
Chapter 13

Test Generation from Formal

Specifications

The purpose of this chapter is to introduce techniques for the generation
of tests from formal specifications written in the Z (Zed) notation.

13.1. Introduction

Requirements serve as the basis of test generation. Requirements for a program under test
can be known to the test generator in a variety of forms. A commonly used form is a plain
English language description. The tester generates test cases from these requirements.

While requirements written in plain English allow quick understanding and dissemination to
a wide audience, they suffer from several shortcomings. A serious shortcoming arises from
the inherent ambiguity of expression in almost any natural language. Any ambiguity in the
requirements specification raises the possibility of generating an incorrect test case. Such a
test case, if passed by the program under test, might lead to a program that is correct as per
the tester’s interpretation but unacceptable to the customer.

To avoid, or at least reduce the chances of misunderstanding, one often takes refuge in
some mathematical notation. Requirements written in plain natural language are rewritten us-
ing precise mathematical notation. Such a description is known as formal specification, or
simply specification. The hope in generating a formal specification is that the process of devel-
oping one from requirements in a natural language will allow the discovery of any ambiguities
and lead to a precise form of requirements.

Given that mathematical specifications themselves are not necessarily always correct, spec-
ifications are also subject to some form of testing. Nevertheless, once an acceptable set of
specifications is obtained, it serves as input to a variety of processing tasks, one of which is

467



468
Foundations of Software Testing 13.1. Introduction

Figure 13.1: A generic view of the specification based test generation process.

test generation.
A variety of techniques exist for the generation of tests from a formal specifications. Fig-

ure 13.1 illustrates a generic process. First, requirements available in a natural language are
transformed to a formal specification. The formal specification is fed to a test generation pro-
cedure that outputs a set of test cases. The test generation procedure might be automated,
semiautomated, or manual.

Figure 13.2: A procedure for generating tests from Z specifications.

Test generation procedures depend on the notation used in the formal specifications. In this
chapter we describe the generation of tests when the formal specification uses Z, a common
notation for the formal specifications of programs. Specifications written using Z are known as
Z-specifications. For those who pronounce the letter “Z” as zee, it is worth noting that the Z in
“Z notation” is pronounced as “Zed.”

Figure 13.2 shows the three steps in generating tests when specifications are written using
Z. The first step is to identify input domain and the output domain (the range) of the program
under test. A set of test templates is generated from the input domain, the range, and additional
information available from the specification. A test template is an abstract specification of a
class of test cases.

The templates are input to a test case generation procedure that generates the test cases.
The template generation step is inside a dashed box indicating that some methods for gener-
ating tests from a Z specification do not generate test templates and, instead, generate directly
from the input domain, the range, and additional information in the specifications. The steps in

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 5, 2006



469
Foundations of Software Testing Chapter 13. Test Generation: Formal Specifications

Figure 13.2 are described in some detail in this chapter.

13.2. The Z notation in brief

We begin with an informal overview of the Z notation. Several books on Z are available to help
you acquire a more detailed knowledge of the notation. Here we focus on a few elements of Z
that are used in the illustrative examples throughout the chapter.

The Z notation is based on typed set theory and first order predicate logic. The examples
given in this section are deliberately kept simple for ease of understanding. Note that our focus
is on test generation from formal specifications of software systems; this section provides the
necessary background information. The Z notation can also be used to specify hardware as
well as mixed software-hardware systems.

13.2.1. A Z specification

A useful software system consists of one or more operations that transform some input data to
output data. In performing such a transformation, the system moves from one state to another.
The Z notation is intended to serve as a precise specification of such a software system. A
Z specification is also known as a model-based specification. The specification serves as a
mathematical model of the software system. The implementation must obey the constraints
implied by the model.

A Z specification consists of a sequence of schemas interspersed with informal commentary.
The commentary could be in any natural language to explain what is specified precisely using
the mathematical notation. Schemas serve as the basic building block of the model of the
software system specified.

A schema describes both the static and dynamic aspects of a system. The static aspects
include the states that the system can occupy and the relationships that remain invariant when
the system moves from one state to another. The dynamic aspects include the specification
of operations in terms of their input and output relationships. Usually, one or more schemas
specify one operation of the software system. Let us now take a brief look at various elements
of Z.

13.2.2. Sets

Z provides a basic glossary of sets often used in formal specifications and computer programs.
These include the set of natural numbers, i.e. integers 0 and higher, denoted by N, the set of
integers denoted by Z, and the set of reals denoted by R. The set of strictly positive integers is
denoted by N1.

You can define your own sets in a several ways. First, you could simply display the elements
of a set as follows.

{hydrogen, helium, oxygen, nitrogen, florine}

You can name the sets you define and use the name at a later point in your specification such
as the following.

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 5, 2006



470
Foundations of Software Testing 13.2. The Z notation in brief

GAS== {hydrogen, helium, oxygen, nitrogen, florine}

The symbol “==”, as used above, can be read as is defined as. Z allows the construction of
new sets from existing ones through their cartesian products.

Let us assume that SYMBOL denotes the set of symbols in the periodic table such as H for
hydrogen, Na for sodium, and so on. We can now define a set of pairs of symbols and their
corresponding atomic numbers as follows.

SYMBOL× N1

The above expression defines a set of pairs in which the first element of each pair is a symbol
and the second element a strictly positive integer that denotes the element’s atomic number.
Examples of such pairs are (H , 1) and (O , 8). The following cartesian product defines a set of
triples.

SYMBOL× N1 × R

The expression above denotes a set of triples where the first component of each triple is a sym-
bol, and the second and third components can represent, respectively, its atomic number and
the average atomic mass. Examples of such triples include, (H , 1, 1.00794) and (O , 8, 15.9994).

Note that while triple (H , 2, 4.002602) belongs to the set of triples defined above, it is not a
valid triple in the periodic table known to humans. A cartesian product merely defines a set of
tuples that could be interpreted in several ways. In this example we interpreted a triple as an
element in the periodic table. We will learn more about how to specify constraints on tuples.

We can define a new set from another by suitably constraining the selection of its elements
as in the following example.

CEL == SYMBOL× N1 × R

HVEL == {e : CEL | third(e) > minMass}

First we have defined the set of chemical elements, CEL, to be a set of triples. Next, we defined
the set of heavy elements, HVEL, to be the set of only those triples whose third component is
greater than minMass. Here the third component of a triple is extracted from the triple by the
function third.

In the example above we have defined the set named HVEL using a technique known as
set comprehension. In its general form, a set definition using set comprehension looks like the
following.

{declaration | predicate • expression}

In our example defining the set HVEL, e : CEL corresponds to the declaration part and
third(e) > minMass to the predicate part; the expression part is empty. One could also de-
fine a set in Z by specifying the range of values it contains. For example, the range 1 . . . 118
specifies the set containing integers 1 through 118.

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 5, 2006



471
Foundations of Software Testing Chapter 13. Test Generation: Formal Specifications

13.2.3. Types

A type is a set of objects with constraints. Each of the sets defined in the previous section is a
type; we did not impose any explicit constraint. Z has a rich collection of ways to define types
and declare variables of specific types. For starters, we can define a type by listing its name
inside brackets as follows.

[SYMBOL]

Once listed as above, SYMBOL serves as a basic type and can be used anywhere in a Z
specification. The following additional examples show how variables can be assigned to types
via declarations and how new types are defined.

size : N size is a natural number.
gs : GAS gs is a GAS object.
g : P GAS g is a set of GAS objects.
el : P(SYMBOL× N1 × R) el is a set of triples as defined earlier.
el : CEL Same as the definition given earlier.

The third and fourth declarations above need some explanation. The symbol P stands for power
set. The power set of Z, denoted P Z, is the set of all subsets of the set of integers. Some
members of P Z are ∅ (the empty set), {0, 1, 2}, and {-2, 14}. The expression P GAS denotes
the set of all subsets of the set GAS. Some elements of P GAS are {hydrogen}, {hydrogen,
florine}, and {nitrogen, oxygen}. The set P(SYMBOL × N1 × R) is a set of triples explained
earlier.

An axiomatic description in Z declares variables and specifies an optional set of constraints
on the values of the variables declared. Once so defined, these variables become global and
can be used from the place of definition until the end of the specification. Let us examine the
following axiomatic description.

maxNum,maxSize : N1

maxMass : R

count ≤ maxSize
maxNum ≤ 118
maxMass ≤ 262
maxSize = 150

The description above is separated into two parts by a horizontal dividing line. The top part
contains declarations of variables maxNum, maxSize, and maxMass and the bottom part the
constraints on these variables.

13.2.4. Expressions and types

The arithmetic operators +, −, ∗, div, and mod can be used to create arithmetic expressions
with integers. Set expressions are formed using the traditional set operators ∪, ∩, and \.

c©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.
Latest revision of this chapter: August 5, 2006


