
Chapter 11

Test Selection, Minimization, and

Prioritization for Regression

Testing

The purpose of this chapter is to introduce techniques for the selection,
minimization, and prioritization of tests for regression testing. The
source T from which tests are to be selected is likely derived using a
combination of black-box and white-box techniques and used for system
or component testing. However, when this system or component is mod-
ified, for whatever reason, one might be able to retest it using only a
subset of T and ensure that despite the changes the existing unchanged
code continues to function as desired. A sample of techniques for the
selection and prioritization of this subset are presented in this chapter.

The word regress means to return to a previous, usually worse, state. Regression testing refers
to that portion of the test cycle in which a program P’ is tested to ensure that not only does the
newly added or modified code behaves correctly, but also that code carried over unchanged
from the previous version P, continues to behave correctly. Thus regression testing is useful,
and needed, whenever a new version of a program is obtained by modifying an existing version.

Regression testing is sometimes referred to as “program revalidation.” The term “corrective
regression testing” refers to regression testing of a program obtained by making corrections
to the previous versions. Another term “progressive regression testing” refers to regression
testing of a program obtained by adding new features. A typical regression testing scenario
often includes both corrective and progressive regression testing. In any case, techniques
described in this chapter are applicable to both types of regression testing.

To understand the process of regression testing, let us examine a development cycle ex-
hibited in Figure 11.1. The figure shows a highly simplified develop-test-release process for

373

374
Foundations of Software Testing

program P, referred to as Version 1. While P is in use, there might be a need to add new fea-
tures, remove errors reported by the users, and rewrite some code to improve performance.
Such modifications lead to P’, referred to as Version 2. This modified version must be tested
for any new functionality (step 5 in the figure). However, when making modifications to P the
developers might mistakenly add or remove code that causes the existing and unchanged func-
tionality from P to stop behaving as desired. One performs regression testing (step 6) to ensure
that any malfunction of the existing code is detected and repaired prior to the release of P’.

1. Develop P

2. Test P

3. Release P

4. Modify P to P’

5. Test P’ for new functionality

6. Perform regression testing on P’
 to ensure that the code carried over
 from P behaves correctly.

7. Release P’

Version 1 Version 2

Figure 11.1: Two phases of product development and maintenance. Version 1 (P) is developed,
tested, and released in the first phase. In the next phase, Version 2 (P’) is obtained by modifying
Version 1.

It should be obvious from the above description that regression testing can be applied in
each phase of software development. For example, during unit testing, when a given unit such
as a class, is modified by adding new methods, one needs to perform regression testing to
ensure that methods not modified continue to work as required. Certainly, in cases where the
developer can prove through suitable arguments that the methods added can have no effect on
the existing methods, regression testing is redundant and will likely be not performed.

Regression testing is also needed when a subsystem is modified to generate a new version
of an application. When one or more components of an application are modified the entire
application must also be subject to regression testing. In some cases regression testing might
be needed when the underlying hardware changes. In this case regression testing is performed
despite any change in the software.

In the remainder of this chapter you will find various techniques for regression testing. It is
important to note that some techniques introduced in this chapter, while sophisticated, might
not be applicable in certain environments while absolutely necessary in others. Hence, it is
not only important to understand the technique for regression testing but also its strengths and
limitations.

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

375
Foundations of Software Testing Chapter 11. Test Generation: Regression

11.1. Regression test process

A regression test process is exhibited in Figure 11.2. The process assumes that P’ is available
for regression testing. There is usually a long series of tasks that lead to P’ from P. These tasks,
not shown in Figure 11.2, include creation of one or more modification requests and the actual
modification of the design and the code. A modification request might lead to a simple error
fix, or to a complex redesign and coding of a component of P. In any case, regression testing is
recommended after P has been modified and any newly added functionality tested and found
correct.

The tasks in Figure 11.2 are shown as if they occur in the given sequence. This is not
necessarily true and other sequencings are possible. Several of the tasks shown can be com-
pleted while P is being modified to P’. It is important to note that except in some cases, for test
selection, all tasks shown in the figure are performed in almost all phases of testing and are
not specific to regression testing.

1. Test revalidation/selection/
minimization/prioritization/

2. Test set up

3. Test sequencing 4. Test execution

5. Output comparison

6. Fault mitigation

Figure 11.2: A subset of tasks in regression testing.

11.1.1. Test revalidation/selection/minimization/prioritization

While it would be ideal to test P’ against all tests developed for P, this might not be possible for
several reasons. For example, there might not be sufficient time available to run all tests. Also,
some tests for P might become invalid for P’ due to one or more reasons such as a change
in the input data and its format for one or more features. In yet another scenario, the inputs
specified in some tests might remain valid for P’ but the expected output might not. These are
some reasons that necessitate step 1 in Figure 11.2.

Test revalidation refers to the task of checking which tests for P remain valid for P’. Revalida-
tion is necessary to ensure that only tests that are applicable to P’ are used during regression
testing.

Test selection can be interpreted in several ways. Validated tests might be redundant in that
they do not traverse any of the modified portions in P’. The identification of tests that traverse
modified portions of P’ is often referred to as test selection and sometimes as the regression
test selection (RTS) problem. However, note that both test minimization and prioritization de-
scribed next are also techniques for test selection.

Test minimization discards tests seemingly redundant with respect to some criteria. For
example, if t1 and t2 test function f in P then one might decide to discard t2 in favor of t1. The

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

376
Foundations of Software Testing 11.1. Regression test process

purpose of minimization is to reduce the number of tests to execute for regression testing.
Test prioritization refers to the task of prioritizing tests based on some criteria. A set of

prioritized tests becomes useful when only a subset of tests can be executed due to resource
constraints. Test selection can be achieved by selecting a few tests from a prioritized list. How-
ever, several other methods for test selection are available as discussed later in this chapter.
Revalidation, followed by selection, minimization, and prioritization is one possible sequence to
execute these tasks.

EXAMPLE 11.1. A Web service is a program that can be used by another program over the
Web. Consider a Web service named ZC, short for ZipCode. The initial version of ZC provides
two services: ZtoC and ZtoA. Service ZtoC inputs a zip code and returns a list of cities and the
corresponding state while ZtoA inputs a zip code and returns the corresponding area code. We
assume that while the ZipCode service can be used over the Web from wherever an internet
connection is available, it serves only the United States.

Let us suppose that ZC has been modified to ZC’ as follows. First, a user can select from
a list of countries and supply the zip code to obtain the corresponding city in that country. This
modification is made only to the ZtoC function while ZtoA remains unchanged. Note that the
term “zip code” is not universal. For example, in India, the equivalent term is “pin code” which
is 6-digits long as compared to the 5-digit zip code used in the United States. Second, a new
service named ZtoT has been added which inputs a country and a zip code and returns the
corresponding time zone.

Consider the following two tests (only inputs specified) used for testing ZC.

t1 : < service = ZtoC , zip = 47906 >

t2 : < service = ZtoA, zip = 47906 >

A simple examination of the two tests reveals that test t1 is not valid for ZC’ as it does not
list the required country field. Test t2 is valid as we have made no change to ZtoA. Thus we
need to either discard t1 and replace it by a new test for the modified ZtoC, or simply modify t1
appropriately. We prefer to modify and hence our validated regression test suite for ZC’ is

t1 : < country = USA, service = ZtoC , zip = 47906 >

t2 : < service = ZtoA, zip = 47906 > .

Note that testing ZC’ requires additional tests to test the ZtoT service. However, we need only
the two tests listed above for regression testing. To keep this example short, we have listed
only a few tests for ZC. In practice one would develop a much larger suite of tests for ZC which
will then be the source of regression tests for ZC’.

11.1.2. Test setup

Test set up refers to the process by which the application under test is placed in its intended,
or simulated, environment ready to receive data and able to transfer any desired output infor-
mation. This process could be as simple as double clicking on the application icon to launch
it for testing and as complex as setting up the entire special purpose hardware and monitoring
equipment and initializing the environment before the test could begin. Test set up becomes

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

377
Foundations of Software Testing Chapter 11. Test Generation: Regression

even more challenging when testing embedded software such as that found in printers, cell
phones, Automated Teller Machines, medical devices, and automobile engine controllers.

Note that test set up is not special to regression testing, it is also necessary during other
stages of testing such as during integration or system testing. Often test set up requires the use
of simulators that allow the replacement of a “real device” to be controlled by the software with
its simulated version. For example, a heart simulator is used while testing a commonly used
heart control device known as the pacemaker. The simulator allows the pacemaker software to
be tested without having to install it inside a human body.

The test set up process and the set up itself, are highly dependent on the application un-
der test and its hardware and software environment. For example, the test set up process
and the set up for an automobile engine control software is quite different from that of a cell
phone. In the former one needs an engine simulator, or the actual automobile engine to be
controlled, while in the latter one needs a test driver that can simulate the constantly changing
environment.

11.1.3. Test sequencing

The sequence in which tests are input to an application may or may not be of concern. Test
sequencing often becomes important for an application with an internal state and that is con-
tinuously running. Banking software, web service, engine controller, are examples of such
applications. Sequencing requires grouping and sequencing tests to be run together. The
following example illustrates the importance of test sequencing.

EXAMPLE 11.2. Consider a simplified banking application referred to as SATM. Application
SATM maintains account balances and offers users the following functionality: login, deposit,
withdraw, and exit. Data for each account is maintained in a secure database.

Initialize

Request
mode

Deposit
mode

Update
mode

Amount/OK
Done/Balance

Withdraw
mode

Amount/Confirm

Deposit/Amount?

Withdraw/Amount?

Complete/ID?

RM UM

DM

WM

Login
mode

ValidID/Welcome

InValidID/ID?

LM
Exit/Bye

Figure 11.3: State transition in a simplified banking application. Transitions are labeled as
X/Y, where X indicates an input and Y the expected output. “Complete” is an internal input
indicating that the application moves to the next state upon completion of operations in its
current state.

Figure 11.3 exhibits the behavior of SATM as a finite state machine. Note that the machine

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

378
Foundations of Software Testing 11.1. Regression test process

has six distinct states, some referred to as modes in the figure. These are labeled as Initial-
ize, LM, RM, DM, UM, and WM. When launched, the SATM performs initialization operations,
generates an “ID?” message, and moves to the LM state. If the user enters a valid ID, SATM
moves to the RM state else it remains in the LM state and again requests for an ID.

While in the RM state the application expects a service request. Upon receiving a Deposit
request it enters the DM state and asks for an amount to be deposited. Upon receiving an
amount it generates a confirmatory message and moves to the UM state where it updates the
account balance and gets back to the RM state. A similar behavior is shown for the Withdraw
request. SATM exits the RM state upon receiving an Exit request.

Let us now consider a set of three tests designed to test the Login, Deposit, Withdraw and
Exit features of SATM. The tests are given in the following table in the form of a test matrix.
Each test requires that the application be launched fresh and the user (tester in this case) log
in. We assume that the user with ID=1 begins with an account balance of 0. Test t1 checks the
login module and the Exit feature, t2 the Deposit module, and t3 the Withdraw module. As you
might have guessed, these tests are not sufficient for a thorough test of SATM, but they suffice
to illustrate the need for test sequencing as explained next.

Test Input sequence Expected output se-
quence

Purpose

t1 ID=1, Request= Exit Welcome, Bye Test Login module.
t2 ID=1, Request= Deposit,

Amount=50
D?, Welcome, Amount?,
OK, Done, 50

Test Deposit module.

t3 ID=1, Request= With-
draw, Amount=30

ID?, Welcome,
Amount?, 30, Done,
20

Test Withdraw module.

Now suppose that the Withdraw module has been modified to implement a change in with-
drawal policy, e.g. “No more than $300 can be withdrawn on any single day.” We now have the
modified SATM’ to be tested for the new functionality as well as to check if none of the existing
functionality has broken. What tests should be rerun ?

Assuming that no other module of SATM has been modified, one might propose that tests
t1 and t2 need not be rerun. This is a risky proposition unless some formal technique is used
to prove that indeed the changes made to the Withdraw module cannot affect the behavior of
the remaining modules.

Let us assume that the testers are convinced that the changes in SATM will not affect any
module other than Withdraw. Does this mean that we can run only t3 as a regression test ?
The answer is in the negative. Recall our assumption that testing of SATM begins with an
account balance of 0 for the user with ID=1. Under this assumption, when run as the first test,
t3 will likely fail because the expected output will not match the output generated by SATM’ (see
Exercise 11.1).

The argument above leads us to conclude that we need to run test t3 after having run
t2. Running t2 ensures that SATM’ is brought to the state in which we expect test t3 to be
successful.

Note that the finite state machine shown in Figure 11.3 ignores the values of internal vari-

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

379
Foundations of Software Testing Chapter 11. Test Generation: Regression

ables and data bases used by SATM and SATM’. During regression as well as many other
types of testing, test sequencing is often necessary to bring the application to a state where
the values of internal variables, and contents of the data bases used, correspond to the inten-
tion at the time of designing the tests. It is advisable that such intentions (or assumptions) be
documented along with each test.

11.1.4. Test execution

Once the testing infrastructure has been set up, tests selected, revalidated, and sequenced,
it is time to execute them. This task is often automated using a generic or a special purpose
tool. General purpose tools are available to run regression tests for applications such as web
service (see Section 11.9). However, most embedded systems, due to their unique hardware
requirements, often require special purpose tools that input a test suite and automatically run
the application against it.

The importance of a tool for test execution cannot be overemphasized. Commercial applica-
tions tend to be large and the size of the regression test suite usually increases as new versions
arrive. Manual execution of regression tests might become impractical and error prone.

11.1.5. Output comparison

Each test needs verification. This is also done automatically with the help of the test execution
tool that compares the generated output with the expected output. However, this might not be a
simple process, especially in embedded systems. In such systems often it is the internal state
of the application, or the state of the hardware controlled by the software application, that must
be checked. This is one reason why generic tools that offer an oracle might not be appropriate
for test verification.

One of the goals for test execution is to measure an application’s performance. For example,
one might want to know how many requests per second can be processed by a web service.
In this case performance, and not functional correctness, is of interest. The test execution tool
must have special features to allow such measurements.

11.2. Regression test selection: the problem

Let us examine the regression testing problem with respect to Figure 11.4. Let P denote Ver-
sion X that has been tested using test set T against specification S . Let P’ be generated by
modifying P. The behavior of P ′ must conform to specification S ′. Specifications S and S ′ could
be the same and P’ is the result of modifying P to remove faults. S ′ could also be different from
S in that S ′ contains all features in S and a few more, or that one of the features in S has been
redefined in S ′.

The regression testing problem is to find a test set Tr on which P’ is to be tested to en-
sure that code that implements functionality carried over from P works correctly. As shown in
Figure 11.4, often Tr is a subset of T used for testing P.

In addition to the regression testing, P’ must also be tested to ensure that the newly added
code behaves correctly. This is done using a newly developed test set Td . Thus P’ is tested

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

380
Foundations of Software Testing 11.2. Regression test selection: the problem

T
Obsolete

Regression
subset

Redundant
P

P’

T’

New tests

Regression
tests

Tr

Td

Functionality
retained across
P and P’

To Tu

Tr

Modified
and newly
added code

Figure 11.4: Regressing testing as a test selection problem. A subset Tr of set T is selected for
retesting the functionality of P that remains unchanged in P’.

against T ′ = Tr ∪ Td where Tr is the regression test suite and Td the development test
suite intended to test any new functionality in P ′. Note that we have subdivided T into three
categories: redundant tests (Tu), obsolete tests (To), and regression tests (Tr). While P
is executed against the entire T , P’ is executed only against the regression set Tr and the
development set Td . Tests in T that cause P to terminate prematurely or enter into an infinite
loop, might be included in To or in Tr depending on their purpose.

In summary, the regression test selection problem (RTS) problem is stated as follows: Find
a minimal Tr such that ∀ t ∈ Tr and t ′ ∈ Tu ∪ Tr ,P(t) = P ′(t) ⇒ P(t ′) = P ′(t ′). In other
words the RTS problem is to find a minimal subset Tr of non-obsolete tests from T such that if
P’ passes tests inTr then it will also pass tests in Tu . Notice that determination of Tr requires
that we know the set of obsolete tests To . Obsolete tests are those no longer valid for P ′ for
some reason.

Identification of obsolete tests is a largely manual activity. As mentioned earlier, this activity
is often referred to as test case revalidation. A test case valid for P might be invalid for P’
because the input, output, or both input and output components of the test are rendered invalid
by the modification made to P. Such a test case either becomes obsolete and is discarded while
testing P’ or is corrected and becomes a part of Tr or Tu .

Note that the notion of “correctness” in the above discussion is with respect to the correct
functional behavior. It is possible that a solution to the RTS problem ignores a test case t
on which P’ fails to meet its performance requirement whereas P does. Algorithms for test
selection in the remainder of this chapter ignore the performance requirement.

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 1, 2006

