Project task outline

Peter Schier, Microsoft

August 2006

Reference: Driver fundamentals. Oney Book chapters:

· Chapter 1 Beginning a Driver Project – entire chapter

· Chapter 2 Basic Structure of a WDM driver

· Install DSF runtime and run

· cscript “\Program Files\DSF\USBLoopback\RunLoopackSample.wsf”

· Examine source code in \src\Test\dsf\usb\SoftUSBLoopback and \src\usb\bulkusb in WDK installation folder.

· Pg. 25 – The System is in Charge

· The user plugging in your device is done via simulation. This happens at line 61 in the script “\Program Files\DSF\USBLoopback\RunLoopackSample.wsf”:

· Dim Bus : Set Bus = DSF.HotPlug(LoopbackDSFDev, "USB2.0")
· The system ultimately loads the bulkusb.sys driver and calls DriverEntry in \src\usb\bulkusb\sys\bulkusb.c.

· The AddDevice routine is called as BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c.

· The application opening a handle to the device happens in the rwbulk.exe test application in the function open_file in \src\usb\bulkusb\exe\rwbulk.c.

· The generated IRP is handled in the driver by BulkUsb_DispatchCreate in \src\usb\bulkusb\sys\bulkdev.c.

· The application reads data in \src\usb\bulkusb\exe\rwbulk.c at line 1054:

 success = ReadFile(hRead,

 pinBuf,

 ReadLen,

 &nBytesRead,

 NULL);

· The generated IRP is handled in the driver by BulkUsb_DispatchReadWrite in \src\usb\bulkusb\sys\bulkrwr.c.

· The I/O completion is not signaled by an interrupt in this case but instead by the calling of the IRP completion routine BulkUsb_ReadWriteCompletion in \src\usb\bulkusb\sys\bulkrwr.c. There is no DPC (deferred procedure call) routine in this case. All of the I/O completion work is done in BulkUsb_ReadWriteCompletion.

· The device is unplugged in \Program Files\DSF\USBLoopback\RunLoopackSample.wsf at line 88:

· Bus.UnPlug LoopbackDSFDev
· The generate close IRP is handled by the driver in BulkUsb_DispatchClose in \src\usb\bulkusb\sys\bulkdev.c. The driver is then notified that it is being unloaded when its unload routine is called - BulkUsb_DriverUnload in \src\usb\bulkusb\sys\bulkusb.c.
· Pg. 27 How the System Finds and Loads Driver
· In the case of a USB device, the “system bus driver” is usbhub.sys which works together with the USB controller drivers to query USB devices for their electronic signatures. USB devices respond to a protocol command for this signature. This signature is set by the simulator in \src\Test\dsf\usb\SoftUSBLoopback\LoopbackDevice.cpp at line 202:

· USHORT usProductId = 0x930A; //product id for BULK USB

IfFailHrGo(m_piUSBDevice->put_Vendor(0x045E));

 IfFailHrGo(m_piUSBDevice->put_Product((SHORT)usProductId));

USB devices contain data structures called descriptors that the host can request from the device. The device descriptor contains this electronic signature which is used to synthesize the device’s PNP ID (plug and play identifier). This ID is the electronic signature used to find the driver.

· Pg. 28 Device and Driver Layering
· In the case of USB loopback the layering looks like this:

FiDO – Upper filter driver – not used in this case

FDO – Function driver – bulkusb.sys

FiDO – Lower filter driver – not used in this case

PDO – Bus Driver – usbhub.sys
· Pg. 31 Plug and Play Devices

· The bus driver for USB is usbhub.sys. It monitors the USB and creates PDOs for newly connected USB devices. Device reports its PNP ID as described above. This ID matches the INF file for bulkusb at \drivers\wdm\usb\driver\bulkusb\sys\bulkusb.inf:

USB\VID_045E&PID_930A
· usbhub, as a bus driver can choose how to form PNP IDs and it uses the prefix “USB\” followed by “VID_” + vendor ID and “PID_” + product ID. When you install DSF the inf file and bulkusb.sys are copied to the system. INF files are in a well-known location that the system searches (\windows\inf).

· IRP_MN_START_DEVICE is handled by HandleStartDevice in \src\usb\bulkusb\sys\bulkpnp.c.

· Pg. 35 Legacy Devices – skip

· Pg. 38 Order of Driver Loading
· The complete stack of US really looks like this:

FDO – bulkusb.sys – the function driver for the loopback device

PDO – usbhub.sys creates this PDO for the loopback device
FDO – ubshub.sys – the function driver for the controller root hub and USB external hubs

PDO – usbport/usbehci – creates the PDO for the hub driver

FDO - usbport/usbehci – function driver for the USB controller

PDO – pci.sys – creates the PDO for the USB controller

FDO – pci.sys – function driver for the PCI bus

PDO – acpi.sys – creates the PDO for the PCI bus

· Pg. 45 Visualizing the Device Tree

In addition to the DEVVIEW utility that comes with book also try running the Windows Device Manager (right click Computer and select manage). On the View menu select “View Devices by Connection”

· Pg. 51 Device Objects

· Bulkusb’s AddDevice routine is implemented by BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c. It calls IoCreateDevice to create the FDO for the loopback device. Its device extension (where bulkusb stores device-scope context) is defined by struct DEVICE_EXTENSION in \src\usb\bulkusb\sys\bulkusb.h. Note that this struct could have been called anything and Windows has no knowledge of the struct name.

· Pg. 54 The DriverEntry Routine
· DriverEntry for bulkusb in \src\usb\bulkusb\sys\bulkusb.c. It stores the driver’s registry path (used for driver configuration settings in the registry) and sets the driver’s dispatch routine addresses in the DRIVER_OBJECT.

· Pg. 59 DriverUnload

· BulkUsb_DriverUnload in \src\usb\bulkusb\sys\bulkusb.c implements the DriverUnload routine for bulkusb. It simply frees the memory used to store the registry path that was allocated in DriverEntry.
· Pg. 60 The AddDevice Routine

· Bulkusb’s AddDevice routine is implemented by BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c. It does the following:

· calls IoCreateDevice to create the FDO for the loopback device

· stores the FDO and the PDO in the device extension

· initializes linked list of I/O requests and synchronization primitives

· adds the FDO to the device stack (IoAttachDeviceToDeviceStack call)

· registers an interface so that applications can use the driver (IoRegisterDeviceInterface call). rwbulk.exe uses this to open a handle to the driver (see open_file in \src\usb\bulkusb\exe\rwbulk.c).

· does some power management stuff we can ignore

· registers the driver as a WBEM data provider – we’ll ignore that too
· Pg. 63 Naming Devices – optional (i.e. interesting but not needed for this project)

· Pg. 65 Symbolic Links – optional

· Pg. 69 Should I Name My Device Objcet – optional

· Pg. 71 The Device Name – optional

· Pg. 72 Notes on Device Naming – optional

· Pg. 73 Device Interfaces

· This explains why the driver calls IoRegisterDeviceInterface and how rwbulk.exe accesses this interface.

· Pg. 80 Other Global Device Initialization – skip until pg. 83 Initializing the Device Flags

· Pg. 87 Windows 98/Me Compatibility Notes - skip
· Basic Programming Techniques

· Synchronization

· The I/O Request Packet

· Plug and Play for Function Drivers

· Reading and Writing Data

· The Universal Serial Bus pp. 559-604

· How to build bulkusb

· Installing bulkusb

· Code to understand in bulkusb.sys driver in \src\usb\bulkusb\sys folder of WDK installation

===================================

bulkusb.c - DriverEntry, BulkUsb_AddDevice

bulkpnp.c - BulkUsb_DispatchPnP, HandleStartDevice,

ReadandSelectDescriptors, ConfigureDevice, SelectInterfaces, CallUSBD,

BulkUsb_GetRegistryDword

bulkdev.c - BulkUsb_DispatchCreate

bulkrwr.c - BulkUsb_DispatchReadWrite, BulkUsb_ReadWriteCompletion

bulkusb.inf

\drivers\wdm\usb\driver\bulkusb\exe

===================================

rwbulk.c - main, OpenOneDevice, OpenUsbDevice, GetUsbDeviceFileName

Simulation:

Read dev guide

Study loopback sample

Do lab exercises

Goals:

1) Produce fully automated test for bulkusb driver's read and write features

2) Increase code coverage by injecting faults in simulator

Fault injection opportunites:

Don't put data into bulk IN endpoint queue

Put wrong amount of data into IN endpoint queue

Put incorrect data into IN endpoint queue

NAK writes forever

Code improvement opportunities:

Examine returned data length

Examine returned data content

Add timeout to reads and writes

