
Chapter 1

Basics of Software Testing

The purpose of this introductory chapter is to familiarize the
reader with the basic concepts related to software testing. In
this chapter we will set up a framework for the remainder of this
book. Specific questions, answered in substantial detail in sub-
sequent chapters, will be raised here. After reading this chapter,
you are likely to be able to ask meaningful questions related to
software testing and reliability.

1.1. Humans, errors, and testing

Errors are a part of our daily life. Humans make errors in their thoughts, actions, and in the
products that might result from their actions. Errors occur almost everywhere. For example,
humans make errors in speech, in medical prescription, in surgery, in driving, in observation, in
sports, and, certainly in love and software development. Table 1.1 provides examples of human
errors. The consequences of human errors vary significantly. An error might be insignificant in
that it leads to a gentle friendly smile, such as when a slip of tongue occurs. Or, an error may
lead to a catastrophe, such as when an operator fails to recognize that a relief valve on the
pressurizer was stuck open and this resulted in a disastrous radiation leak.

To determine whether or not there are any errors in our thought, actions, and the products
generated, we resort to the process of testing. The primary goal of testing is to determine if the
thoughts, actions, and products are as desired, i.e. they conform to the requirements. Testing
of thoughts is usually designed to determine if a concept or method has been understood
satisfactorily. Testing of actions is designed to check if a skill that results in the actions has
been acquired satisfactorily. Testing of a product is designed to check if the product behaves
as desired. Note that both syntax and semantic errors arise during programming. Given that
most modern compilers are able to detect syntactic errors, testing focuses on semantic errors,
also known as faults, that cause the program under test to behave incorrectly.

EXAMPLE 1.1. An instructor administers a test to determine how well the students have un-

25

26 Chapter 1. Basics of Software Testing

Table 1.1: Examples of errors in various fields of human endeavor.

Area Error
Hearing Spoken: He has a garage for repairing foreign cars.

Heard: He has a garage for repairing falling cars.
Medicine Incorrect antibiotic prescribed.
Music performance Incorrect note played.
Numerical analysis Incorrect algorithm for matrix inversion.
Observation Operator fails to recognize that a relief valve is

stuck open.
Software Operator used: !=, correct operator: >.

Identifier used: new line, correct identifier:
next line.
Expression used: a ∧ (b ∨ c), correct expression:
(a ∧ b) ∨ c.
Data conversion from 64-bit floating point to 16-
bit integer not protected (resulting in a software
exception).

Speech Spoken: waple malnut, intent: maple walnut.
Spoken: We need a new refrigerator, intent: We
need a new washing machine.

Sports Incorrect call by the referee in a tennis match.
Writing Written: What kind of pans did you use ?

Intent: What kind of pants did you use ?

derstood what the instructor wanted to convey. A tennis coach administers a test to determine
how well the understudy makes a serve. A software developer tests the program developed to
determine if it behaves as desired. In each of these three cases there is an attempt by a tester
to determine if the human thoughts, actions, and products behave as desired. Behavior that
deviates from the desirable is possibly due to an error.

EXAMPLE 1.2. “Deviation from the expected” may not be due to an error for one or more
reasons. Suppose that a tester wants to test a program to sort a sequence of integers. The
program can sort an input sequence in both descending or ascending orders depending on
the request made. Now suppose that the tester wants to check if the program sorts an input
sequence in ascending order. To do so, he types in an input sequence and a request to sort the
sequence in descending order. Suppose that the program is correct and produces an output
which is the input sequence in descending order.

Upon examination of the output from the program, the tester hypothesises that the sorting
program is incorrect. This is a situation where the tester made a mistake (an error) that led to
his incorrect interpretation (perception) of the behavior of the program (the product).

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of preface: December 29, 2006

1.1. Humans, errors, and testing 27

1.1.1. Errors, faults, and failures

There is no widely accepted and precise definition of the term “error.” Figure 1.1 illustrates one
class of meanings for the terms error, fault, and failure. A programmer writes a program. An
error occurs in the process of writing a program. A fault is the manifestation of one or more
errors. A failure occurs when a faulty piece of code is executed leading to an incorrect state that
propagates to the program’s output. The programmer might misinterpret the requirements and
consequently write incorrect code. Upon execution, the program might display behavior that
does not match with the expected behavior implying thereby that a failure has ocurred. A fault
in the program is also commonly referred to as a bug or a defect. The terms error and bug are
by far the most common ways of referring to something “wrong” in the program text that might
lead to a failure. In this text we often use the terms “error” and ”fault” as synonyms. Faults are
sometimes referred to as defects.

Programmer

Program

is input to

Specifications
are used by

Fault
might contain

possibility of

produces

leads to

determine

writes

 may lead to

Observed
behavior

are these
the same?

Desired
behavior

Test
data

Observable
 behavior

Error in
thought or
 action

Figure 1.1: Errors, faults, and failures in the process of programming and testing.

In Figure 1.1 notice the separation of “observable” from “observed” behavior. This sepa-

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of preface: December 29, 2006

