pf (t) with respect to the mutated loop. Note that SMTC is stronger than SMTT. This implies that

a test case that kills an SMTC mutant for statement S, will also kill the SMTT mutant of S.

9.14. Sequence Operator Mutation: SSOM

Use of the comma operator results in the left to right evaluation of a sequence of expressions and

forces the value of the rightmost expression to be the result. For example, in the statement

f (a, (b=1, b+2), c);

function f has three parameters. The second one has the value 3. The programmer may use the

wrong sequence of expressions thereby forcing the incorrect value to be the result. The SSOM

operator is designed to model this error.

Let e1, e2, . . . , en denote an expression consisting of a sequence of n sub-expressions5 separated

by the comma operator. The SSOM operator generates (n − 1) mutants of this expression by

rotating left the sequence one sub-expression at a time.
5According to the syntax of C, each ei can be an assignment-expression.

43 Mutation operators for ANSI C

Example 10

Consider the following statement:

/* This loop is taken from p 63 of [Kern88]. */

for (i = 0, j = strlen(s) - 1; i < j; i ++, j - -) F 9

c = s [i], s [i] = s [j], s [j] = c;

When the SSOM operator is applied on the body of the above loop, two mutants are generated.

These are:

for (i = 0, j = strlen(s) - 1; i < j; i ++, j - -)

/* One left rotation generates this mutant. */ M 19

s [i] = s [j], s [j] = c, c = s [i];

for (i =0, j = strlen(s) -1; i < j; i ++, j - -)

/* Another left rotation generates this mutant. */ M 20

s [j] = c, c = s [i], s [i] = s [j];

When SSOM is applied on the for statement in the above program, it generates two more mutants,

one by mutating the expression (i = 0, j=strlen(s)-1) to (j = strlen (s) - 1 , i = 0), and the other by

mutating the expression (i++, j−−) to (j−−, i++).

The SSOM operator is likely to generate several mutants that are equivalent to P . The mutants,

generated by mutating the expressions in the for statement in the above example, are equivalent.

In general, if the sub-expressions do not depend on each other then the mutants generated will be

equivalent to P .

9.15. Move Brace Up or Down: SMVB

The closing brace (}) is used in C to indicate the end of a compound statement. It is possible for a

programmer to incorrectly place the closing brace thereby including, or excluding, some statements

within a compound statement. The SMVB operator models this error.

44 Mutation operators for ANSI C

A statement immediately following the loop body is pushed inside the body. This corresponds to

moving the closing brace down by one statement. The last statement inside the loop body is pushed

out of the body. This corresponds to moving the closing brace up by one statement. A compound

statement consisting of only one statement may not have explicit braces surrounding it. However,

the beginning of a compound statement is considered to have an implied opening brace and the

semicolon at its end is considered to be an implied closing brace6.

Example 11

Consider the function in F 2. When mutated using the SMVB operator, it generates mutants M 21

and M 22.

/* This is a mutant generated by SMVB. In this one,

the for loop body extends to include the s [n+1] = ’\0’ statement. */

int trim (char s [])

{
int n;

for (n = strlen(s)-1; n >= 0; n- -) { M 21

if (s [n] != ’ ’ && s [n] != ’\t’ && s [n] != ’\n’)

break;

s [n+1] = ’\0’;

}
return n;

}

/* This is another mutant generated by SMVB.

In this one the for loop body becomes empty. */

int trim (char s [])

{
int n;

for (n = strlen(s)-1; n >= 0; n- -); M 22

6To be precise, the semicolon at the end of the statement inside the loop body, is considered

as a semicolon followed by a closing brace.

45 Mutation operators for ANSI C

if (s [n] != ’ ’ && s [n] != ’\t’ && s [n] != ’\n’)

break;

s [n+1] = ’\0’;

return n;

}

In certain cases moving the brace may include, or exclude, a large piece of code. For example,

suppose that a while loop with a substantial amount of code in its body, follows the closing brace.

Moving the brace down will cause the entire while loop to be moved into the loop body being

mutated. A C programmer is not likely to make such an error. However, there is a high probability

of such a mutant being is killed.

9.16. Switch Statement Mutation: SSWM

Errors in the formulation of the cases in a switch statement are modeled by SSWM.

The expression e in the switch statement is replaced by the trap on case function. The input

to this function is a condition formulated as e = a, where a is one of the case labels in the switch

body. This generates a total of n mutants of a switch statement assuming that there are n case

labels. In addition, one mutant is generated with the input condition for trap on case set to e = d,

where d is computed as:

d = e! = c1&&e! = c2&& . . . e! = cn

The next example exhibits some mutants generated by SSWM.

Example 12

Consider the following program fragment:

/* This fragment is from a program on p59 of [Kern88].

switch(c) {
case ’0’: case ’1’: case ’2’: case ’3’:case ’4’: case ’5’:

case ’6’:case ’7’:case ’8’:case ’9’:

ndigit[c - ’0’]++;

break;

46 Mutation operators for ANSI C

case ’ ’:

case ’\n’:

case ’\t’: F 10

nwhite++;

break;

default:

nother++;

break;

}

The SSWM operator will generate a total of 14 mutants for F 10. Two of them appear in M 23 and

M 24.

switch(trap on case(c,’0’)) {
case ’0’: case ’1’: case ’2’: case ’3’:case ’4’: case ’5’:

case ’6’:case ’7’:case ’8’:case ’9’:

ndigit[c - ’0’]++;

break;

case ’ ’:

case ’\n’:

case ’\t’: M 23

nwhite++;

break;

default:

nother++;

break

}

47 Mutation operators for ANSI C

c’=c; /* This is to ensure that side effects in c occur once. */

d = c’!= ’0’ && c’!= ’1’ && c’!= ’3’ && c’!= ’4’ && c’!= ’5’ &&

c’!= ’6’ && c’!= ’7’ && c’!= ’8’ && c’!= ’9’ && c’!= ’\n’ && c’!= ’\t’;

switch(trap on case(c’, d)) {
...

/* switch body is the same as that in M 23. */ M 24
...

}

A test set that kills all mutants generated by SSWM ensures that all cases, including the default

case, have been covered. We refer to this coverage as case coverage. It is important to point out

that the STRP operator may not provide case coverage especially when there is fall through code

in the switch body. This also implies that some of the mutants generated when STRP mutates the

cases in a switch body, may be equivalent to those generated by SSWM.

Example 13

Consider the following program fragment:

/* This is an example of fall thorough code. */

switch (c) {
case ’\n’:

if (n == 1) {
n−−;

break; F 11

}
putc(’\n’);

case ’\r’:

putc(’\r’);

break;

}

48 Mutation operators for ANSI C

One of the mutants generated by STRP when applied on F 11 will have the putc(’\r’) in the second

case replaced by trap on statement(). A test case that forces the expression c to evaluate to ‘\n’

and n evaluate to any value not equal to 1, is sufficient to kill such a mutant. On the contrary, an

SSWM mutant will encourage the tester to construct a test case that forces the value of c to be

’\r’.

It may, however, be noted that both the STRP and the SSWM serve different purposes when

applied on the switch statement. Whereas SSWM mutants are designed to provide case cover-

age, mutants generated when STRP is applied to a switch statement, are designed to provide

statement coverage within the switch body.

10. OPERATOR MUTATIONS

C provides a variety of operators for use in different contexts. For the purpose of defining mutant

operators7, the C operators are classified as shown in Table 3. This table lists sets of C operators

used later as the domain and range of different mutant operators. The Code column in this table

lists the single letter codes that are used in the name of a mutant operator. The context of their use

enables the differentiation amongst categories with identical codes. Fig. 8 shows all the contexts.

In this section we describe the mutant operators that are designed to model errors in the use of

C operators. These mutant operators are classified as shown in Fig. 7.

The design of operator level mutations was guided by the following facts:

• In C, operators belonging to one category can be used in a variety of

contexts. For example, there is no entity such as an arithmetic expression

within which only the arithmetic operators can be used. Thus, within an

expression that computes arithmetic values, one could as well use logical

operators. For example, for two integers a and b, both a+b and a&&b are

valid expressions that compute integers8.

• It is possible to group all the C operators in one set and define one mu-

tant operator with respect to this set. There are two problems with this

approach: (a) a large number of mutants will be generated whenever

such a mutant operator is enabled and (b) the user will not have the flex-

ibility of selectively mutating the C operators. Hence, this approach was
7In this section, we use the word operator to refer to the operators in C and also to mutant

operators. Hence the prefix C or mutant is used to avoid any ambiguity.
8Note that this is not true in some other languages such as Pascal.

49 Mutation operators for ANSI C

Table 3: Classification of Binary Operators in C

Type Category Operators Code¶

Non-assignment

Arithmetic + – * / % A

Bitwise | & ˜ B

Logical ‖ && L

Shift << >> S

Relational < > <= >= == != R

Assignment

Arithmetic *= /= %= += –= A

Bitwise &= ˆ= |= B

Plain = E

Shift <<= >>= S

¶ Any ambiguities in the use of these codes are resolved from the context.

rejected. We have classified the mutant operators so that the user has

the maximum flexibility in their selection.

10.1. Binary Operator Mutations: Obom

The incorrect choice of a binary C-operator within an expression is the error modeled by this mutant

operator.

Obom is a mutant operator category. Figure 8 shows the classification of Obom. As shown,

Obom can be subdivided into mutant operators that belong to the two subcategories: Compara-

ble Operator Replacement (Ocor) and Incomparable Operator Replacement (Oior). Within each

subcategory, the mutant operators correspond to either the non-assignment or to the assignment

operators in C.

Each mutant operator, belonging to the Obom category, systematically replaces a C operator in its

domain by operators in its range. The domain and range for all the mutant operators in the Obom

category are specified in Tables 4, 5, and 6. These tables also provide one example illustrating each

mutant operator. In certain contexts, only a subset of arithmetic operators is used. For example, it

is illegal to add two pointers, though a pointer may be subtracted from another. All mutant operators

that mutate C-operators, are assumed to recognize such exceptional cases to retain the syntactic

validity of the mutant.

50 Mutation operators for ANSI C

srotarepO C rof srotarepO tnatuM

rotarepO yraniB
tnemecalpeR

nrobO

rotarepOyrainU
tnemecalpeR

nrouO

 elbarapmoC
tnemecalpeR rotarepO

rocO

elbarapmocnI
tnemecalpeR rotarepO

roiO

tnemerceD/tnemercnI
tnemecalpeR

odiO

evitageN
srotarepO

genO

noitceridnI
noitarepO
noitatuM

MIPO

rotarepO tsaC
tnemecalpeR

MOCO

non
tnemngissa tnemngissa

non
tnemngissa tnemngissa

lacigol
noitagen

GNLO

esiwtib
noitagen

GNBO

noitidnoc
noitagen

GNCO

Figure 7: Mutant operators for C operators.

10.2. Unary Operator Mutations: Ouor

Mutations in this subcategory consist of mutant operators that model errors in the use of unary

operators and conditions. Ouor is further subdivided into five subcategories described below.

10.2.1. Increment/Decrement: Oido

The ++ and - - operators are used frequently in C programs. The OPPO and OMMO mutant

operators model the errors that arise from the incorrect use of these C operators. The incorrect

uses modeled are: (a) ++ (or - -) used instead of - - (or ++) and (b) prefix increment (decrement)

used instead of postfix increment (decrement).

The OPPO operator generates two mutants. An expression such as ++x is mutated to x++ and

- -x. An expression such as x++, will be mutated to ++x and x- -. The OMMO operator behaves

similarly. It mutates - -x to x- - and ++x. It also mutates x- - to - -x and x++. Both the operators will

51 Mutation operators for ANSI C

tnemecalpeR rotarepO yraniB

mobO

rotarepO elbarapmoC
tnemecalpeR

rocO

rotarepO elbarapmocnI
tnemecalpeR

roiO

epyt tnemngissa-noN
NAAO
NBBO
NLLO
NRRO
NSSO

epyt tnemngissA
AAAO
ABBO
ASSO

epyt tnemngissa-noN
NBAO
NLAO
NRAO
NSAO
NABO
NLBO
NRBO
NSBO
NALO
NBLO
NRLO
NSLO
NARO
NBRO
NLRO
NSRO
NASO
NBSO
NLSO
NRSO

epyt tnemngissA
ABAO
AEAO
ASAO
AABO
AEBO
ASBO
AAEO
ABEO
ASEO
AASO
ABSO
AESO

Figure 8: Binary operator mutation operator.

not mutate an expression if its value is not used. For example, an expression such as i++ in a for

header will not be mutated, thereby avoiding the creation of an equivalent mutant. An expression

such as *x++ will be mutated to *++x and *x- -.

10.2.2. Logical Negation: OLNG

Often, the sense of the condition used in iterative and selective statements is reversed. OLNG

models this error.

Consider the expression x op y, where op can be any one of the two logical operators: && and ‖.
OLNG will generate three mutants of such an expression as follows: x op ! y, !x op y, and !(x op y).

52 Mutation operators for ANSI C

Table 4: Domain and Range of Mutant Operators in Ocor

Name Domain Range Example

OAAA Arithmetic assignment Arithmetic assignment a+= b → a -= b

OAAN Arithmetic Arithmetic a +b → a * b

OBBA Bitwise assignment Bitwise assignment a &= b → a|= b

OBBN Bitwise Bitwise a & b → a| b

OLLN Logical Logical a && b → a ‖b
ORRN Relational Relational a < b → a <= b

OSSA Shift assignment Shift assignment a <<= b → a >>= b

OSSN Shift Shift a << b → a>> b

† Read X → Y as ‘X gets mutated to Y’.

10.2.3. Logical context negation: OCNG

In selective and iterative statements, excluding the switch, often the sense of the controlling con-

dition is reversed. OCNG models this error.

The controlling condition in the iterative and selection statements is negated. The following are

illustrative examples:

if (expression) statement → if (! expression) statement

if (expression) statement else statement → if (! expression) statement else
statement

while (expression) statement → while (! expression) statement

do statement while (expression) → do statement while (! expression)

for (expression; expression; expression) statement → for (expression; ! expression,
expression) statement

expression ? expression : conditional expression → !expression ? expression :
conditional expression

OCNG may generate mutants with infinite loops when applied on an iteration statement. Fur-

ther, it may also generate mutants generated by OLNG. Note that a condition such as (x<y) in an

if statement will not be mutated by OLNG. However, the condition ((x<y&&p>q) will be mutated

by both OLNG and OCNG to (!(x<y)&&(p>q)).

53 Mutation operators for ANSI C

Table 5: Domain and Range of Mutant Operators in Oior

Name Domain Range Example

OABA Arithmetic assignment Bitwise assignment a += b → a |= b

OAEA Arithmetic assignment Plain assignment a += b → a = b

OABN Arithmetic Bitwise a + b → a & b

OALN Arithmetic Logical a + b → a && b

OARN Arithmetic Relational a + b → a < b

OASA Arithmetic assignment Shift assignment a += b → a <<= b

OASN Arithmetic Shift a + b → a << b

OBAA Bitwise assignment Arithmetic assignment a |= b → a += b

OBAN Bitwise Arithmetic a & b → a + b

OBEA Bitwise assignment Plain assignment a &= b → a =b

OBLN Bitwise Logical a & b → a && b

OBRN Bitwise Relational a & b → a < b

OBSA Bitwise assignment Shift assignment a &= b → a <<= b

OBSN Bitwise Shift a & b → a << b

OEAA Plain assignment Arithmetic assignment a = b → a += b

OEBA Plain assignment Bitwise assignment a =b → a &= b

† Read X → Y as ‘X gets mutated to Y’.

10.2.4. Bitwise Negation: OBNG

The sense of the bitwise expressions may often be reversed. Thus, instead of using (or not using)

the one’s complement operator, the programmer may not use (or may use) the bitwise negation

operator. The OBNG operator models this error.

Consider an expression of the form x op y, where op is one of the bitwise operators: | and &. The

OBNG operator mutates this expression to: x op ˜ y, ˜x op y, and (̃x op y). OBNG does not

consider the iterative and conditional operators as special cases. Thus, for example, a statement

such as if (x && a | b) p = q will get mutated to the following statements by OBNG:

if (x && a |˜b) p = q

if (x &&˜a | b) p = q

if (x &&˜(a | b)) p = q

54 Mutation operators for ANSI C

Table 6: Domain and Range of Mutant Operators in Oior (continued).

Name Domain Range Example

OESA Plain assignment Shift assignment a = b → a <<= b

OLAN Logical Arithmetic a && b → a + b

OLBN Logical Bitwise a && b → a & b

OLRN Logical Relational a && b → a < b

OLSN Logical Shift a && b → a << b

ORAN Relational Arithmetic a < b → a + b

ORBN Relational Bitwise a < b → a & b

ORLN Relational Logical a < b → a && b

ORSN Relational Shift a < b → a << b

OSAA Shift assignment Arithmetic assignment a <<= b → a += b

OSAN Shift Arithmetic a<< b → a + b

OSBA Shift assignment Bitwise assignment a << b → a |= b

OSBN Shift Bitwise a << b → a & b

OSEA Shift assignment Plain assignment a <<= b → a = b

OSLN Shift Logical a << b → a && b

OSRN Shift Relational a << b → a < b

† Read X → Y as ‘X gets mutated to Y’.

10.2.5. Indirection Operator Precedence Mutation: OIPM

Expressions constructed using a combination of ++, - -, and the indirection operator (*), can often

contain precedence errors. For example, using *p++ when (*p)++ was meant, is one such error.

OIPM operator models such errors.

OIPM mutates a reference of the form ∗x op to (∗x) op and op (∗x), where op can be ++ and - -.

Recall that in C, ∗x op implies ∗ (x op). If op is of the form [y], then only (∗x) op is generated. For

example, a reference such as ∗x[p] will be mutated to (*x)[p].

The above definition is for the case when only one indirection operator has been used to form the

reference. In general, there could be several indirection operators used in formulating a reference.

For example, if x is declared as int *** x, then *** x ++ is a valid reference in C. A more general

definition of OIPM takes care of this case.

Consider the following reference:

∗ ∗ . . . ∗︸ ︷︷ ︸
n

x op

55 Mutation operators for ANSI C

OIPM will systematically mutate the above reference to the following references:

∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

(∗x) op

∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

op (∗x)

∗ ∗ . . . ∗︸ ︷︷ ︸
n−2

(∗ ∗ x) op

∗ ∗ . . . ∗︸ ︷︷ ︸
n−2

op (∗ ∗ x)

...
...

...

∗ (∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

x) op

∗ op (∗ ∗ . . . ∗︸ ︷︷ ︸
n−1

x)

(∗ ∗ . . . ∗︸ ︷︷ ︸
n

x) op

op (∗ ∗ . . . ∗︸ ︷︷ ︸
n

x)

Multiple indirection operators are used infrequently. Hence, in most cases, we expect OIPM to

generate two mutants for each reference involving the indirection operator.

10.2.6. Cast operator replacement: OCOR

A cast operator, referred to as cast, is used to explicitly indicate the type of an operand. Errors in

such usage are modeled by OCOR.

Every occurrence of a cast operator is mutated by OCOR. Casts are mutated in accordance

with the restrictions listed below. These restrictions are derived from the rules of C as specified

in [Kern88]. While reading the cast mutations described below, ↔ may be read as ‘gets mutated

to’. All entities to the left of↔ get mutated to the entities on its right, and vice-versa. The notation

X∗ can be read as ‘X and all mutations of X excluding duplicates’.

char ↔ signed char unsigned char

int∗ float∗

int ↔ signed int unsigned int

56 Mutation operators for ANSI C

short int long int

signed long int signed long int

float∗ char∗

float ↔ double long double

int∗ char∗

double↔ char∗ int∗

float∗

Example 14

Consider the statement:

return (unsigned int) (next/65536) % 32768

Sample mutants generated when OCOR is applied to the above statement are shown below.

short int long int

float double

Note that cast operators other than those described in this section, are not mutated. For exam-

ple, the casts in the following statement are not mutated:

qsort((void **) lineptr, 0, nlines-1, (int(*) (void*, void*))(numeric ? numcmp :strcmp))

The decision not to mutate certain casts was motivated by their infrequent use and the low prob-

ability of an error that could be modeled by mutation. For example, a cast such as void ** is not

used very often and when it is used the chances of it being mistaken for, say, an int, are low.

11. VARIABLE MUTATIONS

Incorrect use of identifiers can often induce program errors that remain unnoticed for quite long.

Variable mutations are designed to model such errors. Fig. 9 shows the subcategories of mutant

operators in the variable mutations category. The classification ensures that syntactically correct

mutants are generated. It also enables the tester to control the generation of mutants. Table 7 lists

the domains of all variable mutation operators.

57 Mutation operators for ANSI C

elbairav ralacS
tnemecalper ecivreS

rrsO

ecnerefer yarrA
tnemecalper

rraO

ecnerefer erutcurtS
tnemecalper

rriO

ecnerefer retnioP
tnemecalper

rrpO

tnenopmoc erutcurtS
tnemecalpeR

RCSV

ecnerefer yarrA
tnemecalper tpircsbuS

MSAV

snoitatuM elbairaV

RSLV RSGV RALV RAGV RTLV RTGV RPLV RPGV

Figure 9: Classification of variable mutations.

11.1. Scalar Variable Reference Replacement: Vsrr

Use of a wrong scalar variable is the error modeled by Vsrr.

Vsrr is a set of two mutant operators: VGSR and VLSR. VGSR mutates all scalar variable

references by using GS′
f as the range. VLSR mutates all scalar variable references by using LS′

f

as the range of the mutant operator. Types are ignored during scalar variable replacement. For

example, if i is an integer and x a real, i will be replaced by x and vice versa.

Entire scalar references are mutated. For example, if screen is as declared above, and screen.p1.x

is a reference, then the entire reference, i.e. screen.p1.x will be mutated. p1 or x, will not be mu-

tated separately by any one of these two operators. The individual components of a structure may

be mutated by the VSCR operator. screen itself may9 be mutated by one of the Vtrr operators.

Similarly, in a reference such as ∗p, for p as declared above, ∗p will be mutated. p alone may be mu-

tated by one of the Vprr operators. As another example, the entire reference q [i] will be mutated,

q itself may be mutated by one of the Varr operators.

11.2. Array Reference Replacement: Varr

Incorrect use of an array variable is the error modeled by Varr.

Varr is a set of two mutant operators: VGAR and VLAR. These operators mutate an array
9We often say that an entity x may be mutated by an operator. This implies that there

may be no other entity y to which x can be mutated.

58 Mutation operators for ANSI C

Table 7: Domain of Mutant Operators in Variable Mutations Category

Operator or Meaning Domain
subcategory

Varr Mutate array references Arrays in expressions
Vprr Mutate pointer references Pointers in expressions
Vsrr Subcategory of mutant operators

to mutate scalars
Scalar variables in an
expression

Vtrr Mutate structure references Structures in expressions
VASM Mutate subscripts in array refer-

ences
Array subscripts

VSCR Mutate components of a struc-
ture

Structure components
within expression

reference in function f using, respectively, the sets GA′
f and LA′

f . Types10 are preserved while

mutating array references. Thus, if a and b are, respectively, arrays of integers and pointers to

integers, a will not be replaced by b and vice-versa.

11.3. Structure Reference Replacement: Vtrr

Incorrect use of a variable of type structure, is the error modeled by Vtrr.

Vtrr is a set of two mutant operators: VGTR and VLTR. These operators mutate a structure

reference in function f using, respectively, the sets GT ′
f and LT ′

f . Types are preserved while

mutating structures. For example, if s and t denote two structures of different types11, then s will

not be replaced by t and vice-versa.

11.4. Pointer Reference Replacement: Vprr

Incorrect use of a pointer variable is the error modeled by Vprr.

Vprr is a set of two mutant operators: VGPR and VLPR. These operators mutate a pointer

reference in function f using, respectively, the sets GP ′
f and LP ′

f . Types are preserved while

performing mutation. For example, if p and q are pointers to an integer and structure, respectively,
10We assume name equivalence of types as defined in C.
11We assume name equivalence for types as in C.

59 Mutation operators for ANSI C

then p will not be replaced by q, or vice-versa.

11.5. Structure Component Replacement: VSCR

Often one may use the wrong component of a structure. VSCR models such errors12.

Let s be a variable of some structure type. Let s.c1.c2cn be a reference to one of its components

declared at level n within the structure. ci, 1 ≤ i ≤ n denotes an identifier declared at level i within s.

VSCR systematically mutates each identifier at level i, by all the other type compatible identifiers

at the same level.

As an example, consider the following structure:

struct example {
int x;

int y;

char c; F 12

int d [10];

}

struct example s, r;

The reference s.x will be mutated to s.y and s.c by VSCR. Another reference s.d [j] will be mutated

to s.x, s.y, and s.c. Note that the reference to s itself will be mutated to r by one of the Vsrr

operators.

Next, suppose that we have a pointer to example declared as:

struct example *p;

A reference such as p−>x will be mutated to p−>y and p−>c.

Now, consider the following recursive structure:

struct tnode {
char *word;

12Structure refers to data elements declared using the struct type specifier.

60 Mutation operators for ANSI C

int count;

struct tnode *left;

struct tnode *right; F 13

}

struct tnode *q;

A reference such as q−>left will be mutated to q−>right. Note that left, or any field of a structure,

will not be mutated by any of the Vsrr operators. This is because a field of a structure does not

belong to any of the global or local sets, or reference sets, defined earlier. Also, a reference such

as q−>count will not be mutated by VSCR because there is no other compatible field in F 13.

11.6. Array reference subscript mutation: VASM

While referencing an element of a multidimensional array, the order of the subscripts may be incor-

rectly specified. VASM models this error.

Let a denote an n-dimensional array, n > 1. A reference such as:

a [e1][e2] . . . [en]

with ei, 1 ≤ i ≤ n denoting a subscript expression, will be mutated by rotating the subscript list.

Thus, the above reference generates the following (n− 1) mutants when VASM is applied:

a [en] [e1] . . . [en−2] [en−1]

a [en−1] [en] . . . [en−3] [en−2]
...

a [e2] [e3] . . . [en] [e1]

11.7. Domain Traps: VDTR

Statements containing scalar references are affected. VDTR provides domain coverage for scalar

variables. The domain is partitioned into three subdomains: negative values, zero, and positive

values.

VDTR mutates each scalar reference x of type t in an expression, by f(x), where f could be one

of the several functions shown in Table 8. Note that all functions listed in Table 8 for a type t are

61 Mutation operators for ANSI C

applied on x. When any of these functions is executed, the mutant is killed. Thus, if i, j, and k are

pointers to integers, then the statement:

∗i = ∗j + ∗k + +

will be mutated by VDTR to:

∗ i = trap on zero integer(∗j) + ∗k + +

∗ i = trap on positive integer(∗j) + ∗k + +

∗ i = trap on negative integer(∗j) + ∗k + +

∗ i = ∗j + trap on zero integer(∗k + +)

∗ i = ∗j + trap on positive integer(∗k + +)

∗ i = ∗j + trap on negative integer(∗k + +)

∗ i = trap on zero integer(∗j + ∗k + +)

∗ i = trap on positive integer(∗j + ∗k + +)

∗ i = trap on negative integer(∗j + ∗k + +)

In the above example, ∗k++ is a reference to a scalar, therefore the trap function has been applied

to the entire reference. Instead, if the reference was (*k)++, then the mutation would be f(∗k) + +,

f being any of the relevant functions.

11.8. Twiddle Mutations: VTWD

Values of variables or expressions can often be off the desired value by ±1. The twiddle muta-

tions model such errors. Twiddle mutations are useful for checking boundary conditions for scalar

variables.

Each scalar reference x is replaced by pred(x) and succ(x), where pred and succ return, respec-

tively, the immediate predecessor and the immediate successor of the current value of the argu-

ment. When applied on a real argument, a small value is added (by succ) to or subtracted (by

pred) from the argument. This value can be user defined, such as ±.01, or may default to an

implementation defined value.

62 Mutation operators for ANSI C

Table 8: Functions Used by the VDTR Operator

Function † Description

introduced

trap on negative x Mutant killed if argument is negative, else return argument value.

trap on positive x Mutant killed if argument is positive, else return argument value.

trap on zero x Mutant killed if argument is zero, else return argument value.

† x can be integer, real, or double. It is integer if the argument type is int, short, signed,

or char. It is real if the argument type is float. It is double if the argument is of type

double or long.

Example 15

Consider the assignment:

p = a + b

Assuming that p, a, and b are integers, VTWD will generate the two mutants shown below.

p = a + b + 1

p = a + b− 1

Pointer variables are not mutated. However, a scalar reference constructed using a pointer is

mutated as defined above. For example, if p is a pointer to an integer, then ∗p will be mutated.

Some mutants may cause overflow or underflow errors implying that they are killed.

12. CONSTANT MUTATIONS

In this section we define mutant operators related to the use of constants. These operators model

coincidental correctness and, in this sense, are similar to scalar variable replacement operators.

12.1. Required Constant Replacement: CRCR

Let I and R denote, respectively, the sets {0, 1, -1, ui} and {0.0, 1.0, -1.0, ur}. ui and ur denote

user specified integer and real constants, respectively. Use of a variable where an element of I or

63 Mutation operators for ANSI C

R was the correct choice, is the error modeled by CRCR.

Each scalar reference is replaced systematically by elements of I or R. If the scalar reference is

integral, I is used. For references that are of type floating13, R is used. Reference to an entity via a

pointer is replaced by null. Left operands of assignment operators, ++, and −− are not mutated.

Example 16

Consider the statement:

k = j + ∗p

where k and j are integers and p is a pointer to an integer. When applied on the above statement,

CRCR will generate the mutants given below.

k = 0 + *p

k = 1 + *p

k = 1 + *p M 25

k = ui + *p

k = j +null

A CRCR mutant encourages a tester to design at least one test case that forces the variable

replaced to take on values other than from the set I or R. Thus, such a mutant attempts to overcome

coincidental correctness of P .

12.2. Constant for Constant Replacement: Cccr

Just as a programmer may mistakenly use one identifier for another, a possibility exists that one

may use a constant for another. Mutant operators in the Cccr category model such errors.

Cccr is a set of two mutant operators: CGCR and CLCR. CGCR and CLCR mutate constants

in f using, respectively, the sets GCf and LCf .

Example 17

Suppose that a constant 5 appears in an expression, and GCf = {0, 1.99,′ c′}, then 5 will be

mutated to 0, 1.99, and ′c′ thereby producing three mutants.
13The terms integral and floating have the same meaning as in [Kern88].

64 Mutation operators for ANSI C

Pointer constant, null, is not mutated. Left operands of assignment, ++, and −− operators are

also not mutated.

12.3. Constant for Scalar Replacement: Ccsr

Use of a scalar variable, instead of a constant, is the error modeled by mutant operators in the Ccsr

category.

Ccsr is a set of two mutant operators: CGSR and CLSR. CGSR mutates all occurrences of

scalar variables or scalar references by constants from the set GCf . CLSR is similar to CGSR

except that it uses LCf for mutation. Left operands of assignment, ++, and −− operators are not

mutated.

13. COMPARISON OF MUTANT OPERATORS FOR C

AND FORTRAN 77

C has a total of 77 mutant operators as compared to 22 for Fortran 77. The following differences

between the two languages have been largely responsible for the complexity of the mutant operator

set of C:

1. C has more primitive types than Fortran 77. Further, types in C can be

mixed in a variety of combinations. This has resulted in a large number

of Obom operators.

2. The statement structure of C is recursive. Fortran 77 has single line state-

ments. Though this has not resulted in more operators being defined for

C it has, however, made the definition of operators such as SSDL and

SRSR significantly different from the definition of the corresponding op-

erators in Fortran 77.

3. Scalar references in C can be constructed non-trivially using functions,

pointers, structures, and arrays. In Fortran 77, only functions and arrays

can be used to construct scalar references. This has resulted in opera-

tors like the VSCR and several others in the Vsrr category. Note that

in Fortran 77, SVR is one operator whereas in C, it is a set of several

operators.

65 Mutation operators for ANSI C

4. C has a comma operator not in Fortran 77. This has resulted in the

SSOM operator.

5. All iterations, or the current iteration, of a loop can be terminated in C

using, respectively, the break and continue statements. Fortran 77 pro-

vides no such facility. This has resulted in additional mutant operators

such as SBRC, SCRB, and SBRn.

Table 9 lists all the Fortran 77 mutant operators and the corresponding semantically nearest C

mutant operator or category.

Table 9: A Comparison of Fortran 77 and C Mutant Operators

Fortran 77 Description Semantically nearest

operator C operator/category

AAR Array reference for array reference Vsrr

ABS Absolute value insertion VDTR

ACR Array reference for constant replace-

ment

Vsrr

AOR Arithmetic operator replacement OAAN

ASR Array reference for scalar variable re-

placement

Vsrr

CAR Constant for array reference replace-

ment

Ccsr

CNR Comparable array name replacement Vsrr

CRP Constant replacement CRCR

CSR Constant for scalar replacement Ccsr

DER DO statement END replacement OTT

DSA DATA statement alterations None

GLR GOTO label replacement SGLR

LCR Logical connector replacement OBBN

ROR Relational operator replacement ORRN

RSR Return statement replacement SRSR

SAN Statement Analysis STRP

SAR Scalar variable for array reference re-

placement

Vsrr

SCR Scalar for constant replacement Vsrr

SDL Statment deletion SSDL

SRC Source constant replacement CRCR

SVR Scalar variable replacement Vsrr

UOI Unary operator insertion OLNG, VTWD

66 Mutation operators for ANSI C

14. FUTURE WORK

Currently a system for mutating C programs is under development. When completed, this system

will be a part of the software testing environment. To speed up the testing process, we have

resorted to object level mutation and parallel computing. Object level mutation lets the compiler

apply mutation operators so that the object code of the mutants is obtained which can then be

executed by the hardware. Parallel machines, such as the Alliant FX/80 and the Ncube/7, have been

used for executing a large number of mutants in parallel. The design of an advanced debugger is

also underway. This debugger is expected to help the tester in program debugging in co-operation

with the mutation based test tool. We expect that these approaches will help make mutation based

software testing for C programs a practically viable technique.

15. Proteum/C

A group of researchers headed by Professor Josè Maldonado at the University of Saõ Paulo, Saõ

Carlos, Brazil, has developed a tool named Proteum/C that incorporates the mutation operators

described in this report [Dela93, Dela97, MADEL96]. For availability of Proteum/C, send mail to

Professor Josè Maldonado (jcmaldon@icmc.usp.br).

ACKNOWLEDGEMENTS

Thanks to Elizabeth Northern and Connie Wilson for preparing all the figures in this report and to

Professors Josè Maldonado and Marcio Delamaro for sharing with us a copy of Proteum/C.

References

[DeMi79] A.T. Acree, R.A. DeMillo, T.A. Budd and F.G. Sayward, “Mutation

Analysis,” Technical Report, GIT-ICS-79/08, Georgia Institute of

Technology, Atlanta, GA 30332, 1979.

[Basi84] V.R. Basili and B.T. Perricone, “Software errors and complexity,”

Comm. ACM, vol. 27, no. 1, pp. 42-52, Jan. 1984.

[Budd78] T. A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “The de-

sign of a prototype mutation system for program testing,” Proceed-

ings NCC 1978, 1978, Alexandria, Va, 1978.

67 Mutation operators for ANSI C

[Budd80] T. A. Budd, R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Theo-

retical and empirical studies on using program mutation to test the

functional correctness of programs,” Proceedings of the 7th ACM

Symposium on Principles of Programming Languages,Las Vegas,

1980.

[DeMi88] B.J. Choi, R. A. DeMillo, E.W. Krauser, A.P. Mathur, R.J. Martin,

A.J. Ofutt, H. Pan, and E.H. Spafford, “The Mothra Toolset,” Pro-

ceedings of Hawaii International Conference on System Sciences,

Hawaii, January 3-6, 1989.

[Dela93] M. E. Delamaro, Proteum - A Mutation Analysis Based Testing

Environment, Masters Thesis, Institute for Computing and Math-

ematical Sciences, University of Saõ Paõo at Saõ Carlos, Brazil,

October 1993.

[Dela97] M. E. Delamaro, Mutaçõo de interface: um critério de adequação

inter-procedemental para o teste de integração, Doctoral Thesis,

University of São Paulo, São Carlos, Physics Institute of São Car-

los, June 1997.

[DeMi87] R.A. DeMillo, D.S. Guindi, K.N. King and W.M. McCracken, “An Ex-

tended Overview of the Mothra Testing Environment,” Proceedings

Second Workshop On Software Testing, Verification, and Analysis,

19-21 July, 1988, Banff, Canada.

[DeMM87] R.A. DeMillo, W. Michael McCracken, R.J. Martin, and John

F. Passafume, “Software Testing and Evaluation,” The Ben-

jamin/Cummings Publishing Company, Inc. Menlo park, CA, 1987.

[Howd87] William E. Howden, “Functional Program Testing and Analysis,”,

McGraw Hill Book Company, New York, 1987.

[Kern88] Brian Kernighan and Dennis M. Ritchie, “The C Programming Lan-

guage,” Prentice Hall, New Jersey, Second Edition, 1988.

[MADEL96] Marcio Delamaro and Joseè Maldonado, Proteum - A Tool for the

Assessment of Test Adequacy for C programs, User Guide, Ver-

sion 1.1-C, March 1996.

68 Mutation operators for ANSI C

APPENDIX A : INDEX TO MUTANT
CATEGORIES/OPERATORS

List of Mutant Operator Categories for ANSI C

Operator Description Page§

Oarr Array reference replacement 57
Obor Binary operator replacement 49
Cccr Constant for constant replacement 63
Ocor Comparable operator replacement 49
Ccsr Constant for scalar replacement 64
Oior Incomparable operator replacement 49
Oido Increment/decrement 50
Vprr Pointer reference replacement 58
Vsrr Scalar variable replacement 57
Vtrr Structure reference replacement 58

§ All page numbers in this Appendix refer to the page of first defini-
tion of the mutant operator/category.

69 Mutation operators for ANSI C

List of Mutant Operators for ANSI C (contd.)

Operator Domain Description Page

CGCR Constants Constant replacement using global constants 63
CLSR Constants Constant for scalar replacement using local

constants
64

CGSR Constants Constant for scalar replacement using global
constants

64

CRCR Constants Required constant replacement 62
CLCR Constants Constant replacement using local constants 63
OAAA ‡ arithmetic assignment mutation 52
OAAN ‡ arithmetic operator mutation 52
OABA † arithmetic assignment by bitwise assignment 53
OABN † arithmetic operator by bitwise operator 53
OAEA † arithmetic assignment by plain assignment 53
OALN † arithmetic operator by logical operator 53
OARN † arithmetic operator by relational operator 53
OASA † arithmetic assignment by shift assignment 53
OASN † Arithmetic operator by shift operator 53
OBAA † Bitwise assignment by arithmetic assignment 53
OBAN † Bitwise operator by arithmetic assignment 53
OBBA ‡ Bitwise assignment mutation 52
OBBN ‡ Bitwise operator mutation 52
OBEA † Bitwise assignment by plain assignment 53
OBLN † Bitwise operator by logical operator 53
OBNG † Bitwise negation 53
OBRN † Bitwise operator by relational operator 53
OBSA † Bitwise assignment by shift assignment 53
OBSN † Bitwise operator by shift operator 53
OCOR Casts Cast operator by cast operator 55
OEAA † Plain assignment by arithmetic assignment 53
OEBA † Plain assignment by bitwise assignment 53
OESA † Plain assignment by shift assignment 54

† See Tables 5 and 6.
‡ See Table 4.

70 Mutation operators for ANSI C

List of Mutant Operators for ANSI C (contd.)

Operator Domain Description Page

OIPM Expresions Indirection operator precedence mutation 54
OLAN † Logical operator by arithmetic operator 54
OLBN † Logocal operator by bitwise operator 54
OLLN ‡ Logical operator mutation 52
OLNG † Logical negation 51
OLRN † Logical operator by relational operator 54
OLSN † Logical operator by shift operator 54
ORAN † Relational operator by arithmetic operator 54
ORBN † Relational operator by bitwise operator 54
ORLN † Relational operator by Logical operator 54
ORRN ‡ Relational operator mutation 52
ORSN † Relational operator by shift operator 54
OSAA † Shift assignment by arithmetic assignment 54
OSAN † Shift operator by arithmetic operator 54
OSBA † Shift assignment by bitwise assignment 54
OSBN † Shift operator by bitwise operator 54
OSEA † Shift assignment by plain assignment 54
OSLN † Shift operator by logical operator 54
OSRN † Shift operator by relational operator 54
OSSA ‡ Shift operator mutation 52
OSSN ‡ Shift assignment mutation 52
SBRC break break replacement by continue 38
SBRn break Break out to nth level 38
SCRB continue continue replacement by break 38
SDWD do-while do-while replacement by while 40
SGLR goto goto label replacement 37
SMVB Statement Move brace up and down 43
SRSR return return replacement 35
SSDL Statement Statement deletion 34
SSOM Statement Sequence Operator Mutation 42
STRI if Statement Trap on if condition 33
STRP Statement Trap on statement execution 32

† See Tables 5 and 6.
‡ See Table 4.

71 Mutation operators for ANSI C

List of Mutant Operators for ANSI C (contd.)

Operator Domain Description Page

SMTC Iterative state-
ments

n-trip continue 41

SSWM switch statement switch statement mutation 45
SMTT Iterative state-

ment
n-¡trip trap 40

SWDD while while replacement by do-while 39
VASM Array subscript Array reference subscript mutation 60
VDTR Scalar reference Absolute value mutation 60
VGAR Array reference Mutate array references using global array ref-

erences
57

VGLA Array reference Mutate array references using both global and
local array references

VGPR Pointer reference Mutate pointer references using global pointer
references

58

VGSR Scalar reference Mutate scalar references using global scalar
references

57

VGTR Structure refer-
ence

Mutate structure references using global
structure references

58

VLAR Array reference Mutate array references using local array ref-
erences

57

VLPR Pointer reference Mutate pointer references using local pointer
references

58

VLSR Scalar reference Mutate scalar references using local scalar
references

57

VLTR Structure refer-
ence

Mutate structure references using only local
structure references

58

VSCR Strcuture compo-
nent

Structure component replacement 59

VTWD Scalar expression Twiddle mutations 61

† See Tables 5 and 6.
‡ See Table 4.

72 Mutation operators for ANSI C

Va
ria

bl
e

M
ut

at
io

ns

Sc

al
ar

re
fe

re
nc

e

 V
sr

r

A

rr
a y

re
fe

re
nc

e

 V
ar

r

St

ru
ct

ur
e

re

fe
re

nc
e

V
trr

 P

oi
nt

er

re
fe

re
nc

e

V

pr
r

 S

tru
ct

ur
e

co

m
po

ne
nt

V
SC

R

 A

rr
ay

su

bs
cr

ip
t

 V

A
SM

D

om
ai

n

m
ut

at
io

ns

 V
do

m

M
ut

an
t

O
pe

ra
to

rs

C
on

st
an

t m
ut

at
io

ns

R
eq

ui
re

d
co

ns
ta

nt
C

on
st

an
t f

or
 C

on
st

an
t

 C

cc
r

C
on

st
an

t f
or

 s

ca
la

r

 C
cs

r

 A
ll

st
at

em
en

ts
Ite

ra
tiv

e
st

at
em

en
ts

Ju
m

p-
st

at
m

en
ts

Se
le

ct
io

n
st

at
em

en
ts

Ex
pr

es
si

on

St
at

em
en

t M
ut

at
io

ns

O
pe

ra
to

rs
 M

ut
at

io
ns

B
in

ar
y

O
pe

ra
to

r M
ut

at
io

n

U
na

ry
 O

pe
ra

to
r M

ut
at

io
n

C
om

pa
ra

bl
e

O
pe

ra
tio

n

M
ut

at
io

n
In

co
m

pa
ra

bl
e

O
pe

ra
to

r

 M
ut

at
io

n

N
on

-a
ss

ig
nm

en
t t

yp
e

A
ss

ig
nm

en
t t

yp
e

N
on

-a
ss

ig
nm

en
t t

yp
e

A
ss

ig
nm

en
t t

yp
e

In
cr

em
en

t/D
ec

re
m

en
t

 M

ut
at

io
n

N
eg

at
io

n
O

pe
ra

to
rs

In
di

re
ct

io
n

op
er

at
or

 m
ut

at
io

n

A
pp

en
di

x
B

Sy
nt

ax
 D

ire
ct

ed
 C

la
ss

ifi
ca

tio
n

of
 M

ut
an

t O
pe

ra
to

rs

73 Mutation operators for ANSI C

APPENDIX C : REVISION HISTORY

Version Revision Date Remarks

1 0 November 27, 1988 Original draft
1 1 February 9, 1989
1 2 May 18, 1989
1 3 June 20, 2005
1 4 April 12, 2006

74 Mutation operators for ANSI C

This page has not been mutated. It contains a lot of space, this
message and the page header. Have fun with mutation !

