12.1.

Chapter 12

Test Generation from

Combinatorial Designs

_ The purpose of this chapter is to introduce techniques for the generation
of test configurations and test data using the combinatorial design tech-
niques with program inputs and their values as, respectively, factors and
levels. These techniques are useful when testing a variety of applica-
tions. They allow selection of a small set of test configurations from an
often impractically large set, and are effective in detecting faults arising

out of factor interactions.

Combinatorial designs

Software applications are often designed to work in a variety of environments. Combinations
of factors such as the operating system, network connection, and hardware platform, lead to
a variety of environments. Each environment corresponds to a given set of values for each
factor, known as a test configuration. For example, Windows XP, Dial-up connection, and a PC
with 512 MB of main memory, is one possible configuration. To ensure high reliability across
the intended environments, the application must be tested under as many test configurations,
or environments, as possible. However, as illustrated in examples later in this chapter, the
number of such test configurations could be exorbitantly large making it impossible to test the
application exhaustively.

An analogous situation arises in the testing of programs that have one or more input vari-
ables. Each test run of a program often requires at least one value for each variable. For
example, a program to find the greatest common divisor of two integers = and y requires two
values, one corresponding to = and the other to 3. In earlier chapters we have seen how pro-
gram inputs can be selected using techniques such as equivalence partitioning and boundary
value analysis. While these techniques offer a set of guidelines to design test cases, they suffer
from two shortcomings: (a) they raise the possibility of a large number of sub-domains in the

423

Foundations of Software Testing 12.1. Combinatorial designs

partition of the input space and (b) they lack guidelines on how to select inputs from various
sub-domains in the partition.

The number of sub-domains in a partition of the input domain increases in direct proportion
to the number and type of input variables, and especially so when multidimensional partitioning
is used. Also, once a partition is determined, one selects at random a value from each of the
sub-domains. Such a selection procedure, especially when using uni-dimensional equivalence
partitioning, does not account for the possibility of faults in the program under test that arise
due to specific interactions amongst values of different input variables. While boundary value
analysis leads to the selection of test cases that test a program at the boundaries of the input
domain, other interactions in the input domain might remain untested.

This chapter describes several techniques for generating test configurations or test sets that
are small even when the set of possible configurations, or the input domain, and the number of
sub-domains in its partition, is large and complex. The number of test configurations, or the test
set so generated, has been found to be effective in the discovery of faults due to the interaction
of various input variables. The techniques we describe here are known by several names such
as design of experiments, combinatorial designs, orthogonal designs, interaction testing, and
pairwise testing.

12.1.1. Test configuration and test set

In this chapter we use the terms test configuration and test set interchangeably. Even though
we use the terms interchangeably, they do have different meaning in the context of software
testing. However, the techniques described in this chapter apply the generation of both test
configurations as well as test sets, we have taken the liberty of using them interchangeably.
One must be aware that a test configuration is usually a static selection of factors, such as the
hardware platform or an operating system. Such selection is completed prior to the start of the
test. In contrast, a test set is a collection of test cases used as input during the test process.

12.1.2. Modeling the input and configuration spaces

The input space of a program P consists of k-tuples of values that could be input to P during
execution. The configuration space of P consists of all possible settings of the environment
variables under which P could be used.

EXAMPLE 12.1. Consider program P that takes two integers x > 0 and y > 0 as inputs.
The input space of P is the set of all pairs of positive non-zero integers. Now suppose that
this program is intended to be executed under the Windows and the Mac OS operating system,
through the Netscape or Safari browsers, and must be able to print to a local or a networked
printer. The configuration space of P consists of triples (X, Y, Z) where X represents an oper-
ating system, Y a browser, and Z a local or a networked printer. m

Next, consider a program P that takes n inputs corresponding to variables Xj, Xo,...,
X,. We refer to the inputs as factors. The inputs are also referred to as test parameters or
as values. Let us assume that each factor may be set at any one from a total of ¢;,1 < i < n
values. Each value assignable to a factor is known as a level. The notation | F' | refers to the
number of levels for factor F'.

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 5, 2006

425
Foundations of Software Testing Chapter 12. Test Generation: Combinatorial Designs

The environment under which an application is intended to be used, generally contributes
one or more factors. In Example 12.1, the operating system, browser, and printer connection
are three factors that will likely affect the operation and performance of P.

A set of values, one for each factor, is known as a factor combination. For example, suppose
that program P has two input variables X and Y. Let us say that during an execution of P, X
and Y may each assume a value from the set {a, b, ¢} and {d, e, f }, respectively. Thus we have
2 factors and 3 levels for each factor. This leads to a total of 32 = 9 factor combinations, namely
(a,d),(a,e),(a,f),(b,d),(b,e),(b,f)(c,d),(c,e),and (¢, f). In general, for k factors with each
factor assuming a value from a set of n values, the total number of factor combinations is n*.

Suppose now that each factor combination yields one test case. For many programs, the
number of tests generated for exhaustive testing could be exorbitantly large. For example, if a
program has 15 factors with 4 levels each, the total number of tests is 4'° ~ 10°. Executing a
billion tests might be impractical for many software applications.

There are special combinatorial design techniques that enable the selection of a small sub-
set of factor combinations from the complete set. This sample is targeted at specific types
of faults known as interaction faults. Before we describe how the combinatorial designs are
generated, let us look at a few examples that illustrate where they are useful.

EXAMPLE 12.2. Letus model the input space of an online Pizza Delivery Service (PDS) for
the purpose of testing. The service takes orders online, checks for their validity, and schedules
Pizza for delivery. A customer is required to specify the following four items as part of the online
order: Pizza size, Toppings list, Delivery address, and a home phone number. Let us denote
these four factors by S, T, A, and P, respectively.

Suppose now that there are three varieties for size: Large, Medium, and Small. There is a
list of 6 toppings from which to select. In addition, the customer can customize the toppings.
The delivery address consists of customer name, one line of address, city, and the zip code.
The phone number is a numeric string possibly containing the dash (“-") separator.

The table below lists one model of the input space for the PDS. Note that while for Size we
have selected all three possible levels, we have constrained the other factors to a smaller set
of levels. Thus we are concerned with only one of two types of values for Toppings, Custom or
Preset, and one of the two types of values for factors Address and Phone, namely Valid and
Invalid.

Factor Levels
Size Large Medium Small
Toppings | Custom Preset
Address Valid Invalid
Phone Valid Invalid

The total number of factor combinations is 2¢ + 22 = 24. However, as an alternate to the table
above, we could consider 6 + 1 = 7 levels for Toppings. This would increase the number of
combinations to 24+5x23+23+5x22 = 84. We could also consider additional types of values for
Address and Phone which would further increase the number of distinct combinations. Notice
that if we were to consider each possible valid and invalid string of characters, limited only by
length, as a level for Address, we will arrive at a huge number of factor combinations. m

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 5, 2006

426

Foundations of Software Testing 12.1. Combinatorial designs

Table 12.1: Factors and levels for the Unix sort utility.

Factor Meaning Levels
- Forces the source to be the standard | Unused Used
input.
-C Verify that the input is sorted ac- | Unused Used
cording to the options specified on
the command line.
-m Merge sorted input Unused Used
-u Suppress all but one of the matching | Unused Used
keys.
-0 output Output sent to a file. Unused Valid file Invalid file
-Tdirectory | Temporary directory for sorting. Unused Exists Does not
exist
-ykmem Use kmem kilobytes of memory for | Unused Valid kmem Invalid kmem
sorting.
-zrecsize Specfies record size to hold each line | Unused Zero size Large size
from the input file.
-dfiMnr Perform dictionary sort Unused fi Mnr fiMnr

Later in this section we explain the advantages and disadvantages of limiting the number of
factor combinations by partitioning the set of values for each factor into a few subsets. Notice
also the similarity of this approach with equivalence partitioning. The next example illustrates
factors in a GUL.

EXAMPLE 12.3. The Graphical User Interface of application T' consists of three menus
labeled File, Edit, and Format. Each menu contains several items listed below.

Factor Levels
File New Open Save Close
Edit Cut Copy Paste Select

Typeset LaTex BibTex PlainTeX Makelndex

We have three factors in T'. Each of these three factors can be set to any of four levels. Thus
we have a total 4* = 64 factor combinations.

Note that each factor in this example corresponds to a relatively smaller set of levels when
compared to factors Address and Phone in the previous example. Hence the number of levels
for each factor is set equal to the cardinality of the set of the corresponding values. m

EXAMPLE 12.4. Let us now consider the Unix sort utility for sorting ASCII data in files
or obtained from the standard input. The utility has several options and makes an interesting
example for the identification of factors and levels. The command line for sort is as given
below.

sort [-cmu] [-0 output] [-T directory][-y [kmem]] [-z recsz] [-dfiMnr][- b][t char]
[-k keydef] [+pos1 [-pos2]] [file...]

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 5, 2006

427
Foundations of Software Testing Chapter 12. Test Generation: Combinatorial Designs

Table 12.2: Factors and levels for the Unix sort utility (continued).

Factor Meaning Levels

-f Ignore case. Unused Used

-i Ignore non-ASCII characters. Unused Used

-M Fields are compared as months. Unused Used

-n Sort input numerically. Unused Used

-r Reverse the output order. Unused Used

-b Ignore leading blanks when using | Unused Used
+posl and -pos2.

-tc Use character c as field separator. Unused c1 c1C2

-kkeydef | Restricted sort key definition. Unused start end starttype

+posl Start position in the input line for | Unused f.c f 0.c
comparing fields.

-pos2 End position for comparing fields. Unused f.c f 0.c

file File to be sorted. Not Exists Does not

specified exist

Tables 12.1 and 12.2 list all the factors of sort and their corresponding levels. Note that the
levels have been derived using equivalence partitioning for each option and are not unique.
We have decided to limit the number of levels for each factor to 4. You could come up with a
different, and possibly a larger or a smaller, set of levels for each factor.

In Table 77 level Unused indicates that the corresponding option is not used while testing
the sort command. Used means that the option is used. Level Valid File indicates that the file
specified using the -o option exists whereas Invalid File indicates that the specified file does
not exist. Other options can be interpreted similarly.

We have identified a total of 20 factors for the sort command. The levels listed in Table ??
lead to a total of approximately 1.9 x 10° combinations. m

EXAMPLE 12.5. There is often a need to test a web application on different platforms to
ensure that any claim such as “Application X can be used under Windows and OS X.” Here
we consider a combination of hardware, operating system, and a browser as a platform. Such
testing is commonly referred to as compatibility testing.

Let us identify factors and levels needed in the compatibility testing of application X. Given
that we would like X to work on a variety of hardware, OS, and browser combinations, it is
easy to obtain three factors, i.e. hardware, OS, and browser. These are listed in the top row of
Table 12.3. Notice that instead of listing factors in different rows, we now list them in different
columns. The levels for each factor are listed in rows under the corresponding columns. This
has been done to simply the formatting of the table.

A quick examination of the factors and levels in Table 12.3 reveals that there are 75 factor
combinations. However, some of these combinations are infeasible. For example, OS 10.2
is an OS for the Apple computers and not for the Dell Dimension series PCs. Similarly, the
Safari browser is used on Apple computers and not on the PC in the Dell Series. While various
editions of the Windows OS can be used on an Apple computer using an OS bridge such as
the Virtual PC or Boot Camp, we assume that this is not the case for testing application X.

©Aditya P. Mathur. Author’s written permission is required to make copies of any part of this book.

Latest revision of this chapter: August 5, 2006

