CS 406 Fall 2001

Lecture #3 August 28, 2001

Instructor Cheat Sheet for use during lecture #3

Do you arrive at the following conclusions after having read this material?
(a) Software process is important.

(b) Coding consumes much less time relative to time spent in other tasks during software development.

(c) Detecting faults early in the lifecycle is cost effective than detecting them later.

(d) User input is one of the three most important factors that determine the success of a project.

What other conclusions would you arrive at from this material?

1. What is SE?

View 1:
Collection of principles, procedures, and tools. This is the most commonly held view.

View 2:
Analogous to other disciplines of Engineering. In accordance with this view CS is SE and SE is CS. It is an interesting exercise to find out why. I will talk about it during a later class. Note that this is a minority view but seems to be gaining ground. Some universities have renamed CS departments as "Department of CS and SE," e.g. http://butler.edu/cs/.

History:
Term coined in 1960 at one of the NATO conferences held in Europe to discuss the "software crisis." Crisis came about as a result of need for large systems: e.g. multiprogramming operating systems. Techniques for writing simple programs did not scale up well to the development of software systems.

2. Why SE?

Software:
Programs, test plans, design documentation, user manuals, etc. When one buys a software product off-the-shelf, one gets several of these artifacts including an application binary.

Cost:
[Recommended reading: Standish Report (1995)]

Over the years hardware:software cost ratio has changed dramatically. Companies that sell hardware, e.g. Intel and Tektronix appear to be hardware companies but a significant portion of their expense is towards the development and maintenance of software. Do you recall what Steve Sutton from Tektronix said during the Pizza get-together?

Project data [1995]:

[I] Successful: 16.2%

[2] Over budget and overtime: 52.7%

[3] Cancelled: 31.1%

Average time overrun: 222%

Average cost overrun: 178% (large)-214(small)%

Restarts: 94 out of 100 projects

Failed projects:
California Dept. of Motor Vehicles, American Airlines, Mariott, Hilton.

Content deficiencies:

For Type [2] projects: more than a quarter were completed with only 25% to 49% of

originally-specified features and functions:

Project Success Factors

% of Responses

 1. User Involvement

15.9%

 2. Executive Management Support13.9%

 3. Clear Statement of Requirements13.0%

 4. Proper Planning

9.6%

 5. Realistic Expectations

8.2%

 6. Smaller Project Milestones
7.7%

 7. Competent Staff

7.2%

 8. Ownership

5.3%

 9. Clear Vision & Objectives

2.9%

 10. Hard-Working, Focused Staff
2.4%

 Other

13.9%
Project Challenged Factors

% of Responses
 1. Lack of User Input

12.8%

 2. Incomplete Requirements

12.3%

& Specifications

 3. Changing Requirements

11.8%

& Specifications
Project Impaired Factors

% of Responses

 1. Incomplete Requirements

13.1%

 2. Lack of User Involvement

12.4%

 3. Lack of Resources

10.6%
3. Software life cycle:

Software Life Cycle consists of all phases from its inception until its retirement. These are: Inception, elaboration, construction, transition.

Inception: Vision (vague), business case, scope, estimates (approximate).

Elaboration: Vision (refined), implementation of core architecture, identification of requirements and scope, realistic estimates.

Construction: Iterative implementation of low risk elements and preparation for deployment.

Other definitions of Software life cycle also exist. For example, it consists of Inception, Requirements analysis, Design, Implementation, Unit testing, Integration and testing, system test, acceptance test, deployment, maintenance, retirement.
4. Cost, schedule, and quality
a. Cost: resources: people, machines, tools, and infrastructure.
b. Schedule: Times at which various activities ought to begin and end.
c. Quality:
i. Product operations: Correctness, Reliability, Efficiency, Usability
ii. Product revision: Maintainability, testability, flexibility.
iii. Product transition: Portability, reusability, interoperatbility

5. Processes, projects, and products [and people too!]
Software process: Method of developing a software product.

Software project: A set of activities to produce the desired artifact.

Software product: The outcome of a software project (artifacts produced).

A software process is applied to one or more software projects and each project produces one or more products.

Types of processes:

Three types of product engineering processes:

1. Development process: deals with products

2. Project management process: To manage a project.
3. Configuration management: To manage change and rework.

Process management process: To manage processes within an organization. Managed by Software Engineering Process Group (SEPG).

6. Effort distribution

Data from 132 HP projects (recent) for development phase [1992]:
Req and specification

18%

Design

19%

Implementation

34%

Integration

29%
Data for traditional phases:

Requirements
10%-----| Req.

Design

20%-----| Analysis

Coding

20%

Testing

50%
Data from several projects over the entire life cycle[1976-1981]:

Requirements:

2%

Analysis:

5%

Design:

6%

Module coding:

5%

Unit testing:

7%

Integration:

8%

Maintenance:

67% [80% for many organizations]
How programmers spend their time [1985, Bell Labs]

Coding

13%

Reading code and manuals
16%

Job communication

32%

Others (including personnel)
39%

7. Faults and cost of fixing faults:

JPL Study [1992]:
Specification

1.9 faults per page

Design:

0.9 faults per page
Code

0.3 faults per page

IBM Study [1994]:

Relative cost of fixing a fault injected in the requirements phase:
Fix it in Req. phase:

1

Fix it in Analysis phase:

3

Fix it in Design phase:

4

Fix it during implementation:
10

Fix it during Integration:

52

Fix it during maintenance:
368

Another IBM Study [1994] Compiler project:

Faults introduced:

Carry over from previous version:

13%

Specification phase:

16%

Design phase:

71%
8. SE paradigms:
Paradigm: Collection of techniques for carrying out a complete life cycle.

(a) Structured programming: data and code remain separate.

(b) OO paradigm: encapsulation, data and code are combined into an object.
End of Instructor Cheat Sheet for Lecture #3
