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Abstract 

In order to be certified by the FAA, airborne software must 
comply with the DO-178B standard. For the unit testing 
of safety-critical software, this standard requires the testing 
process to meet a source code coverage criterion called Mod- 
ified ConditiodDecision Coverage. This part of the standard 
is controversial in the aviation community, partially because 
of perceived high cost and low effectiveness. Arguments 
have been made that the criterion is unrelated to the safety of 
the software and does not find errors that are not detected by 
functional testing. In this paper, we present the results of an 
empirical study that compared functional testing and func- 
tional testing augmented with test cases to satisfy MC/DC 
coverage. The evaluation was performed during the testing 
of the attitude control software for the HETE-2 (High En- 
ergy Transient Explorer) scientific satellite (since that time, 
the software has been modified). We found in our study that 
the test cases generated to satisfy the MC/DC coverage re- 
quirement detected important errors not detectable by func- 
tional testing. We also found that although MC/DC coverage 
testing took a considerable amount of resources (about 40% 
of the total testing time), it was not significantly more diffi- 
cult than satisfying conditionldecision coverage and it found 
errors that could not have been found with that lower level 
of structural coverage. 

1 Introduction 

To be certified by the FAA, aviation software must satisfy a 
standard labelled DO-178B [4]. Software development pro- 
cesses are specified in this standard for software of vary- 
ing levels of criticality. With respect to testing, the most 
critical (Level A) software, which is defined as that which 
could prevent continued safe flight and landing of the air- 
craft, must satisfy a level of coverage called Modified Con- 
dition/Decision Coverage (MCDC). 

The requirement for MC/DC coverage has been criticized 
*This paper was presented at DASC (Digital Aviation Systems Conference) in 
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by some members of the aviation industry as being very ex- 
pensive but not very effective in finding errors, particularly 
safety-critical errors. None of these complaints, however, 
are backed up with data as companies are, with good rea- 
son, unwilling to publish details of their testing process and 
results. 

To shed some light on the issue, we performed an empir- 
ical evaluation of the criterion on the attitude control soft- 
ware of the HETE-2 (High Energy Transient Explorer) sci- 
entific satellite being built by the MIT Center for Space Re- 
search for NASA [2]. Our study compared functional testing 
and functional testing augmented with test cases to satisfy 
MC/DC coverage. Although one data point is inadequate to 
come to definitive conclusions, it is better than the current 
arguments based on no or little publicly available data. Ad- 
ditional studies should be done to verify our results. In addi- 
tion, our use of real aerospace software allows conclusions 
related to the unique features often found in such software 
and applications. 

In the next two sections, we provide a brief description of 
MC/DC and the software that was tested. Then we describe 
the design of the study and present an analysis of the results. 

2 Structural Testing using Moil fied ConditionlDei sion 
Coverage 

Software module testing is used to verify both that the soft- 
ware does what it is supposed to do and that the software 
does not do what it is not supposed to do [8]. To meet this 
goal, there exist two testing strategies. Blackbox testing ig- 
nores the structure of the source code and derives test cases 
only from the specification in order to detect anomalous soft- 
ware behavior. Whitebox or structural testing, on the other 
hand, takes advantage of knowledge of the structure of the 
source code to design test cases [6]. 

In the rest of the paper, we use the following definitions: 

Condition A condition is a leaf-level Boolean expression (it 
cannot be broken down into a simpler Boolean expres- 
sion). 
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Decision A decision is a Boolean expression that controls 
the flow of the program, for instance, when it is used in 
an if or while statement. Decisions may be composed 
of a single condition or expressions that combine many 
conditions. 

Structural testing criteria have been defined that describe 
the level of coverage of the code: 

Statement Coverage: Every statement in the program has 
been executed at least once. 

Decision Coverage: Every point of entry and exit in the pro- 
gram has been invoked at least once, and every deci- 
sion in the program has taken all possible outcomes at 
least once. 

ConditiodDecision Coverage: Every point of entry and exit 
in the program has been invoked at least once, every 
condition in a decision in the program has taken all 
possible outcomes at least once, and every decision in 
the program has taken all possible outcomes at least 
once. 

Modified ConditiodDecision Coverage: Every point of en- 
try and exit in the program has been invoked at least 
once, every condition in a decision in the program has 
taken on all possible outcomes at least once, and each 
condition has been shown to affect that decision out- 
come independently. A condition is shown to affect a 
decision’s outcome independently by varying just that 
decision while holding fixed all other possible condi- 
tions. 

The condition/decision criterion does not guarantee the 
coverage of all conditions in the module because in many 
test cases, some conditions of a decision are masked by the 
other conditions. Using the modified condition/decision cri- 
terion, each condition must be shown to be able to act on 
the decision outcome by itself, everything else being held 
fixed. The MC/DC criterion is thus much stronger than the 
condition/decision coverage criterion, but the number of test 
cases to achieve the MCDC criterion still varies linearly 
with the number of conditions n in the decisions. There- 
fore, the MC/DC criterion is a good compromise for white- 
box testing: (1) it insures a much more complete coverage 
than decision coverage or even conditioddecision coverage, 
but (2) at the same time it is not terribly costly in terms of 
number of test cases in comparison with a total coverage cri- 
tenon [ 5 ] .  

The controversy over the MCDC coverage requirement 
revolves around cost and effectiveness issues. It should also 
be noted that the technique does not relate directly to re- 
quirements or safety considerations: although the MC/DC 
criterion is imposed to ensure that the software is safe, the 
testing is not related to the system or software safety require- 
ments or constraints. 

3 Relevant Aspects of the HETE-2 Attitude Control 
Software 

Our case study used the HETE-2 (High Energy Transient Ex- 
plorer), a science mini-satellite developed at MIT, and more 
precisely, its Attitude Control System (ACS) software [2]. 
A failure of the ACS can cause the loss of the satellite or at 
least a complete failure of the mission. Although this soft- 
ware is not part of an aeronautics system, its requirements, 
constraints, and safety issues are similar enough to avionics 
software for the case study to be relevant to the environment 
in which DO-178B is usually applied. 

A first HETE satellite was launched in November 1996, 
but it was lost due to the failure of its Pegasus XL launcher. 
This case study was run during the development of a second 
satellite, HETE-2, with the same scientific goals. Its mis- 
sion is the study of the astrophysical events known as gamma 
ray bursts. Gamma ray bursts are high-energy transients in 
the gamma range that seem to be isotropically distributed in 
the sky. They last from a millisecond to a few hundreds of 
seconds and involve a huge amount of energy. HETE-2 is 
expected to detect the bursts, locate them, and capture their 
spectral characteristics. 

The spacecraft carries several instruments used for the 
mission: four gamma ray telescopes, two wide-field X-ray 
cameras, two soft X-ray cameras, and two optical cameras. 
The optical cameras provide the Attitude Control System 
with the drift rates during orbit nights. 

The ACS uses two types of sensors to determine the atti- 
tude of the spacecraft: sun sensors and magnetometers. The 
sun sensors allow the ACS to compute the attitude of the 
spacecraft with respect to the sun while the magnetometers 
allow the ACS to determine the spin vector of the spacecraft. 
The spacecraft attitude is modified using three torque coils 
and one momentum wheel. The communication between the 
sensors/actuators and the computer is made via a serial bus, 
called the AUX bus. 

The ACS software is written in C and compiled using 
the GCC GNU compiler under a Sun Solaris environment. 
The software contains approximately 6000 lines of source 
code. Ultimately, the software will run on the spacecraft’s 
on-board transputer, and the object code for this processor 
will be generated by a cross compiler. No simulation facility 
is supported on the transputer, so the module testing had to 
be done in the Unix environment and only functional testing 
and system testing will take place on the transputer itself. 
Because DO-178B requires module testing to be performed 
in the target environment, the testing does not conform with 
the standard on this point. Testing on HETE does not protect 
against cross-compiler bugs, but in this case, host testing was 
the only feasible way to conduct the module testing process 
and should not affect this study of the efficacy of the DO- 
178B testing procedure. 

The ACS controls the deployment sequence from the mo- 
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ment the satellite is released by the rocket (with solar pad- 
dles stowed and with a tumbling attitude) until the moment 
it reaches its final orbit configuration (with paddles deployed 
and axis stabilized). During the operations phase, the ACS is 
crucial for the correct operation of the instruments, for power 
balance, and for thermal balance. The ACS requirements are 
divided into orbit-day requirements and orbit-night (eclipse 
time) requirements. 

In order to perform efficiently all the different operations 
for which it is responsible, the ACS is divided into ten dif- 
ferent modes: modes 0 to 6 are used during the deployment 
sequence while modes 7 and 8 are activated alternately dur- 
ing the operations phase. Mode 9 is a backup ground com- 
mand mode. The progression in the succession of modes 
(from mode 0 where the spacecraft is tumbling right after it 
is released by the rocket to modes 7-8 where the payload 
can operate) corresponds to an improvement in the space- 
craft stabilization. 

The first four modes use only the magnetic torque coils as 
actuators. The control laws that are implemented by the ACS 
software in these modes are quite simple: Their goal is to 
dampen most of the rotation speed transmitted to the satellite 
by the spacecraft so that it acquires a rotational stiffness that 
allows it to stay aligned with the sun. 

The next modes bring the momentum wheel into play in 
order to stabilize the spacecraft finely (with very low drift 
rates). These algorithms are more complex, in particular a 
Kalman filter is used. The deployment of the solar paddles 
also occurs in this part of the deployment sequence, when 
the satellite is in a steady position, facing the sun. 

The progression through the modes need not be linear. 
Nominally, the ACM goes through the deployment sequence 
(mode 0 to mode 6) and then toggles between mode 7 (or- 
bit day) and mode 8 (orbit night) during operations. But a 
set of parameters is constantly monitored, and if one grows 
past its corresponding threshold, the ACS switches back to 
the mode that is optimized to fix this parameter (taking into 
account whether it is orbit day or orbit night). As a result, 
the mode switching logic contains many variables and paths. 
In addition, many of the mode switching conditions involve 
required time delays. 

The testing of the ACS software involves checking the 
following: 

0 The switching logic is correctly implemented (the switch- 
ing between the modes occurs when the spacecraft is 
in the expected configuration). 

0 The behavior of each mode is correct (each mode per- 
forms the task it is designed for and does not corrupt 
any other parameters). 

The spacecraft meets the ACS requirements while it 
is on station (after it has gone through the acquisition 
sequence, the spacecraft maintains a correct attitude so 
that the other subsystems can perform normally). 

4 Design of the Study and The Testing of the Soft- 
ware 

For Level A software, DO-178B requires functional testing 
augmented with the test cases required to guarantee cover- 
age according to the MCDC criterion. Testing attitude con- 
trol systems has always been a problem in the space indus- 
try as it is virtually impossible to control all the parameters 
that affect the system, such as the orientation of the sun, the 
components of the magnetic field, gravity, the small pertur- 
bations that affect the spacecraft in orbit, etc. For this reason, 
the testing of the ACS hardware and the ACS software are 
decoupled. Each hardware item is verified on its own, and 
a simulation environment is created to provide the software 
with the information it expects and to collect the commands 
it outputs. 

able for testing the ACS. The simulation environment can 
feed the ACS software with all the environment parameters 
corresponding to the position of the satellite (sun direction or 
orbit night, magnetic field, disturbance torque, etc.). It can 
also simulate the dynamics of the spacecraft: given initial 
conditions, actuator commands, and environment torques, 
the state of the satellite (rotation rates, pointing accuracy, 
etc.) is continuously updated. The simulator also takes into 
account the commands generated by the software to update 
the state of the spacecraft’s actuators. 

Each test case is run via a script that sets the initial con- 
ditions of the system, calls the simulation program, launches 
the ACS software, and finally collects and displays the re-- 
sults. To allow better control of the software, some addi- 
tional routines were written. These routines allow the tester 
to start the ACS in a particular mode (after staying in mode 0 
for a moment to initialize the filters), collect directly the pa- 
rameters of interest for the test, and provide complete con- 
trol of the paddles deployment sequence, the AUX errors, 
the time, etc. Using this setup, the test cases can be imple- 
mented easily and can be repeated as desired because all the 
data necessary for initialization and the complete informa- 
tion extraction process is stored in the script. 

For HETE-2, a complete simulation environment was avail- 

4.1 Blackbox Testing 

Because the same types of tests must be run for every mode, 
the testing process used the same three-step process for black- 
box testing of each mode: 

Switching logic testing: In this step, the goal is to verify 
that the ACS enters and exits the modes when the pa- 
rameters take on the expected values and when the mode 
delay has elapsed. 

Parameter testing: The ACS software senses the satellite 
through a set of parameters, which are then exploited 
to decide to send some commands to the actuators or 
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to switch mode. For the ACS to perform correctly, the 
integrity of these parameters is crucial; hence it must 
be verified that they really reflect the physical state of 
the satellite. 

Functional testing: Finally, it is necessary to make sure that 
each mode accomplishes its fundamental task correctly. 
We need to check that the ACS interprets the parame- 
ters correctly and then issues the right commands that 
have the expected effect on the spacecraft’s attitude. 

4.2 Whitebox Testing 

The whitebox testing process was divided into two different 
steps: coverage evaluation and the design of additional test 
cases. 

The goal of coverage evaluation is to identify the parts of 
the code that have been left unexplored by blackbox testing 
and therefore could contain additional errors. Three different 
tools were used to help in assessing the level of coverage 
achieved by the blackbox test cases: 

0 Attol Test Coverage from Attol Testware [ 11: This tool 
is compliant with Level A of DO-178B (every point 
of entry and exit in the program is checked using the 
MClDC criterion). 

0 Cantata from IPL [3]: This tool is not fully compliant 
with level A of the standard because the C version of 
the tool uses the masking version of MClDC, not the 
unique cause version. 

0 GCT (Generic Coverage Tool, Free Software Foun- 
dation): This tool only supports decision coverage or 
multiple condition coverage, not MC/DC, and it was 
not designed specifically for the DO-178B standard. 
However, it is the coverage evaluation tool used for the 
regression tests of the HETE software, so it was also 
included in the coverage evaluation process. 

The coverage evaluation revealed that some parts of the 
code were not fully covered (according to the MC/DC crite- 
rion) by blackbox testing. Additional test cases were devel- 
oped to fill the gaps. 

5 Analysis of the Results 

This section of the paper describes the blackbox and white- 
box testing results as well as discussing the implications of 
the results on the relation between MClDC coverage and 
software safety, the complexity of satisfying the MCDC cri- 
terion, and the difficulty of achieving MCDC coverage in 
this case study. 

5.1 Blackbox Testing Results 

As expected, the various types of errors found during black- 
box testing were often associated with off-nominal test cases, 
particularly in the mode switching logic. For example, un- 
wanted mode switching was found to occur when a variable 
time-in-mode took a negative value. Although this should 
never happen, it could result from a bad initialization. Be- 
cause time-in-mode is declared as a long unsigned integer, it 
should never be able to take on negative values. However, 
somewhere in the code it is converted to a long signed inte- 
ger. During testing we found that in every mode, an out of 
range time-in-mode value will bring the ACS into the next 
mode if the other parameters allow it even if the required 
mode delay time has not elapsed. 

A second example of an error detected by blackbox test- 
ing was that the required delay in mode 3 was not taken into 
account for switching induced by one particular parameter 
although it is taken into account when switching is the result 
of a different parameter. An examination of the logic de- 
tected confusion in the if-then-else branching logic for mode 
3 switching. 

Other errors detected included missing default cases, an 
incorrect definition of a threshold (the value should have 
been 1.7453e-3 rad/s or 6 arcminh, but instead was set to 
1.7453), missing conditions, and the lack of a required abso- 
lute value a h ( )  function in some computations. 

5.2 Whitebox Testing Results 

The whitebox coverage analysis revealed some parts of the 
code were not fully covered (according to the MClDC cri- 
terion) by blackbox testing. As might be expected, these 
parts primarily involved error-handling. This fact is consis- 
tent with data showing that a large percentage of operational 
errors found in requirements involve the error-handling rou- 
tines, which are often not well tested. These routines are 
difficult to test during functional testing as they involve un- 
expected and erroneous behavior of the software, the envi- 
ronment, or the underlying digital hardware, such as bit flips 
caused by EMI. Some examples of the types of uncovered 
error-handling code for HETE-2: 

0 The handler that switches modes has a default that han- 
dles erroneous modes (i.e., modes outside 0-9), which 
was never exercised. Similar unexercised code involved 
checking for incorrect values (1) in the last else clause 
in a statement in which one of the preceding clauses 
will always be taken unless there is an error in other 
parts of the code or (2) in a short-circuited Boolean ex- 
pression in which the first clause will always be true 
unless an incorrect path has been taken in the software 
to reach the decision statement. Another mode-related 
testing omission involved the situation where the satel- 
lite enters mode 6 with the paddles already deployed, 
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in which case it should immediately return to mode 5.  

0 For redundancy, there are two magnetometers on the 
spacecraft. The detumble, spinup, and reorient control 
logic selects either magnetometer A or magnetometer 
B using an if-else statement. Because a failure never 
occurred during system testing, this decision statement 
is not covered. In another routine, a test is made for an 
erroneous magnetometer value but this test was never 
exercised during system test. 

0 The software checks for errors in the sensor data to 
detect possible errors in magnetometers A and B, in 
the different sun sensors, or in the wheel tachometer. 
If an error occurs, the data of the corresponding device 
is not updated and the old values are used. No AUX 
errors were simulated during blackbox testing, so the 
branches of the code that handle these situations were 
not executed. 

Some limit cases were also never reached during system 
test. For example, when the satellite is not on station (i.e., 
for modes 0,1,2,3,4, and 6), the wheel torque is limited by a 
function called control-wheel to a maximum of the absolute 
value of 0.02 Nms. During system test, the negative torque 
limit was never reached so a decision in the control-wheel 
routine was left uncovered. In another routine, a function 
called limit-mag-moment limiting the value of the processed 
torques in the on-station controllers is never called. The 
physical limits for the coil torques is given by VIR x A , f f  
(where V is the bus voltage, R is the coil resistance, and 
A , f f  is the effective area of the coil). In the simulations, 
the torques returned by the on-station controllers sometimes 
go well above this limit. However, they are later limited 
by another function that processes the raw commands and 
sends them to the actuators. So the magnetic moments of 
the coils are actually limited (albeit in another part of the 
software), and it was determined after the coverage evalu- 
ation that the function limit-mag-moment was not needed. 
Other instances involving limit checking in what was deter- 
mined to be dead (unreachable) code were also detected and 
the code removed. 

in the software that was not implemented everywhere in the 
code. The inertia matrix of the satellite is different if the pad- 
dles are deployed or not. The controller selected the correct 
inertia matrix using the following decision: 

Another unexercised part of the code resulted from a change 

if (rom->paddles-deployed == 1) 

else 
use 1-deployed 

use I-stowed 

The condition rom->paddles-deployed == I is a holdover 
from an old version of the code: initially the state of the pad- 
dles was a binary variable (0 for paddles stowed and 1 for 

paddles deployed) but it was decided later that the deploy- 
ment of the paddles should be monitored individually for 
each paddle. Therefore, the state of the paddles was changed 
to be denoted by four bits (Ox0 for all paddles stowed and 
OxF for all four paddles deployed). In the version of the 
code that was tested, several places in the code were not 
updated and the single-bit notation was still used. This er- 
ror results in a bad selection of the inertia matrix for the 
on-station controller when the paddles are actually deployed 
(rom->paddles-deployed is not equal to 1 when the paddles 
are deployed). The two inertia matrices are not very dif- 
ferent, so the bad selection was not noticed in the blackbox 
simulations, and the error was revealed only by the whitebox 
testing. 

The ACS software also watches for time rollovers, i.e., 
when the present time is smaller than the time of the pre- 
vious sample. Time rollovers can occur when a time regis- 
ter reaches its maximal value (this should never happen on 
HETE-2 because a 64-bit digital clock permanently keeps 
track of the time) or after a reboot of the processor. Such 
timing glitches cause a problem for the ACS software, par- 
ticularly for the calculations of the time derivatives and the 
wheel speed, which use the time differences between two 
samples. If a time rollover does occur, the software is sup- 
posed to use the old values for the magnetic field time deriva- 
tive and the tachometer wheel speed instead of computing 
new ones. If the sensor data is too old by the time the com- 
mands to be sent to the actuators are computed, the software 
sets all the commands to zero, thus ensuring that no out- 
of-date commands are executed, for example after a proces- 
sor lockout. These timing checks in the ACS software were 
never exercised during blackbox testing. 

Other sanity checks were also found to be unexercised. 
An example is the verification of the bus voltage before the 
computation of the commands for the torque coils drivers. 
If the bus voltage reading is too low (less than one volt) or 
too high (more than 100 volts), the reading is assumed to be 
erroneous and a nominal voltage (28V) is used instead. Er- 
roneous bus voltages did not occur during blackbox testing. 

The MCDC coverage evaluation also uncovered errors 
in the specification. An error in the code involving the paddles 
deployed variable caused one branch of the mode switching 
logic, which goes from mode 2 to mode 8 when the cam- 
eras are tracking and the paddles are deployed, never to be 
taken. This branch was not included in the specifications, so 
the problem was not noticed during blackbox testing. 

In the DO-178B specified process, after the parts of the 
code not covered by blackbox testing (with respect to a par- 
ticular coverage criterion) are identfied, additional test cases 
must be designed to fill the gaps. Additional HETE-2 test 
cases were generated to test the detection and handling of 
illegal modes; to determine whether correct behavior oc- 
curred when the satellite enters mode 6 with the paddles al- 
ready deployed (the ACS should switch immediately back 
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to mode 5 and the on-station cycling behavior continue nor- 
mally, which it was found to do after the additional tests were 
run); to determine how the ACS software handles AUX er- 
rors that can cormpb the data coming from the different sun 
sensors and from the wheel tachometer; to test the backup 
magnetometer selection logic; to fully cover the code that 
generates the torque coil commands; to test limit cases (thresh- 
old handling) in the torque coil and wheel torque; and to 
throughly test time rollovers and the use of obsolete sensor 
data. 

Most of the new testing showed the software to be cor- 
rect, but some previously undetected errors were found by 
the additional test cases generated to ensure MCDC cover- 
age. One such case involved handling AUX errors. When 
an AUX error is detected on only one of the sun sensors, 
the software does not try to use the other sensors to com- 
pute the sun-pointingparameters, but instead discards all the 
sun sensor information. This algorithm optimizes for short 
AUX bus blackouts, in which it is not worthwhile to lose 
time going through complex selection logic to pick up the 
good information since the data will be available again a few 
samples later. However, the logic needed to be changed to 
handle the case of a sun sensor hardware failure that pro- 
duces a permanent error. 

In another example, the selection of an incorrect mag- 
netometer value in a test revealed an error in the code that 
handles this error (a pointer is never set and when it is refer- 
enced later in the program, it causes a segmentation fault). 

5.3 Relation Befween the MC/DC Criterion and 
Software Safety 

A main question in this study was to determine whether MCDC 
coverage improved the safety of the software. In other words, 
did the additional tests required by the coverage criterion 
find important errors or did they just consist of playing with 
some variables to artificially toggle conditions, resulting in a 
process in no way rerated to safety or even to practical issues 
in software engineering. 

We found that for the HETE-2 software, all the addi- 
tional tests requires to satisfy the MCDC criterion were di- 
rectly linked to an important feature of the software. More 
precisely, the need for additional tests corresponded to four 
kinds of limitations of the blackbox testing process: 

0 Something was forgotten during blackbox testing, for 
example, the case where the sattellite enters mode 6 
with the solar paddles already deployed. 

0 The software has a complex logic mechanism requiring 
in-depth understanding and precise, customized test- 
ing. This was the case for the magnetometer selection 
logic. Much of the untested code was involved in error- 
handling. 

0 

0 

5.4 

Some feature of the software was not included in the 
specification and therefore could not give rise to a test 
case in a blackbox testing context. This was the situa- 
tion for the AUX error checks and the time checks, and 
for the bus voltage verification before the coil torque 
computations. The fact that the whitebox testing pro- 
cess served as a verification of the completeness of the 
specification was very useful. 

The effects of some errors were too small to be de- 
tected by blackbox testing. In the case of the paddles- 
deployed variable, we found that a bad value was as- 
signed to this variable because the conditions in which 
it was involved could not be toggled. The consequences 
of this error had gone undetected previously because 
the difference in output was so small. 

Complexity of Satisfying the MC/DC Criterion 

A second question to be explored was whether MCDC cov- 
erage was excessive. That is, given that whitebox testing 
is important in ensuring safety, would it be possible to use 
a lower level of coverage and still ensure the same level of 
safety? 

The answer to this question for the HETE-2 software 
was clearly no. For example, an important problem was de- 
tected only because the MCDC criterion required checking 
the second condition in an conditional expression. Test cases 
could have satisfied decision coverage and conditioddecision 
coverage without uncovering this problem. As it turns out, 
the problem was not crucial-it would not have caused any 
damage had it remained undetected. However, the test cases 
that detected an error concerning a critical system variable, 
paddles-deployed, involved the same kind of Boolean func- 
tion except that the AND operator was replaced by an OR. 
The fact that this important problem could also be detected 
by decision coverage relies only on this small difference and 
in general would not be true. 

5.5 Difficulty of Achieving MC/DC Coverage 

A final question concerns relative cost. Two comparisons 
were made. 

First, we calculated the time required for whitebox test- 
ing in comparison to the total test time. In the case of the 
HETE-2 software, the coverage determination and the de- 
sign of the additional test cases represented about 40% of 
the total testing time (the rest was devoted to blackbox test- 
ing). Note that powerful tools were used to help determine 
coverage, so the coverage evaluation process was quite fast 
and easily repeatable. 

One feature of the software, inherent in the nature of the 
code itself, facilitated whitebox testing: part of the black- 
box testing activity consisted of checking the mode switch- 
ing logic, i.e., verifying that the different branches of the 
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switching diagram were taken under the correct conditions. [3] Anon. Cantata for  C Documentation , IPL, 
These switching specifications are, in fact, very close to the 
structure of the source code itself, so part of the blackbox 

[4] Anon. SofhYare Considerations in Airborne Systems testing was equivalent to testing the source code structure. 
and Equipment Certijcation, DO-178B RTCA, Wash- Therefore, the number of required whitebox tests was re- 

duced, and the proportion of whitebox to blackbox testing ington D.C. 1992 
time was biased in favor of whitebox testing. Therefore, 
white box testing was useful in finding errors in the code, 
but it indeed represented a time-consuming step in the com- 
plete testing process. 

ing MCDC coverage versus achieving a simpler form of 
coverage such as decision coverage. In fact, we found in 
the case of HETE-2 that MCDC coverage was not much 

http://www.iplbath.comlp 13 .htm. 

[ 5 ]  Chilensky, J.J. and Miller, S.P. Applicability of mod- 
ified conditioddecision coverage to software testing. 
Sofmare Engineering Journal, 1994. 

Second, it is interesting to compare the difficulty of achiev- [61 Jasper, R.7 Brennan, M., Williamson, K., Currier, B., 
and Zimmerman, D. Test data generation and feasible 
path analysis. SIGSOFT Sojhvare Engineering Notes, 
ACM, 1994. 

[7] Simonetti, A., Coupier, A., and Secher, C. Experience 
gained from recent avionics software certification. Bul- 
letin techniques du Bureau Veritas, 1992. 

more difficult to achieve than decision coverage. This result 
was due to the programming style of this code: only l l % of 
the decisions were composed of Boolean functions while all 
the other decisions were single-condition decisions. In this 
latter case, decision coverage and MCDC are equivalent. 

An important tradeoff is involved here. The fact that de- 
cisions were kept simple contributed to making this software 
well suited for MC/DC testing. However, keeping the de- 
cisions simple in the source code also has its drawbacks- 
in general simpler decisions lead to more complex logical 
structure. In essence, multiple conditions linked by Boolean 
operators were replaced by nested ifelse-ifinstructions. This 
kind of logic is very prone to errors (as demonstrated, for 
example, in the switching logic testing of mode 3). So al- 
though this style of coding facilitates MCDC testing, it may 
also lead to more errors in the code and leads to code that is 
also more difficult to read and maintain. 

[8] Myers, G.J. The Art of Sojhvare Testing. John Wiley, 
1986. 

6 Conclusions 

Although this case study provides only one instance of an 
evaluation of the MCDC coverage criterion, it does pro- 
vide examples of its usefulness and effectiveness. Functional 
testing augmented with test cases to extend coverage to sat- 
isfy the MCDC criterion while relatively expensive, was not 
significantly more expensive than achieving lower levels of 
code coverage. Important errors were found by the addi- 
tional test cases required to achieve MCDC coverage (i.e., 
in the software found not to be covered by blackbox func- 
tional testing). The use of automated tools to evaluate cover- 
age was helpful in reducing the costs of structural coverage 
testing. 
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