Purdue University

CS 490M Software Testing

Fall 2006

Microsoft Sponsored Project

Windows Driver Model

Project document prepared by: Peter Shier, Microsoft

Co-sponsor: Adam Shapiro, Microsoft

Initial Setup

· Install Vista on a test machine
· Install the WDK on a development machine
· Install the DSF runtime on the test machine
· Run the loopback simulator sample. 
The loopback simulator consists of three parts:

1) The simulator – source is under the WDK installation folder at \src\Test\dsf\usb\SoftUSBLoopback.

2) The bulkusb driver. This is the driver for the loopback device. It is under the WDK installation folder at \src\usb\bulkusb\sys.
3) The test application rwbulk.exe. Under the WDK installation folder at \src\usb\bulkusb\exe.
After installation, the big picture on the test machine is as follows:

1) You run a utility (“\Program Files\DSF\softehci\softehcicfg” /install) to hot-plug a simulated USB 2.0 controller into the test system

2) You run a test script (“\Program Files\DSF\USBLoopback\RunLoopackSample.wsf” to hot-plug a simulated loopback device into the simulated controller

3) The OS loads the bulkusb driver to operate the device

4) You run the rwbulk.exe utility to send I/O to the device.

The next step is learning about the Windows Driver Model from the Walter Oney book. The book is long and does not need to be read in its entirety. The following describes each chapter and the sections within each chapter that you need to read. There are also numerous references to the simulator, bulkusb driver, and rwbulk application code so that you can relate what you are learning to the DSF loopback sample. 
Chapter 1 Beginning a Driver Project – entire chapter

Chapter 2 Basic Structure of a WDM driver

In general for this chapter:

Install DSF runtime and run 

cscript “\Program Files\DSF\USBLoopback\RunLoopackSample.wsf”

Examine source code in \src\Test\dsf\usb\SoftUSBLoopback and \src\usb\bulkusb in WDK installation folder.

Pg. 25 – The System is in Charge

The user plugging in your device is done via simulation. This happens at line 61 in the script “\Program Files\DSF\USBLoopback\RunLoopackSample.wsf”:

Dim Bus : Set Bus = DSF.HotPlug(LoopbackDSFDev, "USB2.0")
The system ultimately loads the bulkusb.sys driver and calls DriverEntry in \src\usb\bulkusb\sys\bulkusb.c.
The AddDevice routine is called as BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c.

The application opening a handle to the device happens in the rwbulk.exe test application in the function open_file in \src\usb\bulkusb\exe\rwbulk.c.

The generated IRP is handled in the driver by BulkUsb_DispatchCreate in \src\usb\bulkusb\sys\bulkdev.c.

The application reads data in \src\usb\bulkusb\exe\rwbulk.c at line 1054:

                success = ReadFile(hRead,

                                   pinBuf,

                                   ReadLen,

                                   &nBytesRead,

                                   NULL);

The generated IRP is handled in the driver by BulkUsb_DispatchReadWrite in \src\usb\bulkusb\sys\bulkrwr.c.

The I/O completion is not signaled by an interrupt in this case but instead by the calling of the IRP completion routine BulkUsb_ReadWriteCompletion in \src\usb\bulkusb\sys\bulkrwr.c. There is no DPC (deferred procedure call) routine in this case. All of the I/O completion work is done in BulkUsb_ReadWriteCompletion.

The device is unplugged in \Program Files\DSF\USBLoopback\RunLoopackSample.wsf at line 88:

Bus.UnPlug LoopbackDSFDev
The generated close IRP is handled by the driver in BulkUsb_DispatchClose in \src\usb\bulkusb\sys\bulkdev.c. The driver is then notified that it is being unloaded when its unload routine is called - BulkUsb_DriverUnload in \src\usb\bulkusb\sys\bulkusb.c.
Pg. 27 How the System Finds and Loads Driver
In the case of a USB device, the “system bus driver” is usbhub.sys which works together with the USB controller drivers to query USB devices for their electronic signatures. USB devices respond to a protocol command for this signature. This signature is set by the simulator in \src\Test\dsf\usb\SoftUSBLoopback\LoopbackDevice.cpp at line 202:

USHORT usProductId = 0x930A; //product id for BULK USB    

IfFailHrGo(m_piUSBDevice->put_Vendor(0x045E));

    IfFailHrGo(m_piUSBDevice->put_Product((SHORT)usProductId)); 

USB devices contain data structures called descriptors that the host can request from the device. The device descriptor contains this electronic signature which is used to synthesize the device’s PNP ID (plug and play identifier). This ID is the electronic signature used to find the driver.

Pg. 28 Device and Driver Layering
In the case of USB loopback the layering looks like this:

FiDO – Upper filter driver – not used in this case

FDO – Function driver – bulkusb.sys

FiDO – Lower filter driver – not used in this case

PDO – Bus Driver – usbhub.sys
Pg. 31 Plug and Play Devices

The bus driver for USB is usbhub.sys. It monitors the USB and creates PDOs for newly connected USB devices. Device reports its PNP ID as described above. This ID matches the INF file for bulkusb at \drivers\wdm\usb\driver\bulkusb\sys\bulkusb.inf:

USB\VID_045E&PID_930A
usbhub, as a bus driver can choose how to form PNP IDs and it uses the prefix “USB\” followed by “VID_” + vendor ID and “PID_” + product ID. When you install DSF the inf file and bulkusb.sys are copied to the system. INF files are in a well-known location that the system searches (\windows\inf).

IRP_MN_START_DEVICE is handled by HandleStartDevice in \src\usb\bulkusb\sys\bulkpnp.c.

Pg. 35 Legacy Devices – skip

Pg. 38 Order of Driver Loading
The complete stack of US really looks like this:

FDO – bulkusb.sys – the function driver for the loopback device

PDO – usbhub.sys creates this PDO for the loopback device
FDO – ubshub.sys – the function driver for the controller root hub and USB external hubs

PDO – usbport/usbehci – creates the PDO for the hub driver

FDO - usbport/usbehci – function driver for the USB controller

PDO – pci.sys – creates the PDO for the USB controller

FDO – pci.sys – function driver for the PCI bus

PDO – acpi.sys – creates the PDO for the PCI bus

Pg. 45 Visualizing the Device Tree

In addition to the DEVVIEW utility that comes with book also try running the Windows Device Manager (right click Computer and select manage). On the View menu select “View Devices by Connection”

Pg. 51 Device Objects 

Bulkusb’s AddDevice routine is implemented by BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c. It calls IoCreateDevice to create the FDO for the loopback device. Its device extension (where bulkusb stores device-scope context) is defined by struct DEVICE_EXTENSION in \src\usb\bulkusb\sys\bulkusb.h. Note that this struct could have been called anything and Windows has no knowledge of the struct name.

Pg. 54 The DriverEntry Routine
DriverEntry for bulkusb in \src\usb\bulkusb\sys\bulkusb.c. It stores the driver’s registry path (used for driver configuration settings in the registry) and sets the driver’s dispatch routine addresses in the DRIVER_OBJECT.

Pg. 59 DriverUnload
BulkUsb_DriverUnload in \src\usb\bulkusb\sys\bulkusb.c implements the DriverUnload routine for bulkusb. It simply frees the memory used to store the registry path that was allocated in DriverEntry.
Pg. 60 The AddDevice Routine

Bulkusb’s AddDevice routine is implemented by BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c. It does the following:

· calls IoCreateDevice to create the FDO for the loopback device

· stores the FDO and the PDO in the device extension

· initializes linked list of I/O requests and synchronization primitives

· adds the FDO to the device stack (IoAttachDeviceToDeviceStack call)

· registers an interface so that applications can use the driver (IoRegisterDeviceInterface call). rwbulk.exe uses this to open a handle to the driver (see open_file in \src\usb\bulkusb\exe\rwbulk.c).

· does some power management stuff we can ignore

· registers the driver as a WBEM data provider – we’ll ignore that too
Pg. 63 Naming Devices – optional (i.e. interesting but not needed for this project)

Pg. 65 Symbolic Links – optional

Pg. 69 Should I Name My Device Objcet – optional

Pg. 71 The Device Name – optional

Pg. 72 Notes on Device Naming – optional

Pg. 73 Device Interfaces

This explains why the driver calls IoRegisterDeviceInterface  and how rwbulk.exe accesses this interface.

Pg. 80 Other Global Device Initialization – skip until pg. 83 Initializing the Device Flags

Pg. 87 Windows 98/Me Compatibility Notes - skip
Chapter 3: Basic Programming Techniques

Pg. 95 Structured Exception Handling – skip until (but not including) Pg. 106 Bug Checks

Pg. 108 User-mode and Kernel-mode Address Space

At top of pg. 109 the text states, “It’s generally unlikely that a WDM driver will execute in the same thread context as the initiator of the I/O requests it handles”. That is true but in the case of bulkusb, when rwbulk calls CreateFile to open a handle to the driver (\src\usb\bulkusb\exe\rwbulk.c line 425) that causes the I/O manager to send IRP_MJ_CREATE to bulkusb which is handled in the driver by BulkUsb_DispatchCreate in \src\usb\bulkusb\sys\bulkdev.c. BulkUsb_DispatchCreate will be called in the rwbulk application thread. The reason this happens is because bulkusb is at the top of its driver stack for this device interface.

The same is true for when rwbulk issues a read or write request (ReadFile and WriteFile calls at line 1041 in \src\usb\bulkusb\exe\rwbulk.c). These are handled by BulkUsb_DispatchReadWrite in \src\usb\bulkusb\sys\bulkrwr.c and that routine will be called in the rwbulk application thread but – when the I/O completes and the I/O manager calls BulkUsb_ReadWriteCompletion (in the same file) that will occur in an arbitrary thread. 
Pg. 111 Compile-Time Control of Pageability

You can see examples of how bulkusb controls pageability in \src\usb\bulkusb\sys\bulkdev.c. At line 36:

#pragma alloc_text(PAGE, BulkUsb_DispatchCreate)
tells the compiler that the routine BulkUsb_DispatchCreate should be put into a paged section. Within the routine itself at line 70

    PAGED_CODE();
is a macro that expands to the following in debug builds:

#define PAGED_CODE() {                                                       \

    if (KeGetCurrentIrql() > APC_LEVEL) {                                    \

        KdPrint(("EX: Pageable code called at IRQL %d\n", KeGetCurrentIrql())); \

        NT_ASSERT(FALSE);                                                    \

    }                                                                        \

}

If the IRQL is too high for what should be paged code but the code somehow managed to remain in memory and run, then this macro will print a message in the kernel debugger command window and stop machine execution with the NT_ASSERT macro. When the assert occurs the debugger will allow the user to continue and ignore it or treat it as a breakpoint.

Pg. 114 Run-Time Control of Pageability – skip

Pg. 117 Heap Allocator

Bulkusb does all of its dynamic memory allocations using a single tag. This is accomplished via the macros in \src\usb\bulkusb\sys\bulkusb.h:
#define BULKTAG (ULONG) 'KluB'

#undef ExAllocatePool

#define ExAllocatePool(type, size) \

        ExAllocatePoolWithTag(type, size, BULKTAG)

#undef  ExFreePool

#define ExFreePool(type) \

        ExFreePoolWithTag(type,BULKTAG)

The tag is defined as the 4 byte value ‘KluB’ because in the debugger on an Intel-based little-endian system you’ll see that as ‘BulK’ in a debugger memory dump window that displays byte values accompanied by ASCII values.

Throughout the code, at any place dynamic memory blocks are needed you’ll see ExAllocatePool calls such as in DriverEntry in \src\usb\bulkusb\sys\bulkusb.c where it allocates memory to hold the driver’s registry key.

Pg. 126 Doubly-linked Lists

Bulkusb uses lists for managing queues of IRPs in various situations. You can see calls to the various list service functions by grepping the bulkusb code in \src\usb\bulkusb\sys.

Pg. 128 Singly-Linked Lists - skip

Pg. 130 Lookaside Lists - skip

Pg. 134 String Handling

You can see a simple example of string handling in DriverEntry in \src\usb\bulkusb\sys\bulkusb.c  where it copies the driver’s registry path.

Pg. 138 Miscellaneous Programming Techniques – skip up to (but not including) pg. 152 Making Debugging Easier

You can see how bulkusb uses debugger output in \5448\src\usb\bulkusb\sys\bulkusb.h:
extern ULONG DebugLevel;

#if DBG

#define BulkUsb_DbgPrint(level, _x_) \

            if((level) <= DebugLevel) { \

                DbgPrint _x_; \

            }

#else

#define BulkUsb_DbgPrint(level, _x_)

#endif

This is a simple mechanism that enables defining diagnostic output in multiple levels of detail. In the debugger you can change the value of any global variable in executable module so setting the value of DebugLevel changes the level of diagnostic detail you will see in a debug build. To change a global variable in the debugger you need to prefix it with the module name. When the system is stopped in the debugger, you can enter the following in the command window:

ed bulkusb!DebugLevel 3

 ed is the “enter doubleword” command and it sets a 4 byte value

Pg. 157 Windows 98/Me Compatibility Notes - skip
Chapter 4 Synchronization

Pg. 172 Spin Locks
Bulkusb uses spin locks to protect:

· device state flags (track PNP state of device)

· power management state

· IRP queue

· Outstanding IRP count

A simple example of spin lock use is at line 321 in \src\usb\bulkusb\sys\bulkpnp.c:

    KeAcquireSpinLock(&deviceExtension->DevStateLock, &oldIrql);

    SET_NEW_PNP_STATE(deviceExtension, Working);

    deviceExtension->QueueState = AllowRequests;

    KeReleaseSpinLock(&deviceExtension->DevStateLock, oldIrql);

The lock is acquired, the state changes are made, and the lock is released.

Pg. 184 Kernel Events
Bulkusb uses kernel events in many of its dispatch routines to synchronously wait for IRPs to complete processing in lower level drivers. For example, in \src\usb\bulkusb\sys\bulkpnp.c, HandleStartDevice which implements IRP_MN_START_DEVICE, does the following:

    KeInitializeEvent(&startDeviceEvent, NotificationEvent, FALSE);

    IoCopyCurrentIrpStackLocationToNext(Irp);

    IoSetCompletionRoutine(Irp, 

                           IrpCompletionRoutine, 

                           (PVOID)&startDeviceEvent, 

                           TRUE, 

                           TRUE, 

                           TRUE);

    ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, Irp);

    if(ntStatus == STATUS_PENDING) {

        KeWaitForSingleObject(&startDeviceEvent, 

                              Executive, 

                              KernelMode, 

                              FALSE, 

                              NULL);

        ntStatus = Irp->IoStatus.Status;

    }

It initializes the event, sets a completion routine in the IRP, passes the IRP to the next lower level driver, and that waits on the event. The completion routine (IrpCompletionRoutine in \src\usb\bulkusb\sys\bulkpnp.c) simply sets the event to signaled:

NTSTATUS

IrpCompletionRoutine(

    IN PDEVICE_OBJECT DeviceObject,

    IN PIRP           Irp,

    IN PVOID          Context

    )

{

    PKEVENT event = Context;

    KeSetEvent(event, 0, FALSE);

    return STATUS_MORE_PROCESSING_REQUIRED;

}

This unblocks the dispatch thread waiting on the event in HandleStartDevice and it can then continue processing the IRP.

Pg. 188 Kernel Semaphores – skip

Pg. 190 Kernel Mutexes – skip

Pg. 191 Kernel Timers

Bulkusb uses a timer to determine whether a device is idle for power management purposes. The timer is maintained per-device in the device extension and initialized in BulkUsb_AddDevice in \src\usb\bulkusb\sys\bulkusb.c:

            KeInitializeTimerEx(&deviceExtension->Timer,

                                NotificationTimer);
While the power management aspect is beyond the scope of this course, the timer aspect should be understood. HandleStartDevice (\src\usb\bulkusb\sys\bulkpnp.c ) sets the timer:

            KeSetTimerEx(&deviceExtension->Timer, 

                         dueTime,

                         IDLE_INTERVAL,                              // 5000 ms

                         &deviceExtension->DeferredProcCall);

This sets a recurring timer which causes the DPC routine referenced by deviceExtension->DeferredProcCall to be called each time the timer goes off. The timer will go off once at dueTime and then every IDLE_INTERVAL after that.

Pg. 194 Synchronization Timers - skip
Pg. 197 Alternatives to Kernel Timers – skip

Pg. 197 Using Threads for Synchronization – skip

Pg. 198 Thread Alerts and APCs – skip up to and including end of page 204

Pg. 206 Interlocked Arithmetic

Bulkusb uses interlocked arithmetic to manipulate things like its open handle count. For example, BulkUsb_DispatchCreate in \src\usb\bulkusb\sys\bulkdev.c (handles IRP_MJ_CREATE; called when a user mode application opens a handle to the driver) calls:

        InterlockedIncrement(&deviceExtension->OpenHandleCount);
to increment the count of open handles to the driver. When the user mode application closes its handle, bulkusb gets IRP_MJ_CLOSE which is handled by BulkUsb_DispatchClose (in the same file) and it calls:

    InterlockedDecrement(&deviceExtension->OpenHandleCount);
These calls ensure that the variable deviceExtension->OpenHandleCount is incremented and decremented in a multi-processor-safe fashion.
Bulkusb also uses InterlockedExchangePointer and InterlockedExchange in numerous places to assign values to variables in a multi-processor-safe fashion.

Pg. 210 Interlocked List Access – skip to end of chapter.

Chapter 5: The I/O Request Packet

Pg. 224 Creating Synchronous IRPs
Bulkusb creates IRPs when it need the services of the lower USB driver stack to communicate with the loopback device or process the status of the hub port it is connected to. You can see this in:

· BulkUsb_GetPortStatus (\src\usb\bulkusb\sys\bulkdev.c)

· BulkUsb_ResetParentPort (\src\usb\bulkusb\sys\bulkdev.c)

· CallUSBD (\src\usb\bulkusb\sys\bulkpnp.c)

The last example (CallUSBD) submits a URB Request Block (URB) which covers a wide range of USB communication. This will be explained in detail later in the book but you can get an idea of the available services here:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/buses_d/hh/Buses_d/usbstrct_20441a98-258d-44d2-b414-67b336a44fac.xml.asp
Pg. 224 Creating Synchronous IRPs - skip
Pg. 228 Locating Device Objects – skip up to but not including Duties of a Dispatch Routine on pg.232

Pg. 232 Completing an IRP

Bulkusb completes pretty much all of the IRPs it receives because it is at the top of its device stack. For example, BulkUsb_DispatchCreate (\src\usb\bulkusb\sys\bulkdev.c) calls IoCompleteRequest at line 181 to complete the IRP_MJ_CREATE IRP which is received when rwbulk calls CreateFile to get a handle to the loopback device (open_file, line 425, \src\usb\bulkusb\exe\rwbulk.c).

Pg. 236 Passing an IRP Down the Stack

Bulkusb passes all IRPs down the stack before doing its own processing. For example HandleStartDevice, the handler for IRP_MN_START_DEVICE (\src\usb\bulkusb\sys\bulkpnp.c) first sends the IRP down the stack, waits on an event for the IRP completion routine to run (IrpCompletionRoutine which signals the event - \src\usb\bulkusb\sys\bulkpnp.c), and then does its own processing. 

Pg. 239 Queuing an IRP for Later Processing – skip up to but not including Completion Routines on pg. 242.

Pg. 242 Completion Routines 

Bulkusb uses a completion routine for many IRPs. For example, in BulkUsb_DispatchReadWrite (\src\usb\bulkusb\sys\bulkrwr.c) it attaches an URB with the read or write request to the IRP, sends it down the driver stack for execution, and marks the IRP pending. When the lower USB stack has completed the I/O the completion routine will run (BulkUsb_ReadWriteCompletion, same file).

Pg. 247 Actual Question … - skip from here to end of chapter

Chapter 6: Plug and Play for Function Drivers

Pg. 310 IRP_MJ_PNP Dispatch Function

In bulkusb this function is BulkUsb_DispatchPnP in \src\usb\bulkusb\sys\bulkpnp.c. That was set up in DriverEntry (\src\usb\bulkusb\sys\bulkusb.c) when it set 

    DriverObject->MajorFunction[IRP_MJ_PNP]            = BulkUsb_DispatchPnP;
Pg. 311 Using a Function Pointer Table – skip

Pg. 313 IRP_MN_START_DEVICE

Bulkub handles this IRP in HandleStartDevice (\src\usb\bulkusb\sys\bulkpnp.c). It does the following:

· sends the IRP down the stack

· waits synchronously for the lower stack to finish

· Calls ReadandSelectDescriptors to configure the device (you’ll learn more about that later)

· Enables the device interface to user mode so that rwbulk can get a handle to the device (IoSetDeviceInterfaceState at line 312)

· Marks the device’s PNP state as ‘working’

· Does some power management bookkeeping

· Processes any IRPs that may have been queued up prior to the device starting (though this should never happen in practice)

· Sets a timer to detect when the device goes idle (for power management purposes)

Pg. 316 IRP_MN_STOP_DEVICE

Bulkusb handles this IRP in HandleStopDevice (\src\usb\bulkusb\sys\bulkpnp.c). It does the following:

· Cleans up the idle detection timer (for power management purposes)

· Sets the device’s PNP state to ‘stopped’

· Frees dynamically allocated memory (pointers are stored in device extension)

· Calls DeconfigureDevice to reset the device’s active configuration (more about this in a later chapter)

· Passes the IRP down the stack

Pg. 318 IRP_MN_REMOVE_DEVICE
Bulkusb handles this in HandleRemoveDevice (\src\usb\bulkusb\sys\bulkpnp.c). It does the following:

· Some power management cleanup

· Disables the device interface so that future runs of rwbulk in user mode will not be able to get a handle to the device 

· Sets the device’s PNP state to ‘removed’

· Removes the device from the device stack

Pg. 319 IRP_MN_SURPRISE_REMOVAL

Bulkusb handles this IRP in HandleSurpriseRemoval (\src\usb\bulkusb\sys\bulkpnp.c).  HandleSurpriseRemoval does the following:

· Some power management cleanup

· Disables the device interface so that future runs of rwbulk in user mode will not be able to get a handle to the device 

· Sets the device’s PNP state to ‘removed’

Pg. 320 Managing Pnp State Transitions – skip to end of chapter

Chapter 7: Reading and Writing Data
Pg. 363 Configuring Your Device – skip

Bulkusb operates a USB device which does not have an explicit set of PNP resources like a PCI device would (e.g. registers and interrupts). Bulkusb communicates with the device via the lower USB stack. The function driver for the USB controller (usbport and usbehci) do process their resource list in IRP_MN_START_DEVICE because they directly manage the PCI hardware.

Pg. 367 Addressing a Data Buffer

Pg. 368 Specifying a Buffering Method

Bulkusb’s handler for IRP_MN_START_DEVICE, BulkUsb_AddDevice (\src\usb\bulkusb\sys\bulkusb.c) specifies that the device uses direct I/O at line 243:

    deviceObject->Flags |= DO_DIRECT_IO;
Because of this, the handler for IRP_MJ_READ and IRP_MJ_WRITE, BulkUsb_DispatchReadWrite, (\src\usb\bulkusb\sys\bulkrwr.c) uses an MDL to access the I/O buffer. At line 44 it queries the MDL for the total length of the I/O request:

        totalLength = MmGetMdlByteCount(Irp->MdlAddress);
At line 272 it gets a system virtual address for the buffer:

    virtualAddress = (ULONG_PTR) MmGetMdlVirtualAddress(Irp->MdlAddress);
At line 292 it creates a new MDL to send down to the lower USB stack:

    mdl = IoAllocateMdl((PVOID) virtualAddress,

                        totalLength,

                        FALSE,

                        FALSE,

                        NULL);

At line 320, it maps the buffer from the user mode caller’s MDL into the new MDL:

    IoBuildPartialMdl(Irp->MdlAddress,

                      mdl,

                      (PVOID) virtualAddress,

                      stageLength);

At line 325 it allocates an URB to send the I/O request to the lower USB stack and initializes with the new MDL:

    urb = ExAllocatePool(NonPagedPool,

                         sizeof(struct _URB_BULK_OR_INTERRUPT_TRANSFER));

    UsbBuildInterruptOrBulkTransferRequest(

                            urb,

                            sizeof(struct _URB_BULK_OR_INTERRUPT_TRANSFER),

                            pipeInformation->PipeHandle,

                            NULL,

                            mdl,

                            stageLength,

                            urbFlags,

                            NULL);

At line 367 it repurposes the IRP so that it can be sent down the lower USB stack with the URB:

    nextStack = IoGetNextIrpStackLocation(Irp);

    nextStack->MajorFunction = IRP_MJ_INTERNAL_DEVICE_CONTROL;

    nextStack->Parameters.Others.Argument1 = (PVOID) urb;

    nextStack->Parameters.DeviceIoControl.IoControlCode = 

                                             IOCTL_INTERNAL_USB_SUBMIT_URB;

At line 373 it sets BulkUsb_ReadWriteCompletion as the completion routine for the URB (in the same file). 

    IoSetCompletionRoutine(Irp, 

                           BulkUsb_ReadWriteCompletion,

                           rwContext,

                           TRUE,

                           TRUE,

                           TRUE);
At line 387 it marks the IRP pending (because it has to wait for the lower USB stack to complete it):

    IoMarkIrpPending(Irp);
At line 392, it passes the IRP down to the lower USB stack:

    ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject,

                            Irp);
At line 428 it returns status to the I/O manager indicating that the IRP is still pending:

    return STATUS_PENDING;

Pg. 372 The Neither Method – skip until end of chapter (read if you’re interested in how a lowest level driver handles I/O and interrupts e.g. for a PCI device)
Chapter 12 The Universal Serial Bus

pp. 559-604

Pg. 563 What’s in a Device
The USB loopback simulator has one configuration. That configuration has one interface. That interface consists of 2 bulk endpoints – one for sending data to the device and one for receiving the echoed data back from the device.

Pg. 579 Control Transfers

All control transfers for the loopback device are handled automatically by the DSF USB framework. There is no code in the loopback simulator to handle control tranfers.

If you run the simulator with a kernel debugger and you turn on debug output then you will see diagnostics that show all of the control transfers between the host and the device. 

Pg. 575 Bulk Transfers

The loopback device uses bulk transfers to send data to and from the device. 
In \src\Test\dsf\usb\SoftUSBLoopback\LoopbackDevice.cpp, CLoopbackDevice::OnWriteTransfer is the event handler that is invoked when the host sends a bulk transfer to the device’s bulk OUT endpoint. In response to this transfer it enqueues the received data to bulk IN endpoint:

    IfFailHrGo(m_piINEndpoint->QueueINData(pbDataBuffer,

                                           cbDataBuffer,

                                           bINStatus,

                                           SOFTUSB_FOREVER));

The next time the host sends a bulk transfer to the device’s bulk IN endpoint it will receive this data. The simulator does not need an event handler for that endpoint.
Note that the various phases of a bulk transaction described in the text are not seen in the simulator code. All of that is handled internally by the simulation framework.

Pg. 577 Interrupt Transfers
The loopback device does not use interrupt transfers

Pg. 578 Isochronous Transfers
The loopback device does not use isochronous transfers

Pg. 579 Descriptors
There is no code in the loopback device simulator to explicitly create the descriptor data structures. The simulator sets properties on the various framework objects (SoftUSBDevice, SoftUSBConfiguration etc.) and the framework handles all control transfers for these descriptors automatically. If you run the simulator under the kernel debugger you can see the control transfers in the diagnostic output and this will include all of the descriptors returned to the host.

Pg. 590 Initiating Requests

You can see an example of this in bulkusb in ReadandSelectDescriptors (\src\usb\bulkusb\sys\bulkpnp.c). It calls UsbBuildGetDescriptorRequest to build an URB to request the device descriptor. It then calls the utility routine CallUSBD (\src\usb\bulkusb\sys\bulkpnp.c ) to send it to the lower USB stack (called the “parent driver” in the book). CallUSBD calls IoBuildDeviceIoControlRequest to create an IRP and then it attaches the URB to the IRP:

    nextStack = IoGetNextIrpStackLocation(irp);

    nextStack->Parameters.Others.Argument1 = Urb;

It then send the IRP to the lower stack:

    ntStatus = IoCallDriver(deviceExtension->TopOfStackDeviceObject, irp);
and waits on an event that is signaled by the IRP completion routine.

You can see an example of UsbBuildInterruptOrBulkTransferRequest in the IRP_MJ_READ and IRP_MJ_WRITE handler BulkUsb_DispatchReadWrite  (\src\usb\bulkusb\sys\bulkrwr.c).  This builds the URB for the bulk read or bulk write request from rwbulk in user mode and sends it down the stack for execution.

Pg. 595 Composite Devices – skip

Pg. 595 Reading a Configuration Descriptor

Bulkusb reads the configuration descriptor in ConfigureDevice (\src\usb\bulkusb\sys\bulkpnp.c). It calls

            UsbBuildGetDescriptorRequest(

                    urb, 

                    (USHORT) sizeof(struct _URB_CONTROL_DESCRIPTOR_REQUEST),

                    USB_CONFIGURATION_DESCRIPTOR_TYPE, 

                    0, 

                    0, 

                    configurationDescriptor,

                    NULL, 

                    sizeof(USB_CONFIGURATION_DESCRIPTOR), 

                    NULL);

and sends the URB down the stack for execution. 

Pg. 597 Selecting the Configuration
Bulkusb does this in SelectInterfaces (\src\usb\bulkusb\sys\bulkpnp.c). It calls USBD_CreateConfigurationRequestEx to create the URB and then sends it down the stack for execution.
Pg. 597 Reading a String Descriptor - skip
Pg. 603 Finding the Handles

In SelectInterfaces (\src\usb\bulkusb\sys\bulkpnp.c) bulkusb configures the device and the stores the returned USB interface in the device extension:

            deviceExtension->UsbInterface = ExAllocatePool(NonPagedPool,

                                                           Interface->Length);

            if(deviceExtension->UsbInterface) {

                RtlCopyMemory(deviceExtension->UsbInterface,

                              Interface,

                              Interface->Length);

            }

When rwbulk in user mode opens a handle the device, it can specify a pseudo-file name that is used to determine whether it is opening a handle to the bulk OUT endpoint for writing or to the bulk IN endpoint for reading. You can see this in main (\src\usb\bulkusb\exe\rwbulk.c) in the calls to open_file. The variables inPipe and outPipe are constants (from the top of the file):

char inPipe[32] = "PIPE00";     // pipe name for bulk input pipe on our test board

char outPipe[32] = "PIPE01";    // pipe name for bulk output pipe on our test board

open_file calls the Win32 API CreateFile which causes an IRP_MJ_CREATE to be sent to bulkusb. Bulkusb handles this IRP in BulkUsb_DispatchCreate (\src\usb\bulkusb\sys\bulkdev.c). It parses the specified pseudo-file name in BulkUsb_PipeWithName (BulkUsb_PipeWithName) which determines which pipe rwbulk wants to open a handle to. BulkUsb_DispatchCreate then stores a pointer to the pipe information in the file object:

    
fileObject = irpStack->FileObject;
…
            fileObject->FsContext = &interface->Pipes[i];

The file object is a structure associated with IRP_MJ_CREATE IRPs that allows a driver to store per-handle state. The IRPs received for IRP_MJ_READ/WRITE/CLOSE will also have the same file object. The handler for IRP_MJ_READ and IRP_MJ_WRITE (BulkUsb_DispatchReadWrite in \src\usb\bulkusb\sys\bulkrwr.c) uses the pipe information in the file object:

    irpStack = IoGetCurrentIrpStackLocation(Irp);

    fileObject = irpStack->FileObject;

…

    if(fileObject && fileObject->FsContext) {

        pipeInformation = fileObject->FsContext;
Pg. 605 Design of the LOOPBACK Sample – skip to end of chapter. This is not the same loopback sample as in the WDK. The remainder of the chapter covers features not used in the loopback device.
Next steps:

Learn how to build bulkusb

Learn how to install bulkusb on your test system

Review the following code in the bulkusb.sys driver in \src\usb\bulkusb\sys folder of WDK installation and make sure you understand how it works:

===================================

bulkusb.c - DriverEntry, BulkUsb_AddDevice

bulkpnp.c - BulkUsb_DispatchPnP, HandleStartDevice,

ReadandSelectDescriptors, ConfigureDevice, SelectInterfaces, CallUSBD,

BulkUsb_GetRegistryDword

bulkdev.c - BulkUsb_DispatchCreate

bulkrwr.c - BulkUsb_DispatchReadWrite, BulkUsb_ReadWriteCompletion

bulkusb.inf

Review the following code in the rwbulk.exe test application in \src\usb\bulkusb\exe folder of WDK installation and make sure you understand how it works:

===================================

rwbulk.c - main, OpenOneDevice, OpenUsbDevice, GetUsbDeviceFileName

Learn about how DSF works
Read the developer guide

Study loopback sample

Do the lab exercises

Now you know enough to start doing something with the simulator. Main goals are:

1) Produce a fully automated test for bulkusb driver's read and write features

2) Increase code coverage by injecting faults in simulator

Fault injection opportunites:

Don't put data into bulk IN endpoint queue

Put wrong amount of data into IN endpoint queue

Put incorrect data into IN endpoint queue

NAK writes forever

Code improvement opportunities:

Examine returned data length

Examine returned data content

Add timeout to reads and writes

