CS 406 Fall 2001

Lecture #4 August 30, 2001

Instructor Cheat Sheet for use during lecture #4

Do you arrive at the following conclusions after having read this material?

(a) Software process is important.

(b) Each life cycle model has its pros and cons.

(c) Waterfall model requires a great deal of discipline and is document driven

(d) Spiral model is risk-driven.

(e) Incremental model is similar to UDP, is highly disciplined but very different from the waterfall model.
(f) CMM levels indicate process maturity of a software group/company.

(g) Data indicates that a company at a higher CMM level produces higher quality software as compared to companies at a lower CMM level.

(h) A defined process has clearly specified steps with verifiable entry and exit criteria.

What other conclusions would you arrive at from this material?

1. Process

a. Process: Sequence of steps.
b. Each step must be clearly defined. It has a goal, an entry, and an exit criteria.
2. Models of software life cycle

a. We have learnt in Lecture #3 that each software application undergoes a life cycle from inception to retirement.

b. There are many ways to organize a life cycle. Each has its advantages and disadvantages.

c. We will examine the following models of software life cycle:

i. Build and fix

ii. Waterfall

iii. Rapid prototyping

iv. Incremental model

v. Risky incremental model

vi. Spiral model

vii. Unified Development Process (UDP)

3. Build-and-fix model

a. Product is constructed without specifications.

b. There is no explicit design. However, a design will likely evolve in the mind of the developer.

c. The approach might work for small programming projects [CS 180/181/251…].

d. Cost of fixing an error increases as one moves away from the phase in which the error was injected. In the build-and-fix approach there is a good chance that many errors will be found in the operations phase thereby leading to high cost of maintenance.

e. This approach is hardly used by any noteworthy software company to develop commercial products.

[image: image13.png]uDd P

A four-week iteration (for example).
‘A mini-project that includes work in most

disciplines, ending in a stable executable.

Sample

UP Disciplines
Business Modeling |
Focus _
of this Requirements
book
Design
Implementation
Test
Deployment

Configuration & Change

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

Management
Project Management

Environment

lterations

4. Waterfall model

a. Popular in the early 70’s.

b. Requirements are determined and verified with the client and members of the SQA group.

c. Next specifications (i.e. “What is the product supposed to do”) are written and again checked by the client and the SQA group.

d. Project management plan is drawn, cost and duration estimated, and checked with the client and the SQA group. Then the design (i.e. “How is the product going to do what it is supposed to do.”) begins and the project proceeds as in the figure.

e. Any inconsistency, incompleteness, or ambiguity found during the design phase might need fixing the specifications document with the Client’s permission. Other documents might also need adjustment. Notice the feedback loop between the Design phase and the Specifications phase.

f. Each phase terminates only when the documents are complete and approved by the SQA group.

g. Maintenance begins when the client reports an error after having accepted the product. It could also begin due to a change in requirements after the client has accepted the product.
 [image: image2.png]r _______ —
Requirements | Changed e __
phase - ——I requirements | l
| e — —} [
Verify 1 | - Y‘sz] :
l [
Y 1
Specification :
hase

p as e — — — — — — - — — — = |
Verify : ll
i ||
|l
Design : :
phase e “1 1
Verify : : :
l o
[:
Implementation : L
phase = : |
Test | : | :
oy
i Ly h
WATE2 FALL | | L
Integration g
phase [
[
Test Ll
l Ll
|

Operations

— Development mode
- —— Maintenance L

Retirement

Advantages of the waterfall model:
(a) Disciplined approach.

(b) Careful checking by the SQA group at the end of each phase.

(c) Testing in each phase.

(d) Documentation is available at the end of each phase.

Disadvantages of the waterfall model:

(a) Documents often do not convey the entire picture. What if your home architect gives you a 10-page document describing your future home but with no sketches?

(b) Specification documents are detailed and difficult to read, especially by many clients. These are likely to be format. Thus a client might not understand what the developer meant from the specification document.

5. Rapid prototyping model

(a) Rapid prototype: A working model of the actual system. Most likely contains a subset of the features desired in the final product.

(b) Clients and users interact with the prototype. The specification document is drawn after this interaction.

(c) Subsequently the process continues linearly, with feedback loops, until operations mode. The loops are less likely to be needed because the customer has already interacted with the prototype.

(d) Rapid prototype is used as a requirements analysis technique.

(e) Should the rapid prototype be successively refined or discarded? Answers from various development organizations differ on this question.
[image: image3.png]

6. Incremental model

a. Product is designed, implemented, integrated, and tested as a series of incremental builds.

b. A build consists of code from various modules to provide desired functionality.
c. Note that architecture of then product is designed prior to the first build. Thus, this should be construed as a build-and-fix approach. It is a highly disciplined approach but quite different from the waterfall or rapid prototyping model.

d. At each stage, a new build is coded and integrated into existing code to provide added functionality. Note that each build is a working application though it might not have all the desired features.

e. At stage, the current build could be delivered to the customer for use. Thus, the client is able to do useful work at an early stage of the complete project.

f. Early adoption by the client eases the use of the application into the client environment. Often, introduction of new tools is a traumatic task for users. Incremental approach could ease the introduction.

g. Financially also, the client benefits.
h. A major difficulty of the incremental model lies in the architecture design phase. Incorrect design can lead to significant difficulty in integrating successful builds. Hence the importances of knowledge of good software architectural design principles.
i. It is risky to develop builds in parallel without an overall architectural design. Doing specification of build 2 in parallel with design of build 1 might eventually lead to builds that do not fit each other.

[image: image4]
[image: image5]
7. Spiral model

a. Most software projects involve an element of risk. Personnel leaving, changes in hardware, incorrect architecture, technological breakthroughs, etc.

b. Spiral model helps to minimize risk with the aid of prototypes.

c. Each prototype is used to suggest possible risks. For example, a prototype might suggest that real time constraints might be violated if the hardware does not work as intended or if some other component of the application consumes too much time to complete an operation.

d. Each cycle of the spiral represents a phase. A phase begins in the top left quadrant.

e. The bottom right quadrant is the development phase and follows the waterfall model.

f. The radial dimension in the spiral model denotes the cost of the project so far.

g. The angular dimension denotes progress through the spiral.

[image: image6]
8. Unified Development Process (UDP)

a. Key idea: Iterative development for projects that use OO analysis and design.

b. Development is organized into a series of short fixed length iterations. These are also known as mini-projects.

c. Each iteration produces a working, executable, product that might not be a deliverable.

d. A system is successively refined and enlarged.

e. For example, Requirements(Design(Integrate, Implement, test-(Final integration and system test could be one mini-project that lasts 6-weeks. This cycle could then be repeated in the next iteration.

f. Observe: No rush to code and not a long drawn out design process (as for example in the waterfall model). Lot of visual modeling is used using UML. This helps in the analysis and design process.

g. Early iterations seek feedback and adapt the process to the requirements. Note that feedback and adaptation are important to manage changing and misunderstood requirements.

h. UDP tackles high risk and high-value issues in early iterations.

i. Users are engaged continuously in the evaluation, feedback, and requirements gathering.

j. Architecture is built in the early iterations.

k. Use cases are identified early and used throughout the life cycle.

l. Lot of visual modeling takes place and enters the documentation.
m. UDP disciplines: Business modeling, requirements, design, implementation, test, deployment, configuration and change management, project management, environment (setting up development tools, and process for the project).
n. UDP phases:

i. Inception: Vision, business case, scope, estimates.

ii. Elaboration: Refined vision, iterative implementation of core architecture, risk resolution, realistic estimates.

iii. Construction: Iterative implementation of remaining lower risk elements, preparation for deployment.

iv. Transition: Beta test, deployment, training.

[image: image7]
9. Comparison of various life cycle models

Build and fix:

Ok for short programs that do not require maintenance.

Waterfall:

Disciplined approach, document driven; delivered product may not meet client needs.
Rapid prototyping:

Ensures that delivered product meets client needs; might become a build-and-fix model.

Incremental:
Maximizes early return on investment; requires open architecture; may degenerate into build-and-fix.
Spiral:
Risk driven, incorporates features of the above models; useful for very large projects.

UDP:

Iterative, supports OO analysis and design; may degenerate into code-a-bit-test-a-bit.
10. Capability Maturity Model (CMM)
a. Developed by SEI at CMU.
b. Objective: (a) To enable software companies/groups to assess the maturity of their development process and (b) Assist in process improvement.

c. Process capability is measured over 5 levels named Level 1 to Level 5.

d. Level 1: Initial: Company has no defined process; mostly ad-hoc procedures for any activity; no project controls, project plans are not adhered to; success depends solely on the quality and capability of individuals.

e. Level 2: Repeatable: Policies and procedures exist for project management; project commitments are realistic and based on past experience; cost and schedule are tracked; formal configuration control mechanisms are in place. Results obtained by the process can be repeated.

f. Level 3: Defined: Standardized and documented software process; software process group exists that owns and manages the process; each process step is defined with defined and verifiable entry and exit criteria; both the development and management processes are formal.
g. Level 4: Managed: Quantitative goals exist for process and products; data are collected from projects and used to build models to characterize the process. Results are predictive.

h. Level 5: Optimized: Focus is on continuous process improvement; data is collected routinely and analyzed to identify areas that can be strengthened to improve quality and productivity.

How good are the CMM levels?

Motorola:

Results from 34 Motorola Government Electronics Division (GED) projects

CMM Level
Projects
Relative

Faults/MEASL
Relative

Decrease in

Productivity

Duration

1

3

1

--

--
2

9

3.2

890

1.0

3

5

2.7

411

0.8

4

8

5.0

205

2.3

5

9

7.8

126

2.8

MEASL: Million Equivalent Assembler Source Lines

Raytheon:

Equipment Division moved from Level 1 to Level 3. This resulted in a productivity gain of 2.0 and a $7.70 return on every dollar invested.

[image: image8.png]LEVEL 5—OPTIMIZING
* Process changs management
< Technology change management
+ Delect pravention N

LEVEL 4—MANGAED
* Software guality management
» Quantitative process management

LEVEL 2—REPEATABLE

+ Software requirements management
* Software configuration management
= Project Pplanning

* Project monltoring and control

End of Instructor Cheat Sheet for Lecture #4

[image: image1][image: image9.png]Cumulative
cost

! F5rogress
through

steps ,
Evaluate alternatives,

Determine : , L
objectives, identify, resolve risks
alternatives,
constraints Risk

Risk analysis

! Risk analysis

analysis

— Opera-
tional

' analysis Prototype 3

| Prototype 1 prototype

Requirementsplan |~ ~ ————— _ Simulations, models, benchmdrks
Life-cycle plan ' Concept of |

—

Risk |

Commitment
partition

Review

operation Software Detailed
require- Software design
ments product

—————
| | Code
| Unit
| test |

Develop- | Requirements
ment plan validation

Integration | Design validation

and test and verification
plan ! .

Plan next phase

Implementation

[
|
: test

Develop, verify
next-level product

[image: image10.png]Build first

1 UlLd AwnD I=iX
version BULLD 4w

Modify until [~ — 7
client is satisfied | __

> Operations mode

'

—> Development
- — = Maintenance

Retirement

[image: image11.png]Build 1:

Deliver

aus N . _| Implementation,
Specitications g Deslgn‘ | integration “to client
. e A v \ .
e i - _ | Implementation, Deliver
Build 2: | Specifications > Deslg,n‘ iritagration. 1 client
T~ S
. ;
oy . i o ' ementation, | i
Build 3: | Specifications Design > lm?rlx?e g?gtti ol t'gecjlli\gt
) T \
— — —>_ Specification team - . _
; . S ' oo m ntation, .
—--—> Designteam : Build n: | Specifications > Design - ! ?;?g ?attiot'l tlg%;i\g;rt
. ——— ' Implementation/integration team ' v : 9

[image: image12.png]Requirements
phase

Verify

|

Specification
phase

\

Verify

l

Architectu,ral
design

Verify

— Development
- ——=+ Maintenance

For each build:
Perform detailed
design, imple-
mentation, and
integration. Test.
Deliver to client.

-Operations mode

T

Retirement

