
BITS C461 Software Engineering

First Semester 2003-2004

Project Requirements:

JListen: A Program Auralizer for Java

Project Sponsor: Aditya P. Mathur

Department of Computer Science

Purdue University, West Lafayette, IN, USA

Original: Aug 4, 2003. Revision: None.

1



1 Long Term Goal

The long term goal of this project is to create a commercially available, open source,

too for auralizing Java programs. When executed, an auralized Java program is able

to send commands to a sound server which then obeys these commands thereby re-

sulting in sounds. Auralization of Java programs is likely to be useful in debugging,

announcement of special events such as intrusion attempts, and for pure entertain-

ment.

For the purpose of auralization, the execution of every program is considered as

a sequence of events and activities. For example, ”the value of a program variable

become 0” is an event. The execution of a loop inside a program is an activity that

covers several events. It is these program events that are mapped to various sounds

through the auralization process. One can hear tthe auralized program during its

execution and conclude what events have occurred and what are the ongoing activities.

2 What is to be done ?

Selected teams of students of BITS C461 will be required to complete the following

tasks related to this project:

1. Understand and analyze project requirements. The product of this activity will

be a list of high level and low level use cases, system sequence diagrams, and a

domain model expressed in UML.

2. Complete a design of the various components of the Jlisten. The product of this

activity will be a complete design of JListen and its individual components. The

design must be expressed in UML.

3. A prototype of Jlisten. The prototype will demonstrate how a full-fledged JLis-

ten would work. The prototype will have only a selected subset of the features

that a full fledged JListen might have. Teams working on the project will decide

what features to select for prototyping.

2



3 Using JListen

As shown in Figure 1, a user of Jlisten begins with a Java program J that is to be

auralized. The user then specifes what events and activities in J are to be auralized.

This specification is expressed in Listen Specification Language (LSL). LSL allows

specification of events and activities in a program that need to to be auralized. LSL

also allows the specification of what sounds are to be associated with an event or an

activity and at what rate these are to be played. The core of LSL is independent

of the programming language used for auralizing a program. By adding a list of

keywords to the LSL core, one obtains LSL/L for programming language L. For

example, LSL/Java is obtained by adding Java keywords to LSL core. Additional

information of LSL is available from the following site.

http://www.cs.purdue.edu/homes/apm/research–¿Program Auralization

An LSL specification and J are input to an LSL parser and then to Java Program

Auralizer (JPA). The auralizer generates an instrumented version of J . The instru-

mented version of J contains calls to a Listen Sound Server (LSS). The instrumented

J is then compiled using any Java compiler to produce an executable version of J .

During execution, whenever a call to LSS is executed, LSS receives a request to play

a sound. LSS uses its current parameter settings to decide whether or not to play

the sound, and, if the sound is to be played then on which audio device should it be

played.

LSS is a stand alone component of JListen. It is independent of any programming

language. Thus, for example, one could use LSS for processing requests coming from

a C or a C++ program.

4 LSS: Listen Sound Server

This extremely powerful stand alone application communicates with any auralized

application and processes incoming requests for generating sounds. An auralized

application may communicate with LSS in a variety of ways. It could also be compiled

with the auralized application. The LSS can be executing on a machine different from

3



LSL specification

Program to be
auralized

LSL parser

Java Program
Auralizer (JPA)

Event/activity
 mapping

Instrumented Java
program

Java compiler

Auralized Java
program

Execution
 platform

Listen Sound
Server (LSS)

Listen Sound
Server (LSS)

Listen Sound
Server (LSS)

Sound requests

Figure 1: Interactions amongst components of JListen. Three instances of LSS are

shown. In practice the number of LSS instances could be zero or more.

the machine on which the auralized program executes. This feature allows a single

auralized program to be heard at any computer accessible via the network.

LSS allows a user to selectively listen for zero or more events and activities that

have been auralized. Thus, for example, an LSL specification might call for events E1

and E2 in program J to be auralized. However, any time during the execution of J ,

a user could instruct LSS not to play the sound corresponding to evgent E1. Further,

the mapping between an event and a specific sound can also be altered during the

execution of J . For example, if the LSL specification calls for playing a note on the

Sitar whenever event E is detected, a user could change this mapping of E to Sitar

4



to E to Banjo.

LSS can also receive audio requests from more than one auralized application.

Thus, for example, auralized programs J1 and J2 could send audio requests to LSS

concurrently. The user can tune LSS to play any of the programs, none of them, or

both of them simultaneously. Thus, LSS serves as a multichannel concurrent radio

for auralized programs.

The requirements given here are incomplete and ambiguous. Teams will need

to resolve ambiguities and, where necessary, complete the requirements. Help

wil be available from the instructors.

5


