
Chapter 16

Test Adequacy Assessment using

Program Mutation

The purpose of this chapter is to introduce Program Mutation as a tech-
nique for the assessment of test adequacy and the enhancement of test
sets. The chapter also focuses on the design and use of mutation opera-
tors for procedural and objected-oriented programming languages.

16.1. Introduction

Program mutation is a powerful technique for the assessment of the goodness of tests. It
provides a set of strong criteria for test assessment and enhancement. If your tests are ade-
quate with respect to some other adequacy criterion, such as the MC/DC coverage criterion,
then chances are that these are not adequate with respect to most criteria offered by program
mutation.

Program mutation is a technique to assess and enhance your tests. Hereafter we will refer
to “program mutation” as “mutation.” When testers use mutation to assess the adequacy of their
tests, and possibly enhance them, we say that they are using mutation testing. Sometimes the
act of assessing test adequacy using mutation is also referred to as mutation analysis.

Given that mutation requires access to all or portions of the source code, it is considered a
white-box, or code-based, technique. Some refer to mutation testing as fault injection testing.
However, it must be noted that fault-injection testing is a separate area in its own right and must
be distinguished from mutation testing as a technique for test adequacy and enhancement.

Mutation has also been used as a black-box technique. In this case it is used to mutate
specifications and, in the case of web applications, messages that flow between a client and
a server. This chapter focuses on the mutation of computer programs written in high level
languages such as Fortran, C, and Java.

While mutation of computer programs requires access to the source code of the applica-

591



592
Foundations of Software Testing 16.2. Mutation and mutants

tion under test, some variants can do without. Interface mutation requires access only to the
interface of the application under test. Run-time fault injection, a technique similar to mutation,
requires only the binary version of the application under test.

Mutation can be used to assess and enhance tests for program units, such as C functions
and Java classes. It can also be used to assess and enhance tests for an integrated set
of components. Thus, as explained in the remainder of this chapter, mutation is a powerful
technique for use during unit, integration, and system testing.

A cautionary note: Mutation is a significantly different way of assessing test ade-
quacy than what we have discussed in the previous chapters. Thus, while reading
this chapter, you will likely have questions of the kind “Why this. . . ” or “Why that. . . ”
With patience, you will find that most, if not all, of your questions are answered in
this chapter.

16.2. Mutation and mutants

Mutation is the act of changing a program, albeit only slightly. If P denotes the original program
under test and M a program obtained by slightly changing P , then M is known as a mutant of
P and P the parent of M . Given that P is syntactically correct, and hence compiles, M must
be syntactically correct. M might or might not exhibit the behavior of P from which it is derived.

The term “to mutate” refers to the act of mutation. To “mutate” a program means to change it.
Of course, for the purpose of test assessment, we mutate by introducing only “slight” changes.

EXAMPLE 16.1. Consider the following simple program.

Program P16.1

1 begin

2 int x, y;
3 input (x, y);
4 if(x<y)
5 output(x+y);
6 else

7 output(x*y);
8 end

A large variety of changes can be made to P16.1 such that the resultant program is syntactically
correct. Below we list two mutants of P16.1. Mutant M1 is obtained by replacing the < operator
by the ≤ operator. Mutant M2 is obtained by replacing the ∗ operator by the / operator.

Mutant M1 of Program P16.1

1 begin

2 int x, y;
3 input (x, y);
4 if(x≤y) ←Mutated statement

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 7, 2006



593
Foundations of Software Testing Chapter 16. Test adequacy: Program Mutation

5 then

6 output(x+y);
7 else

8 output(x*y);
9 end

Mutant M2 of Program P16.1

1 begin

2 int x, y;
3 input (x, y);
4 if(x<y)
5 then

6 output(x+y);
7 else

8 output(x/y); ←Mutated statement

9 end

Notice that the changes made in the original program are simple. For example, we have not
added any chunk of code to the original program to generate a mutant. Also, only one change
has been made to the parent to obtain its mutant.

16.2.1. First-order and higher-order mutants

Mutants generated by introducing only a single change to a program under test are also known
as first-order mutants. Second-order mutants are created by making two simple changes, third
order by making three simple changes, and so on. One can generate a second-order mutant
by creating a first order mutant of another first-order mutant. Similarly, an nth order mutant can
be created by creating a first order mutant of an (n − 1)th order mutant.

EXAMPLE 16.2. Once again let us consider program P16.1. We can obtain a second-
order mutant of this program in a variety of ways. Here is a second-order mutant obtained by
replacing variable y in the if statement by the expression y + 1, and replacing operator + in
the expression x + y by the operator /.

Mutant M3 of Program P16.1

1 begin

2 int x, y;
3 input (x, y);
4 if(x<y+1) ←Mutated statement

5 then

6 output(x/y); ←Mutated statement

7 else

8 output(x*y);
9 end

Mutants, other than first-order, are also known as higher-order mutants. First-order mutants
are the ones generally used in practice. There are two reasons why first-order mutants are

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 7, 2006



594
Foundations of Software Testing 16.2. Mutation and mutants

preferred to higher order mutants. One reason is that there are many more higher order mutants
of a program than there are first-order mutants. For example, 528,906 second order mutants
are generated for program FIND that contains only 28 lines of Fortran code. Such a large
number of mutants create a scalability problem during adequacy assessment. Another reason
has to do with the coupling effect and is explained in Section 16.6.2.

Note that so far we have used the term “simple change” without explaining what we mean by
“simple” and what is a “complex” change. An answer to this question appears in the following
sections.

16.2.2. Syntax and semantics of mutants

In the examples presented so far, we mutated a program by making simple syntactic changes.
Can we mutate using semantic changes ? Yes, we certainly can. However, note that syntax
is the carrier of semantics in computer programs. Thus, given a program P written in a well
defined programming language, a “semantic change” in P is made by making one or more
syntactic changes. A few illustrative examples follow.

EXAMPLE 16.3. Let fP16.1(x , y) denote the function computed by Program P16.1. We can
write f (x , y) as follows.

fP16.1(x , y) =

{
x + y if x < y
x ∗ y otherwise

Let fM1(x , y) and fM2(x , y) denote the functions computed by M1 and M2, respectively. We
can write fM1(x , y) and fM2(x , y) as follows

fM1(x , y) =

{
x + y if x ≤ y
x ∗ y otherwise

fM2(x , y) =

{
x + y if x < y
x/y otherwise

Notice that the three functions fP16.1(x , y), fM1(x , y), and fM2(x , y) are different. Thus we have
changed the semantics of P16.1 by changing its syntax.

The previous example illustrates the meaning of “syntax is the carrier of semantics.” Muta-
tion might, at first thought, seem to be “just” a simple syntactic change made to a program. In
effect, such a simple syntactic change could have a drastic effect, or it might have no effect at
all, on program semantics. The next two examples illustrate why.

EXAMPLE 16.4. Nuclear reactors are increasingly relying on the use of software for control.
Despite the intensive use of safety mechanisms, such as the use of 400,000 liters of cool heavy
water moderator, the control software must continually monitor various reactor parameters and
respond appropriately to conditions that could lead to a meltdown. For example, the Darlington
Nuclear Generating Station located near Toronto, Canada, uses two independent computer

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 7, 2006



595
Foundations of Software Testing Chapter 16. Test adequacy: Program Mutation

based shutdown systems. Though formal methods can be, and have been, used to convince
the regulatory organizations that the software is reliable, a thorough testing of such systems is
inevitable.

While the decision logic in a software-based emergency shutdown system would be quite
complex, the highly simplified procedure below indicates that simple changes to a control pro-
gram might lead to disastrous consequences. Assume that the checkTemp procedure is invoked
by the reactor monitoring system with three most recent sensory readings of the reactor tem-
perature. The procedure returns a danger signal to the caller through variable danger.

Program P16.2

1 enum dangerLevel {none, moderate, high, veryHigh};
2 procedure checkTemp (currentTemp, maxTemp){
3 float currentTemp[3], maxTemp; int highCount=0;
4 enum dangerLevel danger;
5 danger=none;
6 if (currentTemp[0]>maxTemp)
7 highCount=1;
8 if (currentTemp[1]>maxTemp)
9 highCount=highCount+1;
10 if (currentTemp[2])>maxTemp)
11 highCount=highCount+1;
12 if (highCount==1) danger=moderate;
13 if (highCount==2) danger=high;
14 if (highCount==3) danger=veryHigh;
15 return(danger);
16 }

Procedure checkTemp compares each of the three temperature readings against the maximum
allowed. A “none” signal is returned if none of the three readings is above the maximum al-
lowed. Otherwise, a “moderate,” “high,” or “veryHigh” signal is returned depending on, respec-
tively, whether one, two, or three readings are above the allowable maximum. Now consider the
following mutant of P16.2 obtained by replacing the constant “veryHigh” with another constant
“none” at line 14.

Mutant M1 of Program P16.2

1 enum dangerLevel {none, moderate, high, veryHigh};
2 procedure checkTemp (currentTemp, maxTemp){
3 float currentTemp[3], maxTemp; int highCount=0;
4 enum dangerLevel danger;
5 danger=none;
6 if (currentTemp[0]>maxTemp)
7 highCount=1;
8 if (currentTemp[1]>maxTemp)
9 highCount=highCount+1;
10 if (currentTemp[2])>maxTemp)

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 7, 2006


