Testing with stubs

Problem Statement

In real life application development in a complex project, often it is found that there are multiple teams working independently and parallel on separate components / modules. The dependency between the components / modules though complex in nature is described by well defined and unambiguous interfaces. Very often it is found that testing for an individual component / module cannot proceed till the completion of implementation of other modules/components it depends on. In such a scenario stubs can be used to emulate behavioral aspects of a module /component for testing adequately the inter-component /inter-module dependency. The problems that we try to investigate and address encompasses all of the following

· How to extract information for stubs and automatically generate them?

· How to ensure stub code generation covering all meaningful states and data using a constraint solver from testing coverage point of interest ?

TCS has its own constraint solver engine inbuilt as part of its in-house testing tool Testify. The constraint solver uses functional specifications to generate data satisfying the equations and has built in support for combinatorics of data coverage across all partitions. In the context of stub generation, the constraint solver can be used to specify the interdependencies between called component parameters (input and output) and the solutions are then subsequently used to generate stub skeletal code.

Background

Often, we encounter a situation where we want to test a component (Component Under Test) but the components that are used by the component to be tested, are themselves not available due to a variety of reasons that could possibly include the following.

· the components that are used by the Component Under Test is not yet written or made available when independent teams work in parallel in a large, complex project.

· the environment under which the dependent component is to be used is not available or too expensive to setup - e.g. in a straight through processing world, if we are testing a bank’s trading systems, the stock exchange systems may not be available

In such circumstances, one of the following two approaches can be adopted

· Bypass the invocation of the unavailable component

· Create a “stub” that emulates some characteristics of the component

Bypassing the invocation component is usually acceptable only if that component performs an action (usually output) that does not impact the remaining processing. A stub approach is a must when the component provides inputs required for downstream processing.

Even if a component is available, it is still a good idea to test with stubs to ensure completeness of testing as explained below.

Consider the typical scenario as illustrated in the following example:

Function A ()

{ ….

 ….

 Call B (in, out)

 If error {…..}

 If out = 1 {….} else

 If out = 2 {….}

….

}

When function A calls function B, there are three possible results error, out = 1, out = 2.

For testing completeness one would want to test that function A handles all these situations correctly. However, it may not be possible to determine which inputs to function B will cause the behavior because that may depend on some other state variables for e.g. a value in the database or some global state variables.

In such circumstances, one may want to test function A with some stub implementation of function B so that all possible values are returned and we can test that the return values after invoking function B are handled correctly.

We can thus see that it is necessary to make certain components available in a “stub” mode so that:

· testing is possible

· testing can be done less expensively

· testing can be more thorough and complete

In the remainder of the note we characterize what these stubs should look like and outline some approaches to creating them.

Requirements

Stubs can be created with different levels of sophistication to deal with a variety of testing requirements. In this section, we illustrate the requirements using some typical scenarios.

The simplest requirement could be that the stub does nothing and raises no error condition. This is useful when the component is typically an output component and one does not want to bypass its invocation.

Alternatively, one may simply want to create a trace of the input parameters that were passed to it – this is like a do nothing implementation but with a record that the function was invoked.

Sometimes, it is adequate for purposes of testing that the stub function returns some fixed hard coded set of type correct values. This is similar to the do nothing situation, when there is no interest in the function getting stubbed.

While doing basic functional testing, often the stub component is a stateless function. In such cases the stub should return meaningful values in relation to the input that was received. E.g.

Call functionB (in1, in2, out1)

In this case the stub could be specified as one of

a) out1 = in1 + in2 or

b) if in1 < 10 and in2 > 5 then out1 = 20 else 50

c) table that gives values for in1, in2, out 1 – error condition is raised when there is no match in table

Often, when a function is invoked several times in succession, it returns either data or some error (or “done”) condition. How many times it returns data and what data it returns could depend on invocation of some other function in that component. Essentially, a component has usage scenarios.

Apart from testing “correct” scenarios, there is a need for negative testing, testing whether errors and exceptions are handled correctly. Thus the stub behavior should, according to the type of testing that is being performed, enable the tester to run through each type of condition.

Implementation approach

It is suggested that the implementation manifested as a proof of concept prototype is developed as an Eclipse plug-in for the Java environment. Eclipse’s own Java Development Tooling (JDT) provides a semantically rich java model that can be used and harnessed to extract out rich form of analysis information needed for effective stub generation. TCS has its own in-house testing tool called Testify that has a built in constraint solver engine that can be leveraged for stub data generation based on data criterion.

April 11, 2006
TCS Confidential
1 of 4

