[image: image3.png]@ MOTOROLA

CS406/407 Class Project - UDP Host

Commercial, Government, and Industrial Solutions Sector (CGISS)

Wireless Data Solutions Engineering

Revision History

	Revision
	Date
	Author
	Description

	1.0
	03/15/00
	Brian Benson
	Initial Issue

	1.1
	05/20/00
	Brian Benson
	Added additional reqs.

	1.2
	07/25/00
	Brian Benson
	Added multicast IP req. and VB Winsock example.

Table of Contents

41
Introduction

1.1
WDSE
4
1.2
Test Environment
4
1.3
Definitions, Acronyms, and Abbreviations
4
2
Project Outlines
5
2.1
UDP Traffic Host
5
2.2
System Performance Tool
5
2.3
ActiveX objects
5
3
Software Process
6
3.1
UML
6
3.2
Documentation
6
4
Specific Requirements
7
4.1
Platform
7
4.1.1
Operating System
7
4.1.2
Memory
7
4.1.3
Hard drive capacity
7
4.1.4
CPU
7
4.1.5
Throughput
7
4.1.6
Throughput tolerance
7
4.2
Startup and Control
8
4.2.1
Start Menu
8
4.2.2
Exiting the application
8
4.2.3
Command Line
8
4.3
External Interface
8
4.4
User Interface
8
4.5
Configuration Parameters
8
4.5.1
IP Address
8
4.5.2
Ports
9
4.5.3
Log File
9
4.5.4
Echo Traffic
9
4.5.5
Predetermined Message Sequences
10
4.6
Reports and Statistics
11
4.6.1
Running Time
11
4.6.2
Current Status
11
4.6.3
Inbound Received
11
4.6.4
Inbound MPH
11
4.6.5
Outbound Sent
11
4.6.6
Outbound MPH
12
4.6.7
Totals
12
4.6.8
Reset Statistics
12
4.7
Logging
12
4.8
Message Window
12
5
Example System Configurations for Test
13
5.1
Testing the Application
13
5.2
VB UDP Winsock Tool
13
5.3
Lab Testing
14
5.4
At Home Testing
14

1 Introduction

This document will provide the requirements for the Motorola UDP Host application. This application will be a Windows based tool to be used by the Wireless Data Solutions Engineering SAINT group, various System Integration and Test organizations within Motorola, and field engineers.

1.1 WDSE

Wireless Data Solutions Engineering designs and creates wireless data systems and wireless voice and data integrated systems. Public safety organizations such as police, fire, and power companies utilize these systems. Each system is designed to have 5 nines reliability, 99.99999% system availability, or downtime of only 5 minutes per year. Due to the large quality requirements, the WDSE test organization, SAINT, must provide tools that test and stress our systems at all stages of development.

1.2 Test Environment

Several boxes make up the wireless network, running on various real-time operating systems such as PSOS and AIX. Test tools are designed and executed on WindowsNT and Windows2000 machines. Microsoft Visual Studio is the development environment. Visual C++, Visual Basic, and Java are all used to implement tools.

1.3 Definitions, Acronyms, and Abbreviations

ACK

Acknowledged

Arms Around
The ability to have control of the input of a system and examine the final output.

NAK

Not Acknowledged

PDR

Packet Data Router

PDG

Packet Data Gateway

RF

Radio Frequency

RNC

Radio Network Controller

RNG

Radio Network Gateway

WNG

Wireless Network Gateway

2 Project Outlines

2.1 UDP Traffic Host

Several tools use UDP messages to generate traffic within our RF systems. In order to provide an “arms around” testing environment we must capture the output of our original message at the end of its route. In the past we have had small UDP host programs that count UDP messages and provide statistics. A more realistic environment would allow the UDP Host to generate complex traffic back to the original sending device. This will provide more realistic load levels on our system. Traffic profiles could be loaded into the host and be able to send various sized messages, at various speeds, and at various times. Currently we only have static capabilities, such as sending one predetermined UDP message only after the host receives a message.

2.2 System Performance Tool

Wireless networks must optimize their use of radio channels as customers do not have unlimited radio bandwidth. Depending on what type of radio channel a customer has secured from the FCC, some systems may be limited to 9600 bps communication. In these system configurations, message travel time throughout the system is very important. Due to the complex nature of our systems, and the multiple boxes and platforms required for 1 message to propagate through a system, it is very difficult to track individual messages. A tool that can send a message from an entry point, be retrieved at an end point, and have statistics reported on would be of great use. This would require “tagging” a message and parsing the message at the arrival point. Statistics such as near microsecond granularity of message travel time, messages arriving out of order, lost messages, and corrupted messages must be recorded. This functionality will be added to the UDP Host as part of CS407.

2.3 ActiveX objects

The SAINT group has begun an automation plan that will allow all our tools to be automated through VBA, Visual Basic for Applications. Many of our tools are DOS based and must sooner or later be rewritten as ActiveX objects in C++ or Visual Basic. The UDP Host should utilize ActiveX components whenever possible. A modular design with ActiveX components, when and if appropriate, would encourage software reuse and reduce cycle time for new tool development.

ActiveX development should not be taken lightly. The core technology, various language requirements, and overall use are a trivial task to learn. The actual creation of ActiveX objects does take practice as each language you may use has it’s own unique details.

3 Software Process
The SAINT team loosely follows the Unified Software Development Process. Rational Rose modeling would be strongly suggested in design documents produced by students.

3.1 UML

While Rational Rose does not produce exact UML specific diagrams, use cases, and sequence diagrams, it does provide the best option for UML creation on a computer. It is highly recommended that Rational Rose, or an equivalent application, be used in the creation of design documents.

3.2 Documentation

All documentation should be produced in either Microsoft Word or Adobe Framemaker.

4 Specific Requirements

This section details the specific requirements of the UDP Host application. Each requirement must be met in exact detail. If a requirement cannot be achieved, or the technical merit of the requirement is in doubt, the requirement will be reviewed by the Control Change Board. The CCB is an over sight committee of various members that can alter requirements, scope and focus of a tool, and requests to add new requirements that will affect any schedules.

4.1 Platform

4.1.1 Operating System

UDP will need to run on either WindowsNT or Windows2000. Depending on the availability of operating systems, either choice is acceptable. Windows2000 has many built in advantages such as multicast IP managers, higher network performance output, and overall greater stability.
4.1.2 Memory

Each machine will have at minimum 64 megabytes of memory.

4.1.3 Hard drive capacity

Each machine will be assumed to have over 500 free megabytes for installation, temporary files, and log files.

4.1.4 CPU

Each machine will have a Pentium II 400 or faster processor. Pentium III dual processor computers will be the dominant installation machines.

4.1.5 Throughput

UDP Host will be able to generate at minimum 384,000 messages per hour and receive 384,000 messages per hour for a total of 768,000 messages per hour. This calculation is based on the slowest system that will use UDP Host, a legacy system using RD-LAP capable of 24,000 messages per channel. A channel is a segment of RF dedicated to data traffic. Future IP based systems will have much higher message throughputs, so UDP Host must be able to process at least 768,000 messages.

4.1.6 Throughput tolerance

The message per hour rate that UDP Host will graphically display will be within 5% of the actual calculated messages per hour.
4.2 Startup and Control

4.2.1 Start Menu

UDP Host will be available through the Windows Start menu. This can be a shortcut, an installed package from Install Shield, etc.

4.2.2 Exiting the application

UDP Host will have an exit menu choice, and can be quit by clicking the exit window button in the upper right hand corner.

4.2.3 Command Line

UDP Host may be started through a command prompt interface by typing the name of the executable. Parameters passed to UDP Host include: ports, IP addresses, and message sizes. Additional parameters can be added as seen fit.

4.3 External Interface

The basic function of starting and stopping the UDP Host could be provided as an OLE interface. While this is not required, it would be beneficial to have external functions exposed as OLE automation interfaces. This would allow future applications to use automation to control UDP Host.

Whenever possible, components of UDP Host should be built as ActiveX objects. The application can be produced without any ActiveX objects, or many. Few speed issues exist for ActiveX, even those produced with Visual Basic. It is not recommended that you mix and match ActiveX components created by different technologies. This means a Visual Basic produced ActiveX object may not talk correctly to an ATL created object and an MFC created ActiveX object. This is due to different runtime issues with each language.

4.4 User Interface

The User Interface should be graphical and provide easy manipulation of all system components. The preferred GUI is a Visual Basic or Visual C++ produced GUI. Java can be used if it can achieve desired results.

System menus must be provided as needed to help configure, start, and exit the application.

4.5 Configuration Parameters

4.5.1 IP Address

The current IP address of the machine that UDP Host is running on must be an editable field. The default should be the current IP of the local machine. In some special dual NIC card interfaces, the IP may need to be manually added. Only valid IP address should be allowed to be entered. Microsoft has built in IP controls available in Visual Basic and Visual C++.

The destination IP address will be determined from the arriving UDP packet. A second destination IP other than the sending device may also be configured. The second IP destination field must be editable, and be able to be activated and deactivated depending on the user’s needs for a second destination. Only valid IP address should be allowed to be entered.

4.5.2 Ports

Editable fields for the arrival port and outbound port must be present. The arrival port is the port that traffic will arrive on and should be listened too. The outbound port is assumed to be the sending devices port, echo is explained below. In some rare instances, the outbound port will be a 3rd machine other than the sending or receiving device. The outbound port is assumed to be the sending devices port. (This information can be obtained by parsing the UDP message you received)

Windows should automatically handle outbound UDP traffic, but when a second destination IP is provided, a second outbound UDP port will also be required. This is an editable field that is only available when a second IP destination address has been entered. A checkbox, or other method you create, will activate this field if it is to be used.

The Windows Operating system only provides 65,535 ports, of which 0 to 1023 are reserved for system use. Microsoft recommends that a range of 1024 to 65,535 be used for 3rd party development. While choosing the port numbers check with the sponsor to see if that particular port number is already in use.

The best thing to do is to provide a default port to the user but allow the user to dynamically set the port numbers based on the needs of the system. It is unsafe to assume what ports other 3rd party developers are using.

4.5.3 Log File

A log file of all inbound and outbound traffic must be time stamped to within 10 ms granularity. Windows NT only guarantees a system granularity of 10ms. More accurate time stamps can be achieved with high-resolution timer objects, but are not required. The log file must be a configurable text string of the destination path, or configured with a standard Windows Save dialog box. The log file can be turned on and off before run time. It is not required that the log file be able to be dynamically turned on and off at runtime.

4.5.4 Echo Traffic

The UDP Host application can echo a packet of data back to the original sending IP address. The information regarding the sending device is embedded in the UDP packet structure. Standard Windows WinSock function calls can determine this information.

An editable field must present the user with the option to turn echoing on and off. The data to be echoed can be an editable custom string, a random message based on an editable field of size, or a predetermined series of messages. The echo feature can be dynamically turned on and off at runtime with a minimal reaction time.

The custom message and random message with size field can be changed at any time. If a user has selected a predetermined series of messages, to be explained later, the custom message response and random message fields will not be available.

4.5.5 Predetermined Message Sequences

Static echo of data only achieves a doubling of the traffic on a system. It is useful to be able to alter when data is echoed to better achieve a real world experience. A method to “script” a series of messages based on size, randomness, time, and activity should be created. When this option is selected, a config file or .ini file may be selected. A separate dialog box may also be presented to allow the user the ability to configure the message sequences. These sequences should be able to be saved and later loaded.

An example would be the user selecting predetermined message sizes. The user decides to have only 25 and 1000 byte messages be sent. When the UDP host needs to send traffic, it will alternate between message sizes. If the user turns off the echo data option at any time, the host will no longer send traffic. When the echo choice is turned back on, the messages sent will continue to be only 25 and 1000 byte messages.

Any combination of the below events can be implemented. The more complex the sequencing becomes, the more complex the program will become. It is only expected that 3 of these sequencing features be implemented. Multicast must be one of those features!

It is expected that only one of these options can be active at a time. If the user decides 10 minutes after starting UDP Host that they would rather choose message spiking over planned message sizes, the UDP Host would need to be stopped first. Dynamic alternation of these features would be excellent, but not expected.

Features to implement:

· Message spiking. A spike value is entered that will “buffer” messages to be echoed until the spike value has been reached. When that value has been reached, all messages will be echoed at once. This creates a traffic spike.

· Predetermined message sizes. A pool of various sized messages are randomly echoed.

· Planned message sizes. A repeatable pattern of message sizes is entered. Up to 6 message sizes can be entered and alternated as the echo size.

· Time based activity. An elapsed time interval is provided, in milliseconds, that when reached will send a custom message. This is useful for debugging purposes.

· Random message arrival. A min and max value in milliseconds is provided. The message will echo in a random interval between the min and max. Example: Message1 arrives and is to be echoed back in 10 milliseconds. Message2 arrives 5 milliseconds later. It is to be echoed 2 milliseconds after arrival. The outbound echo order will be Message2 then Message1, 3 milliseconds later.

· Scripted responses. Based on the content of the UDP packet, certain predetermined sequences can be scripted. For example, if a packet arrives with a data payload of “Script 1” then the activities of Script 1 is executed which may be various messages to send.

· Multicast IP. The message is multicast to all machines on the network upon message arrival.

4.6 Reports and Statistics

4.6.1 Running Time

The amount of time the application has been running in Days: Hours: Minutes: Seconds.

4.6.2 Current Status

Display the current status in a Window status pane or as a field on the GUI. The valid status states are: Idle, Running, and Error. The Error status is indicated if any configuration parameters are entered incorrectly or an internal error is detected that prevents the proper execution of the application.

4.6.3 Inbound Received

A field will indicate within 5% of the calculated actual number, the amount of received packets. The actual number cannot always be shown due to the GUI not being able to redraw the screen instantly. This value should be updated at least once every 5 seconds.

4.6.4 Inbound MPH

Calculate the estimated Messages Per Hour based on the current execution time and the number of messages received. This field should be updated at least once every 5 seconds.

4.6.5 Outbound Sent

A field will indicate the number of messages sent from the UDP Host to the original sending device or a secondary destination. This field should be updated at least once every 5 seconds.
4.6.6 Outbound MPH

Calculate the estimated Messages Per Hour based on the current execution time and the number of messages sent. This field should be updated at least once every 5 seconds. This value is based on the outbound sent value and the running time. It may fluctuate greatly as random messaging options will deviate the MPH during the first few minutes of execution.

4.6.7 Totals

A field indicated the total number of messages currently sent and received should be updated at least once every 5 seconds.

A field indicating the estimated total system MPH should be updated once every 5 seconds. This value may fluctuate greatly during runtime based on the echo options chosen. Random echoing of messages makes it impossible to determine an exact total system MPH but a number should be estimated based on the running time and total messages received and sent.
4.6.8 Reset Statistics

A button will reset the statistics and runtime of the application.

4.7 Logging

The logging, when turned on, will produce a file if the name doesn’t previously exist. It should not concatenate the file, but start from the top. Each message sent and received will be time stamped to within 10 milliseconds of the actual time. If there is no more disk space, the log file should be suspended with an error message produced.

4.8 Message Window

A separate window (or integrated window if the speed is acceptable) should be able to display the current messages being sent to the host. Due to speed issues, this should not buffer more than the last 50 messages. The window can be activated by a push button or a menu choice. The option to clear this window should be available.

Example System Configurations for Test

4.9 Testing the Application

To test the UDP Host, you need a method of generating a UDP message that will be sent to the UDP Host. Using Visual Basic this tool is quite simple to create. Below is a quick tutorial on how to create such a program using Winsock and VB.

4.10 VB UDP Winsock Tool

From Visual Basic, create a new Standard EXE project. Draw a button onto the main form. Change the name and the caption of the button to ‘Send’. Click on the button and modify the values on the right side of the screen in the Properties window.

From the menu, choose Project… Components. Add the Microsoft Winsock Control. A small Winsock icon was added to the left tab pane. Draw a Winsock control onto the main form. Click on the Winsock control and change the Protocol property to UDP. Also change the control name from Winsock1 to something useful like UDPcontrol.

Double click on the form. Add the following line of code to the Form_Load() function. UDPcontrol.Connect "1.2.3.4", 5555

1.2.3.4 will be replaced with the destination IP address that you have UDP Host running on.

Double click on the Send button and add this line of code to the Send_Click() function. UDPcontrol.SendData "Hello World"
Now run your program, each time you click Send it will send the hex representation of “Hello World” to the IP entered and port 5555. If your host is listening on port 5555 on IP 1.2.3.4, you should see some type of activity.

4.11 Lab Testing

Check with your local network admin before testing multicast IP features!

[image: image1.wmf]Ethernet

UDP sending device

Workstation

Workstation

UDP Host

Rest of network

4.12 At Home Testing

[image: image2.wmf]UDP sending device

UDP Host

Hub

13
13

Motorola Internal Use Only

_1026024735.vsd

_1026024766.vsd

