Foundations of Software Testing, 2E
Test Generation Using the W Method
Java Programs for the Algorithms in Chapter 5: Test Generation From Finite State Models
[bookmark: _GoBack]Updated: August 4, 2013






Table of Contents
1.	How to generate a test set?	2
2.	Encoding an FSM	3
3.	Folders and files	4
4.	Debugging switches	4
5.	Executing an FSM	5
6.	Bugs	5





1. [bookmark: _Toc237081167]How to generate a test set?

(a) Compile and run WMethod.java in your favorite IDE.

(b) Enter the file name when prompted. This file must contain the FSM in the format described later.

(c) The program will then display the FSM, the W-set, and the tests generated. A sample interaction follows.


run WMethod
Enter filename:  [TestFSMs/mathur-test]
FSM input from:  TestFSMs/mathur-test
States: 5
Edges 10
Input alphabet:
a
b

Output alphabet:
0
1

From 	Input/Output 	To
1	 	a/0			1
1	 	b/1		 	4
2	 	b/1		 	5
2	 	a/0		 	1
3	 	a/0		 	5
3	 	b/1		 	1
4	 	b/1		 	4
4	 	a/1		 	3
5	 	a/1		 	2
5	 	b/1		 	5

Transition cover set (P). 11 entries.
Empty a b ba baa baaa baaaa baaab baab bab bb 

W Set. 4 entries.
a aa aaa baaa 

Number of Test Cases: 29
Test cases: [a, aa, aaa, aaaa, abaaa, ba, baa, baaa, baaaa, baaaaa, baaaaaa, baaaaaaa, baaaabaaa, baaaba, baaabaa, baaabaaa, baaabbaaa, baaba, baabaa, baabaaa, baabbaaa, baba, babaa, babaaa, babbaaa, bba, bbaa, bbaaa, bbbaaa]
2. [bookmark: _Toc237081168]Encoding an FSM

Each FSM needs to be encoded and saved in a plain text file. The test generation algorithm reads the FSM from a specified file and encodes it for internal use.  The format of an FSM file is as follows.

Data for each edge occupies one line. Lines are separated by CRLF. Each line contains, in order, the label of the source state, the label of the destination state, and the edge label. Edge labels are treated internally as strings of characters. While the state labels must be positive integers. The edge label must be of the form x/y where x denotes the input to the FSM and y the corresponding output. 
[image: ]Example FSM:










Example input: FSM coding for Figure 5.13 on page 235 of the textbook (reproduced above).
1 1 a/0
1 4 b/1
2 5 b/1
2 1 a/0
3 1 b/1
3 5 a/0
4 4 b/1
4 3 a/1
5 5 b/1
5 2 a/1

Several FSMs are located in the W-Code/TestFSMs folder.
3. [bookmark: _Toc237081169]Folders and files

	Class
	Purpose

	Edge.java
	Denotes an edge in the FSM.

	EdgeSet.java
	Collection of edges each of type Edge. An EdgeSet object is is a collection of Edge objects denoting edges going out of a State object.

	InvalidEdgeException.java
	This  exception is raised when an invalid edge is detected while inputting an FSM.

	LabelAndEdgeSet
	This object denotes the label of an edge, e.g. a/0, denotes input a and output 0.

	NoNextStateException.java
	This exception is raised when there is no destination state specified for an edge.

	pTable.java
	Denotes a P-table that arises during the construction of k-equivalence partitions (see Section 5.5.5 of the textbook).

	pTableEntry.java
	Denotes one entry in a pTable object.

	pTableManager.java
	Determines the W-set using k-equivalence partitions.

	State.java
	Defines the state of an FSM.

	TestingTree.java
	Denotes the testing tree object.

	TestingTreeNode.java
	Denotes a node in the testing tree.

	Utilities.java
	Contains several utility methods.

	WMethod
	Contains the main() method and some supporting methods. 



4. [bookmark: _Toc237081170]Debugging switches

Following is a list of switches and purpose. All switches are located in Utiliyties.java. These could be turned ON/OFF to enable/disable printing of various intermediate data generated during the execution of any of the three class test sequence generation algorithms.

	Switch
	Set this to true to …..

	fsmPrintSw
	Debug cycle breaking.

	pTableDebugSw
	Print P-tables as they are generated.

	testingTreeDebugSw
	Print information as a testing tree is built.

	transitionCoverSetBebugSw
	Print information while the transition cover set is being computed.

	fsmCreationDebugSw
	Print states, edges and labels while FSM is input.


5. [bookmark: _Toc237081171]Executing an FSM

Utilities.java contains the runFSM()  method with the following signature

public static void runFSM(State [] FSM, int stateID, String input, String separator),
where FSM is an array containing the states of the FSM to be executed, stateID is the ID of the state from the execution is to begin, input is the string of input symbols to be applied to the FSM, and separator is a string that separates the elements in the input string. For example, given an FSM, the following command executes it against the input "a a b a b".

Utilities.runFSM(FSM, 1, "a a b a b", " ");

For the FSM shown earlier, the above command generates the following output.

FSM execution begins. Input: a a b a b Initial state: 1
Current state: 1
 Input: a Next state: 1 Output: 0
Current state: 1
 Input: a Next state: 1 Output: 0
Current state: 1
 Input: b Next state: 4 Output: 1
Current state: 4
 Input: a Next state: 3 Output: 1
Current state: 3
 Input: b Next state: 1 Output: 1

FSM execution completed. Final state: 1
Output pattern:00111
6. [bookmark: _Toc237081172]Bugs

The tool currently generates tests only for m=n where m is the number of states in the FSM representing the code and n that representing the design against which the code is being tested..

Report bugs to apm@cs.purdue.edu. However, it would be great if you can fix the bug and send me the modified set of files.

<End of document>





1

image1.emf



q1



q3



q2



q4 q5



a/0



a/0



a/0



a/1



b/1



b/1b/1



b/1 b/1



a/1












[l

e




