
An Empirical Evaluation of the MCDC Coverage
Criterion on the HETE-2 Satellite Software*

Arnaud Dupuy, Alcatel, France
Nancy Leveson, MIT, USA

Abstract

In order to be certified by the FAA, airborne software must
comply with the DO-178B standard. For the unit testing
of safety-critical software, this standard requires the testing
process to meet a source code coverage criterion called Mod-
ified ConditiodDecision Coverage. This part of the standard
is controversial in the aviation community, partially because
of perceived high cost and low effectiveness. Arguments
have been made that the criterion is unrelated to the safety of
the software and does not find errors that are not detected by
functional testing. In this paper, we present the results of an
empirical study that compared functional testing and func-
tional testing augmented with test cases to satisfy MC/DC
coverage. The evaluation was performed during the testing
of the attitude control software for the HETE-2 (High En-
ergy Transient Explorer) scientific satellite (since that time,
the software has been modified). We found in our study that
the test cases generated to satisfy the MC/DC coverage re-
quirement detected important errors not detectable by func-
tional testing. We also found that although MC/DC coverage
testing took a considerable amount of resources (about 40%
of the total testing time), it was not significantly more diffi-
cult than satisfying conditionldecision coverage and it found
errors that could not have been found with that lower level
of structural coverage.

1 Introduction

To be certified by the FAA, aviation software must satisfy a
standard labelled DO-178B [4]. Software development pro-
cesses are specified in this standard for software of vary-
ing levels of criticality. With respect to testing, the most
critical (Level A) software, which is defined as that which
could prevent continued safe flight and landing of the air-
craft, must satisfy a level of coverage called Modified Con-
dition/Decision Coverage (MCDC).

The requirement for MC/DC coverage has been criticized
*This paper was presented at DASC (Digital Aviation Systems Conference) in

Phildelphia, Oct. 2000 and is included in the proceedings.

by some members of the aviation industry as being very ex-
pensive but not very effective in finding errors, particularly
safety-critical errors. None of these complaints, however,
are backed up with data as companies are, with good rea-
son, unwilling to publish details of their testing process and
results.

To shed some light on the issue, we performed an empir-
ical evaluation of the criterion on the attitude control soft-
ware of the HETE-2 (High Energy Transient Explorer) sci-
entific satellite being built by the MIT Center for Space Re-
search for NASA [2]. Our study compared functional testing
and functional testing augmented with test cases to satisfy
MC/DC coverage. Although one data point is inadequate to
come to definitive conclusions, it is better than the current
arguments based on no or little publicly available data. Ad-
ditional studies should be done to verify our results. In addi-
tion, our use of real aerospace software allows conclusions
related to the unique features often found in such software
and applications.

In the next two sections, we provide a brief description of
MC/DC and the software that was tested. Then we describe
the design of the study and present an analysis of the results.

2 Structural Testing using Moil fied ConditionlDei sion
Coverage

Software module testing is used to verify both that the soft-
ware does what it is supposed to do and that the software
does not do what it is not supposed to do [8]. To meet this
goal, there exist two testing strategies. Blackbox testing ig-
nores the structure of the source code and derives test cases
only from the specification in order to detect anomalous soft-
ware behavior. Whitebox or structural testing, on the other
hand, takes advantage of knowledge of the structure of the
source code to design test cases [6].

In the rest of the paper, we use the following definitions:

Condition A condition is a leaf-level Boolean expression (it
cannot be broken down into a simpler Boolean expres-
sion).

O-7803-6395-7/00/$10.00 02000 IEEE 1.B.6-1

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

Decision A decision is a Boolean expression that controls
the flow of the program, for instance, when it is used in
an if or while statement. Decisions may be composed
of a single condition or expressions that combine many
conditions.

Structural testing criteria have been defined that describe
the level of coverage of the code:

Statement Coverage: Every statement in the program has
been executed at least once.

Decision Coverage: Every point of entry and exit in the pro-
gram has been invoked at least once, and every deci-
sion in the program has taken all possible outcomes at
least once.

ConditiodDecision Coverage: Every point of entry and exit
in the program has been invoked at least once, every
condition in a decision in the program has taken all
possible outcomes at least once, and every decision in
the program has taken all possible outcomes at least
once.

Modified ConditiodDecision Coverage: Every point of en-
try and exit in the program has been invoked at least
once, every condition in a decision in the program has
taken on all possible outcomes at least once, and each
condition has been shown to affect that decision out-
come independently. A condition is shown to affect a
decision’s outcome independently by varying just that
decision while holding fixed all other possible condi-
tions.

The condition/decision criterion does not guarantee the
coverage of all conditions in the module because in many
test cases, some conditions of a decision are masked by the
other conditions. Using the modified condition/decision cri-
terion, each condition must be shown to be able to act on
the decision outcome by itself, everything else being held
fixed. The MC/DC criterion is thus much stronger than the
condition/decision coverage criterion, but the number of test
cases to achieve the MCDC criterion still varies linearly
with the number of conditions n in the decisions. There-
fore, the MC/DC criterion is a good compromise for white-
box testing: (1) it insures a much more complete coverage
than decision coverage or even conditioddecision coverage,
but (2) at the same time it is not terribly costly in terms of
number of test cases in comparison with a total coverage cri-
tenon [5] .

The controversy over the MCDC coverage requirement
revolves around cost and effectiveness issues. It should also
be noted that the technique does not relate directly to re-
quirements or safety considerations: although the MC/DC
criterion is imposed to ensure that the software is safe, the
testing is not related to the system or software safety require-
ments or constraints.

3 Relevant Aspects of the HETE-2 Attitude Control
Software

Our case study used the HETE-2 (High Energy Transient Ex-
plorer), a science mini-satellite developed at MIT, and more
precisely, its Attitude Control System (ACS) software [2].
A failure of the ACS can cause the loss of the satellite or at
least a complete failure of the mission. Although this soft-
ware is not part of an aeronautics system, its requirements,
constraints, and safety issues are similar enough to avionics
software for the case study to be relevant to the environment
in which DO-178B is usually applied.

A first HETE satellite was launched in November 1996,
but it was lost due to the failure of its Pegasus XL launcher.
This case study was run during the development of a second
satellite, HETE-2, with the same scientific goals. Its mis-
sion is the study of the astrophysical events known as gamma
ray bursts. Gamma ray bursts are high-energy transients in
the gamma range that seem to be isotropically distributed in
the sky. They last from a millisecond to a few hundreds of
seconds and involve a huge amount of energy. HETE-2 is
expected to detect the bursts, locate them, and capture their
spectral characteristics.

The spacecraft carries several instruments used for the
mission: four gamma ray telescopes, two wide-field X-ray
cameras, two soft X-ray cameras, and two optical cameras.
The optical cameras provide the Attitude Control System
with the drift rates during orbit nights.

The ACS uses two types of sensors to determine the atti-
tude of the spacecraft: sun sensors and magnetometers. The
sun sensors allow the ACS to compute the attitude of the
spacecraft with respect to the sun while the magnetometers
allow the ACS to determine the spin vector of the spacecraft.
The spacecraft attitude is modified using three torque coils
and one momentum wheel. The communication between the
sensors/actuators and the computer is made via a serial bus,
called the AUX bus.

The ACS software is written in C and compiled using
the GCC GNU compiler under a Sun Solaris environment.
The software contains approximately 6000 lines of source
code. Ultimately, the software will run on the spacecraft’s
on-board transputer, and the object code for this processor
will be generated by a cross compiler. No simulation facility
is supported on the transputer, so the module testing had to
be done in the Unix environment and only functional testing
and system testing will take place on the transputer itself.
Because DO-178B requires module testing to be performed
in the target environment, the testing does not conform with
the standard on this point. Testing on HETE does not protect
against cross-compiler bugs, but in this case, host testing was
the only feasible way to conduct the module testing process
and should not affect this study of the efficacy of the DO-
178B testing procedure.

The ACS controls the deployment sequence from the mo-

1.B.6-2

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

ment the satellite is released by the rocket (with solar pad-
dles stowed and with a tumbling attitude) until the moment
it reaches its final orbit configuration (with paddles deployed
and axis stabilized). During the operations phase, the ACS is
crucial for the correct operation of the instruments, for power
balance, and for thermal balance. The ACS requirements are
divided into orbit-day requirements and orbit-night (eclipse
time) requirements.

In order to perform efficiently all the different operations
for which it is responsible, the ACS is divided into ten dif-
ferent modes: modes 0 to 6 are used during the deployment
sequence while modes 7 and 8 are activated alternately dur-
ing the operations phase. Mode 9 is a backup ground com-
mand mode. The progression in the succession of modes
(from mode 0 where the spacecraft is tumbling right after it
is released by the rocket to modes 7-8 where the payload
can operate) corresponds to an improvement in the space-
craft stabilization.

The first four modes use only the magnetic torque coils as
actuators. The control laws that are implemented by the ACS
software in these modes are quite simple: Their goal is to
dampen most of the rotation speed transmitted to the satellite
by the spacecraft so that it acquires a rotational stiffness that
allows it to stay aligned with the sun.

The next modes bring the momentum wheel into play in
order to stabilize the spacecraft finely (with very low drift
rates). These algorithms are more complex, in particular a
Kalman filter is used. The deployment of the solar paddles
also occurs in this part of the deployment sequence, when
the satellite is in a steady position, facing the sun.

The progression through the modes need not be linear.
Nominally, the ACM goes through the deployment sequence
(mode 0 to mode 6) and then toggles between mode 7 (or-
bit day) and mode 8 (orbit night) during operations. But a
set of parameters is constantly monitored, and if one grows
past its corresponding threshold, the ACS switches back to
the mode that is optimized to fix this parameter (taking into
account whether it is orbit day or orbit night). As a result,
the mode switching logic contains many variables and paths.
In addition, many of the mode switching conditions involve
required time delays.

The testing of the ACS software involves checking the
following:

0 The switching logic is correctly implemented (the switch-
ing between the modes occurs when the spacecraft is
in the expected configuration).

0 The behavior of each mode is correct (each mode per-
forms the task it is designed for and does not corrupt
any other parameters).

The spacecraft meets the ACS requirements while it
is on station (after it has gone through the acquisition
sequence, the spacecraft maintains a correct attitude so
that the other subsystems can perform normally).

4 Design of the Study and The Testing of the Soft-
ware

For Level A software, DO-178B requires functional testing
augmented with the test cases required to guarantee cover-
age according to the MCDC criterion. Testing attitude con-
trol systems has always been a problem in the space indus-
try as it is virtually impossible to control all the parameters
that affect the system, such as the orientation of the sun, the
components of the magnetic field, gravity, the small pertur-
bations that affect the spacecraft in orbit, etc. For this reason,
the testing of the ACS hardware and the ACS software are
decoupled. Each hardware item is verified on its own, and
a simulation environment is created to provide the software
with the information it expects and to collect the commands
it outputs.

able for testing the ACS. The simulation environment can
feed the ACS software with all the environment parameters
corresponding to the position of the satellite (sun direction or
orbit night, magnetic field, disturbance torque, etc.). It can
also simulate the dynamics of the spacecraft: given initial
conditions, actuator commands, and environment torques,
the state of the satellite (rotation rates, pointing accuracy,
etc.) is continuously updated. The simulator also takes into
account the commands generated by the software to update
the state of the spacecraft’s actuators.

Each test case is run via a script that sets the initial con-
ditions of the system, calls the simulation program, launches
the ACS software, and finally collects and displays the re--
sults. To allow better control of the software, some addi-
tional routines were written. These routines allow the tester
to start the ACS in a particular mode (after staying in mode 0
for a moment to initialize the filters), collect directly the pa-
rameters of interest for the test, and provide complete con-
trol of the paddles deployment sequence, the AUX errors,
the time, etc. Using this setup, the test cases can be imple-
mented easily and can be repeated as desired because all the
data necessary for initialization and the complete informa-
tion extraction process is stored in the script.

For HETE-2, a complete simulation environment was avail-

4.1 Blackbox Testing

Because the same types of tests must be run for every mode,
the testing process used the same three-step process for black-
box testing of each mode:

Switching logic testing: In this step, the goal is to verify
that the ACS enters and exits the modes when the pa-
rameters take on the expected values and when the mode
delay has elapsed.

Parameter testing: The ACS software senses the satellite
through a set of parameters, which are then exploited
to decide to send some commands to the actuators or

1.B.6-3

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

to switch mode. For the ACS to perform correctly, the
integrity of these parameters is crucial; hence it must
be verified that they really reflect the physical state of
the satellite.

Functional testing: Finally, it is necessary to make sure that
each mode accomplishes its fundamental task correctly.
We need to check that the ACS interprets the parame-
ters correctly and then issues the right commands that
have the expected effect on the spacecraft’s attitude.

4.2 Whitebox Testing

The whitebox testing process was divided into two different
steps: coverage evaluation and the design of additional test
cases.

The goal of coverage evaluation is to identify the parts of
the code that have been left unexplored by blackbox testing
and therefore could contain additional errors. Three different
tools were used to help in assessing the level of coverage
achieved by the blackbox test cases:

0 Attol Test Coverage from Attol Testware [11: This tool
is compliant with Level A of DO-178B (every point
of entry and exit in the program is checked using the
MClDC criterion).

0 Cantata from IPL [3]: This tool is not fully compliant
with level A of the standard because the C version of
the tool uses the masking version of MClDC, not the
unique cause version.

0 GCT (Generic Coverage Tool, Free Software Foun-
dation): This tool only supports decision coverage or
multiple condition coverage, not MC/DC, and it was
not designed specifically for the DO-178B standard.
However, it is the coverage evaluation tool used for the
regression tests of the HETE software, so it was also
included in the coverage evaluation process.

The coverage evaluation revealed that some parts of the
code were not fully covered (according to the MC/DC crite-
rion) by blackbox testing. Additional test cases were devel-
oped to fill the gaps.

5 Analysis of the Results

This section of the paper describes the blackbox and white-
box testing results as well as discussing the implications of
the results on the relation between MClDC coverage and
software safety, the complexity of satisfying the MCDC cri-
terion, and the difficulty of achieving MCDC coverage in
this case study.

5.1 Blackbox Testing Results

As expected, the various types of errors found during black-
box testing were often associated with off-nominal test cases,
particularly in the mode switching logic. For example, un-
wanted mode switching was found to occur when a variable
time-in-mode took a negative value. Although this should
never happen, it could result from a bad initialization. Be-
cause time-in-mode is declared as a long unsigned integer, it
should never be able to take on negative values. However,
somewhere in the code it is converted to a long signed inte-
ger. During testing we found that in every mode, an out of
range time-in-mode value will bring the ACS into the next
mode if the other parameters allow it even if the required
mode delay time has not elapsed.

A second example of an error detected by blackbox test-
ing was that the required delay in mode 3 was not taken into
account for switching induced by one particular parameter
although it is taken into account when switching is the result
of a different parameter. An examination of the logic de-
tected confusion in the if-then-else branching logic for mode
3 switching.

Other errors detected included missing default cases, an
incorrect definition of a threshold (the value should have
been 1.7453e-3 rad/s or 6 arcminh, but instead was set to
1.7453), missing conditions, and the lack of a required abso-
lute value a h () function in some computations.

5.2 Whitebox Testing Results

The whitebox coverage analysis revealed some parts of the
code were not fully covered (according to the MClDC cri-
terion) by blackbox testing. As might be expected, these
parts primarily involved error-handling. This fact is consis-
tent with data showing that a large percentage of operational
errors found in requirements involve the error-handling rou-
tines, which are often not well tested. These routines are
difficult to test during functional testing as they involve un-
expected and erroneous behavior of the software, the envi-
ronment, or the underlying digital hardware, such as bit flips
caused by EMI. Some examples of the types of uncovered
error-handling code for HETE-2:

0 The handler that switches modes has a default that han-
dles erroneous modes (i.e., modes outside 0-9), which
was never exercised. Similar unexercised code involved
checking for incorrect values (1) in the last else clause
in a statement in which one of the preceding clauses
will always be taken unless there is an error in other
parts of the code or (2) in a short-circuited Boolean ex-
pression in which the first clause will always be true
unless an incorrect path has been taken in the software
to reach the decision statement. Another mode-related
testing omission involved the situation where the satel-
lite enters mode 6 with the paddles already deployed,

1.B.6-4

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

in which case it should immediately return to mode 5.

0 For redundancy, there are two magnetometers on the
spacecraft. The detumble, spinup, and reorient control
logic selects either magnetometer A or magnetometer
B using an if-else statement. Because a failure never
occurred during system testing, this decision statement
is not covered. In another routine, a test is made for an
erroneous magnetometer value but this test was never
exercised during system test.

0 The software checks for errors in the sensor data to
detect possible errors in magnetometers A and B, in
the different sun sensors, or in the wheel tachometer.
If an error occurs, the data of the corresponding device
is not updated and the old values are used. No AUX
errors were simulated during blackbox testing, so the
branches of the code that handle these situations were
not executed.

Some limit cases were also never reached during system
test. For example, when the satellite is not on station (i.e.,
for modes 0,1,2,3,4, and 6), the wheel torque is limited by a
function called control-wheel to a maximum of the absolute
value of 0.02 Nms. During system test, the negative torque
limit was never reached so a decision in the control-wheel
routine was left uncovered. In another routine, a function
called limit-mag-moment limiting the value of the processed
torques in the on-station controllers is never called. The
physical limits for the coil torques is given by VIR x A , f f
(where V is the bus voltage, R is the coil resistance, and
A , f f is the effective area of the coil). In the simulations,
the torques returned by the on-station controllers sometimes
go well above this limit. However, they are later limited
by another function that processes the raw commands and
sends them to the actuators. So the magnetic moments of
the coils are actually limited (albeit in another part of the
software), and it was determined after the coverage evalu-
ation that the function limit-mag-moment was not needed.
Other instances involving limit checking in what was deter-
mined to be dead (unreachable) code were also detected and
the code removed.

in the software that was not implemented everywhere in the
code. The inertia matrix of the satellite is different if the pad-
dles are deployed or not. The controller selected the correct
inertia matrix using the following decision:

Another unexercised part of the code resulted from a change

if (rom->paddles-deployed == 1)

else
use 1-deployed

use I-stowed

The condition rom->paddles-deployed == I is a holdover
from an old version of the code: initially the state of the pad-
dles was a binary variable (0 for paddles stowed and 1 for

paddles deployed) but it was decided later that the deploy-
ment of the paddles should be monitored individually for
each paddle. Therefore, the state of the paddles was changed
to be denoted by four bits (Ox0 for all paddles stowed and
OxF for all four paddles deployed). In the version of the
code that was tested, several places in the code were not
updated and the single-bit notation was still used. This er-
ror results in a bad selection of the inertia matrix for the
on-station controller when the paddles are actually deployed
(rom->paddles-deployed is not equal to 1 when the paddles
are deployed). The two inertia matrices are not very dif-
ferent, so the bad selection was not noticed in the blackbox
simulations, and the error was revealed only by the whitebox
testing.

The ACS software also watches for time rollovers, i.e.,
when the present time is smaller than the time of the pre-
vious sample. Time rollovers can occur when a time regis-
ter reaches its maximal value (this should never happen on
HETE-2 because a 64-bit digital clock permanently keeps
track of the time) or after a reboot of the processor. Such
timing glitches cause a problem for the ACS software, par-
ticularly for the calculations of the time derivatives and the
wheel speed, which use the time differences between two
samples. If a time rollover does occur, the software is sup-
posed to use the old values for the magnetic field time deriva-
tive and the tachometer wheel speed instead of computing
new ones. If the sensor data is too old by the time the com-
mands to be sent to the actuators are computed, the software
sets all the commands to zero, thus ensuring that no out-
of-date commands are executed, for example after a proces-
sor lockout. These timing checks in the ACS software were
never exercised during blackbox testing.

Other sanity checks were also found to be unexercised.
An example is the verification of the bus voltage before the
computation of the commands for the torque coils drivers.
If the bus voltage reading is too low (less than one volt) or
too high (more than 100 volts), the reading is assumed to be
erroneous and a nominal voltage (28V) is used instead. Er-
roneous bus voltages did not occur during blackbox testing.

The MCDC coverage evaluation also uncovered errors
in the specification. An error in the code involving the paddles
deployed variable caused one branch of the mode switching
logic, which goes from mode 2 to mode 8 when the cam-
eras are tracking and the paddles are deployed, never to be
taken. This branch was not included in the specifications, so
the problem was not noticed during blackbox testing.

In the DO-178B specified process, after the parts of the
code not covered by blackbox testing (with respect to a par-
ticular coverage criterion) are identfied, additional test cases
must be designed to fill the gaps. Additional HETE-2 test
cases were generated to test the detection and handling of
illegal modes; to determine whether correct behavior oc-
curred when the satellite enters mode 6 with the paddles al-
ready deployed (the ACS should switch immediately back

1.B.6-5

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

to mode 5 and the on-station cycling behavior continue nor-
mally, which it was found to do after the additional tests were
run); to determine how the ACS software handles AUX er-
rors that can cormpb the data coming from the different sun
sensors and from the wheel tachometer; to test the backup
magnetometer selection logic; to fully cover the code that
generates the torque coil commands; to test limit cases (thresh-
old handling) in the torque coil and wheel torque; and to
throughly test time rollovers and the use of obsolete sensor
data.

Most of the new testing showed the software to be cor-
rect, but some previously undetected errors were found by
the additional test cases generated to ensure MCDC cover-
age. One such case involved handling AUX errors. When
an AUX error is detected on only one of the sun sensors,
the software does not try to use the other sensors to com-
pute the sun-pointingparameters, but instead discards all the
sun sensor information. This algorithm optimizes for short
AUX bus blackouts, in which it is not worthwhile to lose
time going through complex selection logic to pick up the
good information since the data will be available again a few
samples later. However, the logic needed to be changed to
handle the case of a sun sensor hardware failure that pro-
duces a permanent error.

In another example, the selection of an incorrect mag-
netometer value in a test revealed an error in the code that
handles this error (a pointer is never set and when it is refer-
enced later in the program, it causes a segmentation fault).

5.3 Relation Befween the MC/DC Criterion and
Software Safety

A main question in this study was to determine whether MCDC
coverage improved the safety of the software. In other words,
did the additional tests required by the coverage criterion
find important errors or did they just consist of playing with
some variables to artificially toggle conditions, resulting in a
process in no way rerated to safety or even to practical issues
in software engineering.

We found that for the HETE-2 software, all the addi-
tional tests requires to satisfy the MCDC criterion were di-
rectly linked to an important feature of the software. More
precisely, the need for additional tests corresponded to four
kinds of limitations of the blackbox testing process:

0 Something was forgotten during blackbox testing, for
example, the case where the sattellite enters mode 6
with the solar paddles already deployed.

0 The software has a complex logic mechanism requiring
in-depth understanding and precise, customized test-
ing. This was the case for the magnetometer selection
logic. Much of the untested code was involved in error-
handling.

0

0

5.4

Some feature of the software was not included in the
specification and therefore could not give rise to a test
case in a blackbox testing context. This was the situa-
tion for the AUX error checks and the time checks, and
for the bus voltage verification before the coil torque
computations. The fact that the whitebox testing pro-
cess served as a verification of the completeness of the
specification was very useful.

The effects of some errors were too small to be de-
tected by blackbox testing. In the case of the paddles-
deployed variable, we found that a bad value was as-
signed to this variable because the conditions in which
it was involved could not be toggled. The consequences
of this error had gone undetected previously because
the difference in output was so small.

Complexity of Satisfying the MC/DC Criterion

A second question to be explored was whether MCDC cov-
erage was excessive. That is, given that whitebox testing
is important in ensuring safety, would it be possible to use
a lower level of coverage and still ensure the same level of
safety?

The answer to this question for the HETE-2 software
was clearly no. For example, an important problem was de-
tected only because the MCDC criterion required checking
the second condition in an conditional expression. Test cases
could have satisfied decision coverage and conditioddecision
coverage without uncovering this problem. As it turns out,
the problem was not crucial-it would not have caused any
damage had it remained undetected. However, the test cases
that detected an error concerning a critical system variable,
paddles-deployed, involved the same kind of Boolean func-
tion except that the AND operator was replaced by an OR.
The fact that this important problem could also be detected
by decision coverage relies only on this small difference and
in general would not be true.

5.5 Difficulty of Achieving MC/DC Coverage

A final question concerns relative cost. Two comparisons
were made.

First, we calculated the time required for whitebox test-
ing in comparison to the total test time. In the case of the
HETE-2 software, the coverage determination and the de-
sign of the additional test cases represented about 40% of
the total testing time (the rest was devoted to blackbox test-
ing). Note that powerful tools were used to help determine
coverage, so the coverage evaluation process was quite fast
and easily repeatable.

One feature of the software, inherent in the nature of the
code itself, facilitated whitebox testing: part of the black-
box testing activity consisted of checking the mode switch-
ing logic, i.e., verifying that the different branches of the

1.B.6-6

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

switching diagram were taken under the correct conditions. [3] Anon. Cantata for C Documentation , IPL,
These switching specifications are, in fact, very close to the
structure of the source code itself, so part of the blackbox

[4] Anon. SofhYare Considerations in Airborne Systems testing was equivalent to testing the source code structure.
and Equipment Certijcation, DO-178B RTCA, Wash- Therefore, the number of required whitebox tests was re-

duced, and the proportion of whitebox to blackbox testing ington D.C. 1992
time was biased in favor of whitebox testing. Therefore,
white box testing was useful in finding errors in the code,
but it indeed represented a time-consuming step in the com-
plete testing process.

ing MCDC coverage versus achieving a simpler form of
coverage such as decision coverage. In fact, we found in
the case of HETE-2 that MCDC coverage was not much

http://www.iplbath.comlp 13 .htm.

[5] Chilensky, J.J. and Miller, S.P. Applicability of mod-
ified conditioddecision coverage to software testing.
Sofmare Engineering Journal, 1994.

Second, it is interesting to compare the difficulty of achiev- [61 Jasper, R.7 Brennan, M., Williamson, K., Currier, B.,
and Zimmerman, D. Test data generation and feasible
path analysis. SIGSOFT Sojhvare Engineering Notes,
ACM, 1994.

[7] Simonetti, A., Coupier, A., and Secher, C. Experience
gained from recent avionics software certification. Bul-
letin techniques du Bureau Veritas, 1992.

more difficult to achieve than decision coverage. This result
was due to the programming style of this code: only l l % of
the decisions were composed of Boolean functions while all
the other decisions were single-condition decisions. In this
latter case, decision coverage and MCDC are equivalent.

An important tradeoff is involved here. The fact that de-
cisions were kept simple contributed to making this software
well suited for MC/DC testing. However, keeping the de-
cisions simple in the source code also has its drawbacks-
in general simpler decisions lead to more complex logical
structure. In essence, multiple conditions linked by Boolean
operators were replaced by nested ifelse-ifinstructions. This
kind of logic is very prone to errors (as demonstrated, for
example, in the switching logic testing of mode 3). So al-
though this style of coding facilitates MCDC testing, it may
also lead to more errors in the code and leads to code that is
also more difficult to read and maintain.

[8] Myers, G.J. The Art of Sojhvare Testing. John Wiley,
1986.

6 Conclusions

Although this case study provides only one instance of an
evaluation of the MCDC coverage criterion, it does pro-
vide examples of its usefulness and effectiveness. Functional
testing augmented with test cases to extend coverage to sat-
isfy the MCDC criterion while relatively expensive, was not
significantly more expensive than achieving lower levels of
code coverage. Important errors were found by the addi-
tional test cases required to achieve MCDC coverage (i.e.,
in the software found not to be covered by blackbox func-
tional testing). The use of automated tools to evaluate cover-
age was helpful in reducing the costs of structural coverage
testing.

References

[11 Anon. Attol Coverage Documentation. Attol Testware,
http://www.attol-testware.com.

[2] Anon. HETE Documentation. MIT Center for Space
Research.

1.B.6-7

Authorized licensed use limited to: Purdue University. Downloaded on November 18, 2009 at 11:01 from IEEE Xplore. Restrictions apply.

http://www.attol-testware.com
http://www.iplbath.comlp

