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Chapter 1:

Preliminaries: Software Testing
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Learning Objectives

= Errors, Testing, debugging, test process, CFG, correctness, reliability,

oracles.

= Finite state machines

» Testing techniques
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1.1 Humans, errors and testing
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Errors

Errors are a part of our daily life.

Humans make errors in their thoughts, actions, and in the products that
might result from their

actions.

Errors occur wherever humans are involved in taking actions and making
decisions.
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These fundamental facts of human existence
make testing an essential activity.
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Errors: Examples

Musie performance
Numerical analysis
Obearvation

Software

Sports
Writing

Area Error
Hearing Spoken: He has a garage for repairing foreign cars.
Heard: He has a garage for repairing falling cars.
Medicine Incorrect antibiotic prascribed.

Incorrect note played.

Incorrect algorithm for matrix inversion.

Operator fails to recognize that a relief valve is stuck open.
Operator usad: #, correct operator: .

Identifier used: newline, correct identifier: next_line.

Exprassion used: a A (bW ¢), correct expression: (aA b))V e
Data conversion from 64-bit floating point to 16-bit integer not
protected (resulting in a software exception).

Spoken: waple malnut, intent: maple walnut.

Spoken: We need a new refrigerator, intent: We nead a new wash-
mg macune.

Incorrect call by the referee in a tennis match.

Written: What kind of pans did you use?

Intent: What kind of pants did you usa?
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Error, faults, failures
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1.2 Software Quality
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Software quality

Static quality attributes: structured, maintainable, testable code as well as

the availability of correct and complete documentation.

Dynamic quality attributes: software reliability, correctness,

completeness, consistency, usability, and performance
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Software quality (contd.)

Completeness refers to the availability of all features listed in the requirements,
or in the user manual. An incomplete software 1s one that does not fully

implement all features required.

Consistency refers to adherence to a common set of conventions and
assumptions. For example, all buttons in the user interface might follow a

common color coding convention. An example of inconsistency would be when
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Software quality (contd.)

Usability refers to the ease with which an application can be used. This is an
area in itself and there exist techniques for usability testing. Psychology plays

an important role in the design of techniques for usability testing.

Performance refers to the time the application takes to perform a requested
task. It is considered as a non-functional requirement. It is specified in terms
such as " This task must be performed at the rate of X units of activity in one

second on a machine running at speed Y, having Z gigabytes of memory."
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1.3 Requirements, behavior, and correctness
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Requirements, behavior, correctness

Requirements leading to two different programs:

Requirement 1: It is required to write a

program that inputs two integers and outputs the maximum of these.

Requirement 2: It is required to write a

program that inputs a sequence of integers and outputs the sorted version of
this sequence.
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Requirements: Incompleteness

Suppose that program max is developed to satisfy Requirement 1. The expected output

of max when the input integers are 13 and 19 can be easily determined to be 19.

Suppose now that the tester wants to know if the two integers are to be input to the
program on one line followed by a carriage return, or on two separate lines with a
carriage return typed in after each number. The requirement as stated above fails to

provide an answer to this question.
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Requirements: Ambiguity

Requirement 2 1s ambiguous. It is not clear whether the input sequence 1is to sorted
in ascending or in descending order. The behavior of sort program, written to satisfy
this requirement, will depend on the decision taken by the programmer while writing

sort.
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Input domain (Input space)

The set of all possible inputs to a program P is known as the input domain or input
space, of P.

Using Requirement 1 above we find the input domain of max

to be the set of all pairs of integers where each element in the pair integers 1s in the
range -32,768 till 32,767.

Using Requirement 2 it 1s not possible to find the input domain for the sort
program.
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Input domain (Continued)

Modified Requirement 2:

It 1s required to write a program that inputs a

sequence of integers and outputs the integers in this sequence sorted in either
ascending or descending order. The order of the output sequence is determined by
an input request character which should be ""A" when an ascending sequence is

desired, and D" otherwise.

While providing input to the program, the request character is input first followed

by the sequence of integers to be sorted; the sequence is terminated with a period.
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Input domain (Continued)

Based on the above modified requirement, the input domain for sort is a set of
pairs. The first element of the pair is a character. The second element of the pair

1s a sequence of zero or more integers ending with a period.
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Valid/Invalid Inputs

The modified requirement for sort mentions that the

request characters can be ""A" and ""D", but fails to answer the question =~ What
if the user types a different character ?”’

When using sort it is certainly possible for the user to type a

character other than **A" and *'D". Any character other than A" and “'D" is
considered as invalid input to sort. The requirement for sort does not specify

what action it should take when an invalid input 1s encountered.
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1.4 Correctness versus reliability
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Correctness

Though correctness of a program is desirable, it 1s almost

never the objective of testing.

To establish correctness via testing would imply testing a program on all
elements in the input domain. In most cases that are encountered in practice, this

1s impossible to accomplish.
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mathematical proofs of programs.
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Correctness and Testing

While correctness attempts to establish that the program is error free, testing
attempts to find if there are any errors in it.

Thus, completeness of testing does not necessarily demonstrate that a program is
error free.

lesting, debugging, and the error removal processes together increase our
confidence in the correct functioning of the program under test.
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Software reliability: two definitions

Software reliability [ANSI/IEEE Std 729-1983]: 1s the probability of
failure free operation of software over a given time interval and under given

conditions.

Software reliability i1s the probability of failure free operation of software

in its intended environment.
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Operational profile

An operational profile 1s a numerical description of how a program is used.

Consider a sort program which, on any given execution, allows any one of two

types of input sequences. Sample operational profiles for sort follow.
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Operational profile

Operational profile #1

Sequence Probability

Numbers only 0.9
Alphanumeric strings 0.1
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Operational profile

Operational profile #2

Sequence Probability

Numbers only 0.1
Alphanumeric strings 0.9
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1.5 Testing and debugging
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Testing and debugging

Testing is the process of determining if a program has any errors.

When testing reveals an error, the process used to determine the cause of this error

and to remove it, i1s known as debugging.
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A test/debug cycle
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Test plan

A test cycle is often guided by a test plan.

Example: The sort program is to be tested to meet the requirements given earlier.

Specifically, the following needs to be done.

* Execute sort on at least two input sequences, one with ""A" and

the other with ""D" as request characters.
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Test plan (contd.)

* Execute the program on an empty input sequence.

* Test the program for robustness against erroneous inputs such as ~'R"

typed in as the request character.

* All failures of the test program should be recorded in a suitable file using
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Test case/data

A test case 1s a pair consisting of test data to be input to the program and the

expected output. The test data 1s a set of values, one for each input variable.

A test set 1s a collection of zero or more test cases.

Sample test case for sort:

Test data: <"A"” 12 -29 32>

Expected output: -29 12 32
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Program behavior

Can be specified in several ways: plain natural language, a state diagram,

formal mathematical specification, etc.

A state diagram specifies program states and how the program changes its
state on an input sequence. inputs.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Program behavior: Example

Consider a menu

driven application.
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Program behavior: Example (contd.)

Start

. . a8 Expecting
application user input

So

User clicks mouse

Pull-down menu

t:task initiated by the user

s: application state
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Behavior: observation and analysis

In the first step one observes the behavior.

In the second step one analyzes the observed behavior to check if it is correct
or not. Both these steps could be quite complex for large commercial

programs.

The entity that performs the task of checking the correctness of the
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Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Oracle: Example
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Oracle: Programs

Oracles can also be programs designed to check the behavior of other
programs.

For example, one might use a matrix multiplication program
to check 1f a matrix inversion program has produced the correct
output. In this case, the matrix inversion program inverts a given

matrix A and generates B as the output matrix.
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Oracle: Construction

Construction of automated oracles, such as the one to check a matrix
multiplication program or a sort program, requires the determination of input-

output relationship.

In general, the construction of automated oracles is a complex

undertaking.
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Oracle construction: Example

HVideo 41
Input Generator ( Database )
.| HVideoOracle [
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Testing and verification

Program verification aims at proving the correctness of programs by showing
that it contains no errors. This 1s very different from testing that aims at

uncovering errors in a program.

Program verification and testing are best considered as complementary techniques.

In practice, program verification is often avoided, and the focus is on testing.
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Testing and verification (contd.)

Testing is not a perfect technique in that a program might contain errors

despite the success of a set of tests.

Verification promises to verify that a program is free from errors. However, the
person/tool who verified a program might have made a mistake in the verification
process; there might be an incorrect assumption on the mput conditions; incorrect
assumptions might be made regarding the components that interface with the

program, and so on.
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Verified and published programs have been shown to be
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1.10. Test generation strategies
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Test generation

Any form of test generation uses a source document. In the most informal of
test methods, the source document resides in the mind of the tester who

generates tests based on a knowledge of the requirements.

In several commercial environments, the process is a bit more formal. The tests are
generated using a mix of formal and informal methods either directly from the

requirements document serving as the source. In more advanced test processes,
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requirements serve as a source for the development of formal models.
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Test generation strategies

Model based: require that a subset of the requirements be modeled using a
formal notation (usually graphical). Models: Finite State Machines, Timed

automata, Petr1 net, etc.

Specification based: require that a subset of the requirements be modeled using

a formal mathematical notation. Examples: B, Z, and Larch.
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Code based: generate tests directly from the code.

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Test generation strategies (Summary)
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1.13 Types of software testing

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Types of testing

One possible classification is based on the following four classifiers:

C1: Source of test generation.
(C2: Lifecycle phase in which testing takes place
(C3: Goal of a specific testing activity

(C4: Characteristics of the artifact under test
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C1: Source of test generation

-—-g-——-——-————---

Artifact Technique Example

Requirements (informal) Black-box Ad-hoc testing
Boundary value analysis
Category partition
Classification trees
Cause-effect graphs

Equivalence partitioning
Partition testing
Predicate testing
Random testing

Code White-box Adequacy assessment
Coverage testing
Data-flow testing
Domain testing
Mutation testing
Path testing
Structural testing
Test minimization using coverage

Requirements and code Black-box and

White-box
Formal model: Model-based Statechart testing
Graphical or mathematical Specification FSM testing

specification Pairwise testing
Syvntax testing
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Pairwise testing
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C2: Lifecycle phase

Phase Technique
Coding Unit testing
Integration Integration testing

System integration
Maintenance

Post system, pre-release

System testing
Regression testing
Beta-testing
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C3: Goal of specific testing activity

Goal Technique Example
Advertised features Functional testing

Security Security testing

Invalid inputs Robustness testing

Vulnerabilities Vulnerability testing

Errors in GUI GUI testing Capture/plaback

Event sequence graphs
Complete Interaction Sequence

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Operational correctness Operational testing Transactional-flow
Reliability assessment Reliability testing

Resistance to penetration Penetration testing

System performance Performance testing Stress testing
Customer acceptability Acceptance testing

Business compatibility Compatibility testing Interface testing

Installation testing
Peripherals compatibility = Configuration testing
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C4: Artifact under test

Characteristics Technique

Application component Component testing -
Client and server Client-server testing z
Compiler Compiler testing %
Design Design testing §
Code Code testing §
Database system Transaction-flow testing £
OO software OO testing %
Operating system Operating system testing -
Real-time software Real-time testing 2
Requirements Requirement testing 5
Software Software testing §
Web service Web service testing
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Summary

We have dealt with some of the most basic concepts in software
testing. Exercises at the end of Chapter 1 are to help you sharpen

your understanding.
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Chapter 2:

Preliminaries: Mathematical
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2.1 Predicates and Boolean expressions
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Where do predicates arise?

Predicates arise from requirements in a variety of applications. Here is an example
from Paradkar, Tai, and Vouk, “Specification based testing using cause-effect

graphs, Annals of Software Engineering,” V 4, pp 133-157, 1997.

A boiler needs to be to be shut down when the following conditions hold:
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Boiler shutdown conditions

1. The water level in the boiler is below X Ibs. (a)

The water level in the boiler is above Y Ibs. (b)

Boiler in degraded mode when

A water pump has failed. (¢)
} either is true.

A pump monitor has failed. (d)

O

Steam meter has failed. (e)

The boiler 1s to be shut down when a or b is true or the boiler 1s in degraded mode

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

and the steam meter fails. We combine these five conditions to form a compound

condition (predicate) for boiler shutdown.
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Boiler shutdown conditions

Denoting the five conditions above as a through ¢, we obtain the following Boolean

expression E that when true must force a boiler shutdown:
E=a+b+(ct+d)e

where the + sign indicates “OR” and a multiplication indicates “AND.”

The goal of predicate-based test generation 1s to generate tests from a predicate p
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that guarantee the detection of any error that belongs to a class of errors in the
coding of p.
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Another example

A condition is represented formally as a predicate, also known as a Boolean expression.

For example, consider the requirement
Vif the printer is ON and has paper then send document to printer.”

This statement consists of a condition part and an action part. The following predicate

represents the condition part of the statement.

p,: (printer_status=ON) A (printer_tray!= empty)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test generation from predicates

We will now examine two techniques, named BOR and BRO for generating tests
that are guaranteed to detect certain faults in the coding of conditions. The
conditions from which tests are generated might arise from requirements or might be

embedded in the program to be tested.

Conditions guard actions. For example,

1f condition then action
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1s a typical format of many functional requirements.
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Predicates

Relational operators (relop): <, =,> ===}

= and == are equivalent.
Boolean operators (bop):  {!,A,v, xor} also known as

{not, AND, OR, XOR}.

Relational expression: el relop e2. (e.g. a+b<c)

el and e2 are expressions whose values can be compared using relop.

Simple predicate: A Boolean variable or a relational
expression. (x<0)
Compound predicate: Join one or more simple predicates

using bop. (gender=="female” rage>65)
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Boolean expressions

Boolean expression: one or more Boolean variables joined by bop.
(anbv!c)

a, b, and c are also known as literals. Negation is also denoted by placing a bar over
a Boolean expression such as in

(anb)

We also write ab for arb and a+b for avb when there is no confusion.

Singular Boolean expression: When each literal appears

only once, €.g., in (aabv!c)
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Boolean expressions (contd.)

Disjunctive normal form (DNF): Sum of product terms:

e.g. (pq) *(rs) +(ac).

Conjunctive normal form (CNF): Product of sums:

e.g.: (p+q)(rts)(atc)

Any Boolean expression in DNF can be converted to an equivalent CNF and vice
versa.
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e.g., CNF: (p+!r)(p+s)(q+!r)(q+s) is equivalent to DNF: (pg+!rs)
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Boolean expressions (contd.)

Mutually singular: Boolean expressions €l and €2 are mutually singular when they

do not share any literal.

If expression E contains components €, €,,.. then e, is considered singular only 1f it

1s non-singular and mutually singular with the remaining elements of E.
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Boolean expressions: Syntax tree
representation

Abstract syntax tree (AST) for: (a+b)<c Alp. Root node (AND-node)

Notice that internal nodes are labeled by

e®
.
.
.
.
.
.
.
.
.
.

Boolean and relational operators A

Root node: OR-node i1s labeled _ \ !

as v. /\

*
.
-"‘
.

*
* X
L L S L
----------------------
........

Leaf nodes

Contents
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2.2 Program representation: Confrol flow graphs
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Program representation: Basic blocks

A basic block in program P is a sequence of consecutive statements with a
single entry and a single exit point. Thus, a block has unique entry and exit

points.

Control always enters a basic block at its entry point and exits from its exit point.
There 1s no possibility of exit or a halt at any point inside the basic block except at
its exit point. The entry and exit points of a basic block coincide when the block

contains only one statement.
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Basic blocks: Example

Example: Computing x raised to y

1 begin 2
2 int X, y, power; 10 while (power! =0){ 0)
3 float z; 11 z=2z"x; S
4 input (x, y); 12 power=power—1; §
5 if (y<O0) 13} -
6 power=-y; 14 if (y<0) g
7 else | 15 z=1/z; S
8 power=y, 16 output(z); s
9 z=1; 17 end 2
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Basic blocks: Example (contd.)

Basic blocks 5
Block | Lines Entry point | Exit point %
1 2,3,4,5 | 1 5 =
2 6 6 6 :
3 8 8 8 <
4 9 9 9 £
5 10 10 10 -
6 11,12 11 12 o
7 14 14 14 s
8 15 15 15 8
9 16 16 16
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Control Flow Graph (CFG)

A control flow graph (or flow graph) G is defined as a finite set N of nodes and a finite
set E of edges. An edge (i, ) in E connects two nodes n; and n;in N. We often write G=

(N, E) to denote a flow graph G with nodes given by N and edges by E.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Control Flow Graph (CFG)

In a flow graph of a program, each basic block becomes a node and edges are used to

indicate the flow of control between blocks.

Blocks and nodes are labeled such that block b, corresponds to node n,. An edge (1,

j) connecting basic blocks b; and b; implies that control can go from block b; to

block bj.

We also assume that there is a node labeled Start in N that has no incoming edge, and

another node labeled End, also in N, that has no outgoing edge.
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CFG Example

int x.y%power; 1
float z;
input (x,y);
if (y<0)
N:{Start, 1, 2, 3, 4, 5, 6, 7, 8, 9, End} f’;‘mse
power=y; |2 power=y: |3
[ z=1; |4
E={(Start,1), (1, 2), (1, 3), 2:4), (3,4), (4,5), (5, = mii
6), (6, 5), (5, 7), (7, 8), (7, 9), (9, End)} while (plﬂ}ﬂer:m
ryue 6

2=2%¢
power=power-1;

£
if (y<0) | 7

Jfalse | true
iE,

output(z)

C>
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CFG Example

Same CFG with statements removed. @
e ° faise
N={Start, 1,2, 3,4, 5,6,7. 8,9, End} O ©
B =
E={(Start,1), (1, 2), (1, 3), (2,4), (3, 4), (4, 5), e

(5, 6),(6,5),(5,7),(7,8),(7,9), (9, End)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Paths

Consider a flow graph G= (N, E). A sequence of k edges, k>0, (e 1,e 2,...¢e k),
denotes a path of length k through the flow graph if the following sequence

condition holds.

Given that n, n, n,, and n; are nodes belonging to N, and 0< i<k, if ¢; =

(n,, n) and e;, = (n,, ny) thenn, =n,. }

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Paths: sample paths through the exponentiation
flow graph

Two feasible and complete paths:
p,=(Start, 1,2,4,5, 6,5,7,9, End)
p,= (Start, 1,3,4,5,6,5,7,9, End)

Specified unambiguously using edges:

p,= ((Start, 1), (1, 2), (2, 4), (4, 5), (5, 6), (6,
5), (5,7),(7,9), (9, End))

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Paths: infeasible

A path p through a flow graph for program P is
considered feasible if there exists at least one test
case which when input to P causes p to be

traversed.

—(Start, 1,3, 4,5,6,5,7, 8,9, End)
p2: (Starta 19 19 29 49 59 79 9, ) End)

|
intx,y, power; |1
float z; o
input (x, y); -
if (y<0) >
true ai se ~
power—-y power=y: |3 g
>
2
:
S
I £
while (power!=0) fa =1 z
C
1 brue 6 E
2=2%; o}
power=power-1; o
3
i (y<0) 7 fij
false ] true 2
§
| output(z]

D
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Number of paths

There can be many distinct paths through a program. A program with no
condition contains exactly one path that begins at node Start and terminates at

node End.

Each additional condition in the program can increases the number of distinct paths

by at least one.

Depending on their location, conditions can have a multiplicative effect

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

on the number of paths.
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2.6 Strings, languages, and regular expressions
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Strings

Strings play an important role in testing. A string serves as a test input.

Examples: 1011; AaBc; “Hello world”.

A collection of strings also forms a language. For example, a set of all strings
consisting of zeros and ones 1s the language of binary numbers. In this section we

provide a brief introduction to strings and languages.
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Alphabet

A collection of symbols is known as an alphabet. We use an upper case letter

such as X and Y to denote alphabets.

Though alphabets can be infinite, we are concerned only with finite alphabets. For
example, X={0, 1} 1s an alphabet consisting of two symbols 0 and 1. Another
alphabet 1s Y={dog, cat, horse, lion}that consists of four symbols ""dog", ""cat",

“‘horse". and "'lion".
9
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Strings over an Alphabet

A string over an alphabet X is any sequence of zero or more symbols that belong to
X. For example, 0110 is a string over the alphabet {0, 1}. Also, dog cat dog dog lion

1s a string over the alphabet {dog, cat, horse, lion}.

We will use lower case letters such as p, q, r to denote strings. The length of a string
is the number of symbols in that string. Given a string s, we denote its length by |s|.
Thus, |[1011|=4 and |dog cat dog|=3. A string of length 0, also known as an empty

string, 1s denoted by e.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Note that ¢ denotes an empty string and also stands for “element of
when used with sets.
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String concatenation

Let sl and s2 be two strings over alphabet X. We write s1.s2 to denote the

concatenation of strings s1 and s2.

For example, given the alphabet X={0, 1}, and two strings 011 and 101 over X, we
obtain 011.101=011101. It is easy to see that |s1.s2|=|s1|+|s2|. Also, for any string s, we

have s. € =s and €.s=s.
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Languages

A set L of strings over an alphabet X is known as a language. A language can be

finite or infinite.

The following sets are finite languages over the binary alphabet {0, 1}:
@: The empty set
{e}: A language consisting only of one string of length zero

{00, 11, 0101}: A language containing three strings

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Regular expressions

Given a finite alphabet X, the following are regular expressions over X:

If a belongs to X, then a 1is a regular expression that denotes the set {a}.

Let rl and r2 be two regular expressions over the alphabet X that denote, respectively,

sets L1 and L2. Then rl.r2 is a regular expression that denotes the set L1.L2.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Regular expressions (contd.)

If r is a regular expression that denotes the set L then r* 1s a regular expression that
denotes the set obtained by concatenating L with itself one or more times also
written as L* Also, r" known as the Kleene closure of'r, is a regular expression. If r

denotes the set L then 1™ denotes the set {e}U L™,

If r1 and r2 are regular expressions that denote, respectively, sets L1 and L2, then rl1r2 1s

also a regular expression that denotes the set L1 U L2.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Summary

We have introduced mathematical preliminaries an understanding of
which will be useful while you go through the remaining parts of this
book. Exercises at the end of Chapter 2 will help you sharpen your

understanding.
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Chapter 3

Domain Partitioning

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Learning Objectives

= Equival 1 rtitioni : :
AHIVATEHCE C1a55 Partiioning Essential black-box techniques for

generating tests for functional

=  Boundary value analysis testing

Cause effect graphing has been omitted from these slides.
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Applications of test generation techniques

Test generation techniques described in this chapter belong to the black-box

testing category.

These techniques are useful during functional testing where the objective is to
test whether or not an application, unit, system, or subsystem, correctly

implements the functionality as per the given requirements

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Functional Testing: Test Documents
(IEEE829 Standard)

Requirements Model Reference: Lee Copland. A Practitioners
‘ I Guide to software Test Design

I

Test Plan —— Test Design —— Test Case —— Test Procedure

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Spec. Spec.
Test item transmittal Test log festincident
report
report \
Test summary
Test generation techniques report
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Functional Testing: Documents

Test Plan: Describe scope, approach, resources, test schedule, items to be
tested, deliverables, responsibilities, approvals needed. Could be used at the

system test level or at lower levels.

Test design spec: Identifies a subset of features to be tested and identifies

the test cases to test the features in this subset.

Test case spec: Lists inputs, expected outputs, features to be tested by this
test case, and any other special requirements e.g. setting of environment

variables and test procedures. Dependencies with other test cases are

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

specified here. Each test case has a unique ID for reference in other

documents.
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Functional Testing: Documents (contd)

Test procedure spec: Describe the procedure for executing a test case.

Test transmittal report: Identifies the test items being provided for testing,
¢.g. a database.

Test log: A log observations during the execution of a test.

Test incident report: Document any special event that is recommended for
further investigation.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Test summary: Summarize the results of testing activities and provide an
evaluation.
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Test generation techniques in this chapter

Three techniques are considered: equivalence partitioning, boundary value

analysis, and category partitioning.

Each of these test generation techniques is black-box and useful for

generating test cases during functional testing.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




3.2 The test selection problem

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Requirements and test generation

Requirements serve as the starting point for the generation of tests. During the initial
phases of development, requirements may exist only in the minds of one or more

people.

These requirements, more aptly ideas, are then specified rigorously using

modeling elements such as use cases, sequence diagrams, and statecharts in UML.

Rigorously specified requirements are often transformed into formal requirements

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

using requirements specification languages such as Z, S, and RSML.
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Test generation techniques
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Test selection problem

Let D denote the input domain of a program P. The test selection problem is to
select a subset T of tests such that execution of P against each element of T will

reveal all errors in P.

In general there does not exist any algorithm to construct such a test set.
However, there are heuristics and model based methods that can be used to

generate tests that will reveal certain type of faults.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test selection problem (contd.)

The challenge is to construct a test set TCD that will reveal as many errors in P
as possible. The problem of test selection is difficult due primarily to the size

and complexity of the input domain of P.
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Exhaustive testing

The large size of the input domain prevents a tester from exhaustively testing the
program under test against all possible inputs. By "“exhaustive" testing we mean

testing the given program against every element in its input domain.

The complexity makes it harder to select individual tests.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Large input domain

Consider program P that is required to sort a sequence of integers into ascending
order. Assuming that P will be executed on a machine in which integers range from
-32768 to 32767, the input domain of P consists of all possible sequences of integers
in the range [-32768, 32767].

If there 1s no limit on the size of the sequence that can be input, then the input domain

of P is infinitely large and P can never be tested exhaustively. If the size of the input
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sequence 1s limited to, say N >1, then the size of the input domain depends on the

max

value of N.
Calculate the size of the input domain.
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Complex input domain

Consider a procedure P in a payroll processing system that takes an employee

record as input and computes the weekly salary. For simplicity, assume that the §
employee record consists of the following items with their respective types and S
constraints: 5
.E
ID: int; 1D is 3-digits long from 001 to 999. §
name: string; rname is 20 characters long; each character belongs to the set of S
26 letters and a space character. ©
rate: float; rate varies from $5 to $10 per hour; rates are in multiples of a E
quarter. S

hoursWorked: int; hoursWorked varies from O to 60.

Calculate the size of the input domain. Contents
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3.3 Equivalence partitioning
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Equivalence partitioning

Test selection using equivalence partitioning allows a tester to subdivide the input

domain into a relatively small number of sub-domains, say N>1, as shown (next

slide (a)).

In strict mathematical terms, the sub-domains by definition are disjoint. The four
subsets shown in (a) constitute a partition of the input domain while the subsets

in (b) are not. Each subset 1s known as an equivalence class.
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Subdomains

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Program behavior and equivalence classes

The equivalence classes are created assuming that the program under test

exhibits the same behavior on all elements, 1i.e. tests, within a class.

This assumption allow the tester to select exactly one test from each

equivalence class resulting in a test suite of exactly N tests.
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Faults targeted

The entire set of inputs to any application can be divided into at least two subsets: one
containing all the expected, or legal, inputs (E) and the other containing all unexpected, or
illegal, inputs (U).

Each of the two subsets, can be further subdivided into subsets on which the application is
required to behave differently (e.g. E1, E2, E3, and U1, U2).

U

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Faults targeted (contd.)

Equivalence class partitioning selects tests that target any faults in
the application that cause it to behave incorrectly when the input is

in either of the two classes or their subsets.

U

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example 1

Consider an application A that takes an integer denoted by age as input. Let us suppose that

Ltd

the only legal values of age are in the range [1..120]. The set of input values 1s now divided ¢
into a set E containing all integers in the range [1..120] and a set U containing the

remaining integers.

All integers

Other integers

Copyright © 2013 Dorling Kindersley (India) Pvt
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Example 1 (contd.)

Further, assume that the application is required to process all values in the range [1..61] in

accordance with requirement R1 and those in the range [62..120] according to requirement

R2.

Thus, E 1s further subdivided into two regions depending on the expected behavior.

Similarly, it 1s expected that all invalid inputs less than or equal to 1 are to be treated in one

way while all greater than 120 are to be treated differently. This leads to a subdivision of U

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

into two categories.
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Example 1 (contd.)

All integers

[62-120]

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example 1 (contd.)

Tests selected using the equivalence partitioning technique aim at targeting faults in the
application under test with respect to inputs in any of the four regions, 1.e., two regions

containing expected inputs and two regions containing the unexpected inputs.

It 1s expected that any single test selected from the range [1..61] will reveal any fault

with respect to R1. Similarly, any test selected from the region [62..120] will reveal

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

any fault with respect to R2. A similar expectation applies to the two regions

containing the unexpected inputs.
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Effectiveness

The effectiveness of tests generated using equivalence partitioning for testing application
A, 1s judged by the ratio of the number of faults these tests are able to expose to the total
faults lurking in A.

As 1s the case with any test selection technique in software testing, the effectiveness of
tests selected using equivalence partitioning is less than 1 for most practical applications.
The effectiveness can be improved through an unambiguous and complete specification of

the requirements and carefully selected tests using the equivalence partitioning technique

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

described 1n the following sections.
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Example 2

This example shows a few ways to define equivalence classes based on the knowledge

of requirements and the program text.

Consider that wordCount method takes a word w and a filename f as input and
returns the number of occurrences of w in the text contained in the file named f. An

exception is raised if there is no file with name f.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example 2 (contd.)

begin
String w,
Input w, £
if (not exists(f) {raise exception; return(0);}

if(length(w)==0)return(0);

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

if(empty(f))return(0); Using the partitioning method described in the
return(getCount(w,f)); examples above, we obtain the equivalence
classes (next slide).
end
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Example 2 (contd.)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Equivalence class w f

El non-null exists, not empty
E2 non-null does not exist
E3 non-null exists, empty

E4 null exists, not empty
ES null does not exist
E6 null exists, empty

Foundations of Software Testing 2E
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Example 2 (contd.)

Note that the number of equivalence classes without any knowledge of
the program code is 2, whereas the number of equivalence classes derived

with the knowledge of partial code is 6.

Of course, an experienced tester will likely derive the six equivalence

classes given above, and perhaps more, even before the code is
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available
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Equivalence classes based on program
output

In some cases the equivalence classes are based on the output generated by the

program. For example, suppose that a program outputs an integer.

It 1s worth asking: “"Does the program ever generate a 0? What are the maximum

and minimum possible values of the output?"

These two questions lead to two the following equivalence classes based on

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

outputs:
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Equivalence classes based on program
output (contd.)

E1: Output value v 1s 0.
E2: Output value v 1s the maximum possible.
E3: Output value v 1s the minimum possible.

E4: All other output values.

Based on the output equivalence classes one may now derive equivalence classes
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for the inputs. Thus, each of the four classes given above might lead to one

equivalence class consisting of inputs.
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Equivalence classes for variables: range

Eq. Classes Example
Constraints Classes

One class with values | speed €[60..90] | {50}, {75},

inside the range and {92}

two with values

outside the range.
area: float {{-1.0},
area=0.0 {15.52}}
age: int {{-1}, {56},

1132}

letter:bool {41}, {3}}

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Equivalence classes for variables: strings

Equivalence Classes Example
Constraints Classes

firstname: string | {{€}, {Sue},

At least one containing all
{Loooong Name} }

legal strings and one all
illegal strings based on any

constraints.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Equivalence classes for variables:
enumeration

Equivalence Classes Example
Constraints Classes
Each value in a separate autocolor: {red, {{red,} {blue},
class blue, green} {green}}
up:boolean {{true}, {false}}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Equivalence classes for variables: arrays

legal arrays, one
containing the empty

array, and one containing a

larger than expected array.

Equivalence Classes Example
Constraints Classes
One class containing all int [ ] aName: new | {[ ]}, {[-10, 201},

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Equivalence classes for variables: compound
data type

Arrays in Java and records, or structures, in C++, are compound types. Such input
types may arise while testing components of an application such as a function or an

object.

While generating equivalence classes for such inputs, one must consider legal and
illegal values for each component of the structure. The next example illustrates the

derivation of equivalence classes for an input variable that has a compound type.
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Equivalence classes for variables: compound
data type: Example

struct transcript
{
string fName; // First name.
string IName; // Last name.
string cTitle [200]; // Course titles.

char grades [200]; // Letter grades corresponding
to course titles.
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In-class exercise: Derive equivalence classes for each component of R and

combine them!
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uni-dimensional partitioning

One way to partition the input domain is to consider one input variable at a time. Thus,
each input variable leads to a partition of the input domain. We refer to this style of
partitioning as uni-dimensional equivalence partitioning or simply uni-dimensional

partitioning.

This type of partitioning is used commonly.
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Multidimensional partitioning

Another way is to consider the input domain I as the set product of the input
variables and define a relation on I. This procedure creates one partition consisting
of several equivalence classes. We refer to this method as multidimensional

equivalence partitioning or simply multidimensional partitioning.

Multidimensional partitioning leads to a large number of equivalence classes that are

difficult to manage manually. Many classes so created might be infeasible.
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Nevertheless, equivalence classes so created offer an increased variety of tests as is

1llustrated in the next section.
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Partitioning Example

Consider an application that requires two integer inputs x and y. Each of these

inputs 1s expected to lie in the following ranges: 3< x<7 and 5<y=9.

For uni-dimensional partitioning we apply the partitioning guidelines to x and y

individually. This leads to the following six equivalence classes.
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Partitioning Example (contd.)

El: x<3 E2: 3<x<7 E3: x>7 —y ignored,

E4: y<§ ES: 5<y=<9 E6: y>9 X ignored.

For multidimensional partitioning we consider the input domain to be the set
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product X x Y. This leads to 9 equivalence classes.
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Partitioning Example (contd.)

El: x<3, y<5 E2: x<3, 5=<y=<9 E3:x<3,y>9 éz
E4: 3=x<7, y<5 E5: 3=x<7, 5=<y=<9 E6: 3<x<7, y>9 %
E7:>7, y<5 E8: x>7, 5<y<9 E9: x>7, y>9 g
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Partitioning Example (contd.)

6 equivalence classes: Yy o Y,

. E6 2
91 °.". s | ARl 4 -
El: x<3, y<5 227 A7 s 312 & g
s ©
. 0 3 .7 X 0 3 ;__“ x o
E3: x<3, y>9 g 7 5
" >
: >
E2: x<3, 5<y=9 ?
E4: 3=x<7, y<§ Y ) -
E3 E6 E9 %
E5: 3=x<7, 5=<y=9 £ : i = 8
™M
E6: 3=x<7, y>9 O A S
E1 E4  E7 ©
E7:>7, y<§ 5
>
Q
E8: x>7, 5=<y=<9 (© S

E9: x>7, y>9 9 equivalence classes:
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Systematic procedure for equivalence
partitioning

1. Identify the input domain: Read the requirements carefully and identify all input and

output variables, their types, and any conditions associated with their use.

Environment variables, such as class variables used in the method under test and
environment variables 1n Unix, Windows, and other operating systems, also serve

as input variables. Given the set of values each variable can assume, an
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approximation to the input domain 1s the product of these sets.
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Systematic procedure for equivalence
partitioning (contd.)

2. Equivalence classing: Partition the set of values of each variable into disjoint subsets.
Each subset is an equivalence class. Together, the equivalence classes based on an input
variable partition the input domain. partitioning the input domain using values of one

variable, is done based on the the expected behavior of the program.

Values for which the program is expected to behave in the *'same way" are grouped
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together. Note that " 'same way" needs to be defined by the tester.
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Systematic procedure for equivalence
partitioning (contd.)

3. Combine equivalence classes: This step i1s usually omitted and the equivalence classes
defined for each variable are directly used to select test cases. However, by not

combining the equivalence classes, one misses the opportunity to generate useful tests.

The equivalence classes are combined using the multidimensional partitioning approach
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described earlier.
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Systematic procedure for equivalence
partitioning (contd.)

4. Identify infeasible equivalence classes: An infeasible equivalence class is one that
contains a combination of input data that cannot be generated during test. Such an

equivalence class might arise due to several reasons.

For example, suppose that an application is tested via its GUI, 1.e. data is input using

commands available in the GUI. The GUI might disallow invalid inputs by offering a
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palette of valid inputs only. There might also be constraints in the requirements that

render certain equivalence infeasible.
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Boiler control example (BCS)

The control software of BCS, abbreviated as CS, 1s required to offer several options. One
of the options, C (for control), is used by a human operator to give one of four
commands (cmd): change the boiler temperature (temp), shut down the boiler (shut),

and cancel the request (cancel).

Command temp causes CS to ask the operator to enter the amount by which the

temperature 1s to be changed (tempch).

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Values of tempch are in the range -10..10 1in increments of 5 degrees Fahrenheit. An

temperature change of 0 is not an option.
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BCS: example (contd.)

Selection of option C forces the BCS to examine variable V. If V is set to GUI, the
operator 1s asked to enter one of the three commands via a GUI. However, 1f V is set to

file, BCS obtains the command from a command file.

The command file may contain any one of the three commands, together with the value of

the temperature to be changed if the command is temp. The file name is obtained from
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variable F.
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BCS: example (contd.)

V, F: Environment variables
cmd: command

(temp, shut, cancel)

cmd Control Software

(CS)

tempch

tempch: desired

temperature change
(10.10) V €{GUI, file}

F: file name if V is set to “file.”

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BCS: example (contd.)

Values of Vand F can be altered by a different module in BCS.

In response to temp and shut commands, the control software is required to generate

appropriate signals to be sent to the boiler heating system.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BCS: example (contd.)

We assume that the control software is to be tested in a simulated environment. The tester

takes on the role of an operator and interacts with the CS via a GUI.

The GUI forces the tester to select from a limited set of values as specified in the

requirements. For example, the only options available for the value of tempch are -10, -3,

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

5, and 10. We refer to these four values of tempch as tvalid while all other values as

tinvalid.
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BCS: 1. Identify input domain

The first step in generating equivalence partitions is to identify the (approximate) input
domain. Recall that the domain identified in this step will likely be a superset of the

complete input domain of the control software.

First we examine the requirements, identify input variables, their types, and values.

These are listed in the following table.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




BCS: Variables, types, values

Variable Kind Type Value(s) E
Vv Environment Enumerated File, GUI g
F Environment String A file name %’
cmd Input via GUI/File | Enumerated {temp, cancel, shut} g

2
tempch Input via GUI/File Enumerated {-10, -5, 5, 10} jg

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




BCS: Input domain

Input domainCS=VxFxcmdxtempch

Sample values in the input domain (--: don’ t care):

(GUIL, --, shut, --), (file, cmdfile, shut, --)

(file, cmdfile, temp, 0) — Does this belong to the input domain?
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BCS: 2. Equivalence classing

Variable Partition .
v {{GUI}, {file}, {undefined} } %
F {{fvalid}, {finvalid}} %
cmd {{temp}, {cancel}, {shut}, {cinvalid}} g

2
tempch {{tvalid}, {tinvalid}} ig
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BCS: 3. Combine equivalence classes
(contd.)

Note that tinvalid, tvalid, finvalid, and fvalid denote sets of values. “undefined”

denotes one value.
There are a total of 3x4x2x5=120 equivalence classes.

Sample equivalence class: {(GUI, fvalid, temp, -10)}

Note that each of the classes listed above represents an infinite number of input values

for the control software. For example, {(GUI}}, fvalid, temp, -10)} denotes an infinite sets

Copyrihht © 2013 Dorling Kindersley (India) Pvt. Ltd

of values obtained by replacing fvalid by a string that corresponds to the name of an

existing file. Each value is a potential input to the BCS.
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BCS: 4. Discard infeasible equivalence
classes

Note that the GUI requests for the amount by which the boiler temperature is to be

>

changed only when the operator selects temp for cmd. Thus, all equivalence classes tha

match the following template are infeasible.

{(V, F, {cancel, shut, cinvalid}, tvalidU tinvalid)}

This parent-child relationship between cmd and tempch renders infeasible a total
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of 3x2x3x5=90 equivalence classes.

Exercise: How many additional equivalence classes are infeasible?
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BCS: 4. Discard infeasible equivalence
classes (contd.)

After having discarded all infeasible equivalence classes, we are left with a total of 18

testable (or feasible) equivalence classes.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Selecting test data

Given a set of equivalence classes that form a partition of the input domain, 1t 1s
relatively straightforward to select tests. However, complications could arise in the

presence of infeasible data and don't care values.

In the most general case, a tester simply selects one test that serves as a

representative of each equivalence class.
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Exercise: Generate sample tests for BCS from the remaining

feasible equivalence classes.
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GUI design and equivalence classes

While designing equivalence classes for programs that obtain input exclusively from a
keyboard, one must account for the possibility of errors in data entry. For example, the

requirement for an application.

The application places a constraint on an input variable X such that it can assume
integral values in the range 0..4. However, testing must account for the possibility

that a user may inadvertently enter a value for X that is out of range.
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GUI design and equivalence classes (contd.)

Suppose that all data entry to the application is via a GUI front end. Suppose also that the

GUI offers exactly five correct choices to the user for X.

In such a situation it is impossible to test the application with a value of X that is out of

range. Hence only the correct values of X will be input. See figure on the next slide.
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GUI design and equivalence classes (contd.)

Input domain Input domain Input domain
©
Incorrect =
cvalues oo g
©
©
Correct Correct é
""" -7 \values values B
()]
o
=
XY
[@)]
£
GUI-A GUI-B A
™M
Application Core Application Core Application S
©
(a) (b) (c) b=
o
&
(@]
O
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3.4 Boundary value analysis

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Errors at the boundaries

Experience indicates that programmers make mistakes in processing values at and near the

boundaries of equivalence classes.

For example, suppose that method M i1s required to compute a function f1 when x< 0 1s
true and function {2 otherwise. However, M has an error due to which it computes f1 for

x<0 and {2 otherwise.

Obviously, this fault is revealed, though not necessarily, when M is tested against x=0

but not if the input test set is, for example, {-4, 7} derived using equivalence

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

partitioning. In this example, the value x=0, lies at the boundary of the equivalence

classes x=0 and x>0.
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Boundary value analysis (BVA)

Boundary value analysis 1s a test selection technique that targets faults in applications at

the boundaries of equivalence classes.

While equivalence partitioning selects tests from within equivalence classes, boundary

value analysis focuses on tests at and near the boundaries of equivalence classes.
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Certainly, tests derived using either of the two techniques may overlap.
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BVA: Procedure

1 Partition the input domain using uni-dimensional partitioning. This leads to as many
partitions as there are input variables. Alternately, a single partition of an input
domain can be created using multidimensional partitioning. We will generate several

sub-domains in this step.

2 ldentify the boundaries for each partition. Boundaries may also be identified using

special relationships amongst the inputs.
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3 Select test data such that each boundary value occurs in at least one test input.
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BVA: Example: 1. Create equivalence classes

Assuming that an item code must be in the range 99..999 and quantity in the range 1..100,

Equivalence classes for code:
E1: Values less than 99.
E2: Values in the range.
E3: Values greater than 999.

Equivalence classes for qty:

E4: Values less than 1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

ES5: Values in the range.
E6: Values greater than 100.
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BVA: Example: 2. Identify boundaries

98 100 998 1000
X % % 3 % 3
g J s
—E1 99 Y 999 E3 5
E2 g
0 2 99 101 E
% X £ —le g
- J o
—E4 1 v 100 E6 -
ES5 3

Equivalence classes and boundaries for findPrice. Boundaries are indicated

with an x. Points near the boundary are marked *.
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BVA: Example: 3. Construct test set

Test selection based on the boundary value analysis technique requires that tests
must include, for each variable, values at and around the boundary. Consider the
following test set:
T={ tl: (code=98, qty=0),

£2: (code=99, qty=1), Illegal values of code and

£3: (code=100, qty=2), qty included.

t4: (code=998, qty=99),

t5: (code=999, qty=100),

t6: (code=1000, qty=101)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BVA: In-class exercise

Is T the best possible test set for findPrice? Answer this question based on T’ s

ability to detect missing code for checking the validity of age.

Is there an advantage of separating the invalid values of code and age into different

test cases?

Answer: Refer to Example 3.11.
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Highly recommended: Go through Example 3.12.
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BVA: Recommendations

Relationships amongst the input variables must be examined carefully while
1dentifying boundaries along the input domain. This examination may lead to
boundaries that are not evident from equivalence classes obtained from the input

and output variables.

Additional tests may be obtained when using a partition of the input domain
obtained by taking the product of equivalence classes created using individual

variables.
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4.4, Tests using predicate syntax
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Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Where do predicates arise?

Predicates arise from requirements in a variety of applications. Here is an example
from Paradkar, Tai, and Vouk, “Specification based testing using cause-effect

graphs,” Annals of Software Engineering,” V 4, pp 133-157, 1997.

A boiler needs to be shut down when the following conditions hold:
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Boiler shutdown conditions

1. The water level in the boiler is below X Ibs. (a)

The water level in the boiler 1s above Y 1bs. (b)

Boiler in degraded mode when

A water pump has failed. (¢)
} either 1s true.

A pump monitor has failed. (d)

U

Steam meter has failed. (e)

The boiler 1s to be shut down when a or b is true or the boiler 1s in degraded mode
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and the steam meter fails. We combine these five conditions to form a compound

condition (predicate) for boiler shutdown.
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Boiler shutdown conditions

Denoting the five conditions above as a through ¢, we obtain the following Boolean

expression E that when true must force a boiler shutdown:
E=a+b+(ct+d)e

where the + sign indicates “OR” and a multiplication indicates “AND.”

The goal of predicate-based test generation 1s to generate tests from a predicate p
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that guarantee the detection of any error that belongs to a class of errors in the
coding of p.
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Another example

A condition is represented formally as a predicate, also known as a Boolean expression.

For example, consider the requirement
Vif the printer is ON and has paper then send document to printer.”

This statement consists of a condition part and an action part. The following predicate

represents the condition part of the statement.

p,: (printer_status=ON) A (printer_tray!= empty)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Summary

Equivalence partitioning and boundary value analysis are the most commonly

used methods for test generation while doing functional testing.

Given a function f to be tested in an application, one can apply these

techniques to generate tests for f.
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Chapter 4

Predicate Analysis

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Learning Objectives

=  Domain testing
= (Cause-effect graphing

= Test generation from predicates
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4.4 Tests using predicate syntax

4.4.1: A fault model

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Fault model for predicate testing

What faults are we targeting when testing for the correct

implementation of predicates?

Boolean operator fault: Suppose that the specification of a software module

requires that an action be performed when the condition (a<b) v (c>d) Ae 1s true.

Here a, b, ¢, and d are integer variables and ¢ is a Boolean variable.
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Boolean operator faults

Correct predicate: (a<b) v (c>d) ae

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

(a<b) A (c>d) ae Incorrect Boolean operator
(a<b) v ! (c>d) ae Incorrect negation operator
(a<b) A(c>d) v ¢ Incorrect Boolean operators
(a<b) v (e>d) Ac Incorrect Boolean variable.
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Relational operator faults

Correct predicate: (a<b) v (c>d) ae

(a==b) v (c>d) ae Incorrect relational operator
(a==b) v (c=d) ae Two relational operator faults
(a==b) v (c>d) v e Incorrect Boolean operators
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Arithmetic expression faults

Correct predicate: Ec: el relopl e2. Incorrect predicate: Ei: : €3 relop2 e4. Assume

that Ec and Ei use the same set of variables.

E1 has an off-by-¢ fault 1f |e3-e4|= € for any test case for which el=e2.

Ei has an off-by-¢* fault if |e3-e4|= ¢ for any test case for which el=e2.
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E1 has an off-by-¢+ fault if [e3-e4[> ¢ for any test case for which el=e2.
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Arithmetic expression faults: Examples

Correct predicate: Ec: a<(b+c). Assume e=1.

Ei: a<b. Given c=1, Ei has an off-by-1 fault as |a-b|=1 for a test case for which
a=b+tc, e.g. <a=2, b=1, c=1>.

E1: a<b+1. Given c=2, Ei has an off-by-1* fault as |a-(b+1)|= 1 for any test case
for which a=b+c; <a=4, b=2, c=2>
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E1: a<b-1. Given ¢c>0, Ei has an off-by-1+ fault as |a-(b-1)|>1 for any test case for
which a=b+c; <a=3, b=2, c=1>.
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Arithmetic expression faults: In class
exercise

Given the correct predicate: Ec: 2*X+Y>2. Assume €=1.

Find an incorrect version of Ec that has off-by-1 fault.

Find an incorrect version of Ec that has off-by-1* fault.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Find an incorrect version of Ec that has off-by-1+ fault.
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Goal of predicate testing

Given a correct predicate p., the goal of predicate testing 1s to generate a test set T
such that there 1s at least one test case t&€ T for which p, and its faulty version p;,

evaluate to different truth values.

Such a test set is said to guarantee the detection of any fault of the kind in the

fault model introduced above.
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Goal of predicate testing (contd.)

As an example, suppose that p.: a<b+c and p;: a>b+c. Consider a test set T={tl, t2}

where tl: <a=0, b=0, c=0> and t2: <a=0, b=1, c=1>.

The fault in p; 1s not revealed by tl as both p, and p; evaluate to false when

evaluated against t1.

However, the fault is revealed by t2 as p, evaluates to true and p, to false when
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evaluated against t2.
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Missing or extra Boolean variable faults

Correct predicate: av b
Missing Boolean variable fault: a

Extra Boolean variable fault: a v bac

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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4.4 Tests using predicate syntax

4.4.1: Predicate constraints

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Predicate constraints: BR symbols

Consider the following Boolean-Relational set of BR-symbols:

BR={t, f, <, = >, +¢, -¢}
A BR symbol 1s a constraint on a Boolean variable or a relational expression.

For example, consider the predicate E: a<b and the constraint “>" . A test case

that satisfies this constraint for E must cause E to evaluate to false.
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Infeasible constraints

A constraint C 1s considered infeasible for predicate p, if there exists no input

values for the variables in p, that satisfy c.

For example, the constraint t is infeasible for the predicate a>ba b>d if it is known

that d>a.
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Predicate constraints

Let p, denote a predicate with n, n>0, v and A operators.

A predicate constraint C for predicate p, is a sequence of (n+1) BR symbols, one
for each Boolean variable or relational expression in p,. When clear from context,

we refer to " 'predicate constraint" as simply constraint.

Test case t satisfies C for predicate p,, if each component of p, satisfies the

corresponding constraint in C when evaluated against t. Constraint C for predicate

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

p, guides the development of a test for p,, 1.e., it offers hints on what the values of

the variables should be for p, to satisfy C.
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True and false constraints

p,(C) denotes the value of predicate p, evaluated using a test case that satisfies C.

C 1s referred to as a true constraint when p,(C) 1s true and a false constraint

otherwise.

A set of constraints S is partitioned into subsets Stand Sf, respectively, such that for

each Cin S, p(C) =true, and for any C in Sf, p (C) =false. S= StU S

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Predicate constraints: Example

Consider the predicate p.: ba (r<s) v (u=v) and a constraint C: (t, =, >). The

following test case satisfies C for p,.

<b=true, r=1, s=1, u=1, v=0>

The following test case does not satisty C for p..

<b=true, r=1, s=2, u=1, v=2>

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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4.4 Tests using predicate syntax

4.4.3: Predicate testing criteria

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Predicate testing: criteria

Given a predicate p,, we want to generate a test set T such that

e Tis minimal and

* T guarantees the detection of any fault in the implementation of p,; faults correspond

to the fault model we discussed earlier.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Predicate testing: BOR testing criterion

A test set T that satisfies the BOR testing criterion for a compound predicate p,,
guarantees the detection of single or multiple Boolean operator faults in the

implementation of p..

T 1s referred to as a BOR-adequate test set and sometimes written as Tgg.
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Predicate testing: BRO testing criterion

A test set T that satisfies the BRO testing criterion for a compound predicate p,,
guarantees the detection of single Boolean operator and relational operator faults in

the implementation of p,.

T 1s referred to as a BRO-adequate test set and sometimes written as Tgg.
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Predicate testing: BRE testing criterion

A test set T that satisfies the BRE testing criterion for a compound predicate p,,
guarantees the detection of single Boolean operator, relational expression, and

arithmetic expression faults in the implementation of p..

T 1s referred to as a BRE-adequate test set and sometimes written as Tggg.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Predicate testing: guaranteeing fault
detection

Let T,, x&{BOR, BRO,BRE}, be a test set derived from predicate p.. Let p, be
another predicate obtained from p, by injecting single or multiple faults of one of
three kinds: Boolean operator fault, relational operator fault, and arithmetic

expression fault.

T, 1s said to guarantee the detection of faults in p;if for some t€T,, p(t)#
P«(®).
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Guaranteeing fault detection: example

Let p,=a<b A c>d
Constraint set S={(t, t), (t,), (f, t)}

Let Tpor-1tl, t2, t3} 1s a BOR adequate test set that satisfies S.

tl: <a=1, b=2, c=1, d=0 >; Satisfies (t, t), i.e. a<b 1s true and
c<d 1s also true.

t2: <a=1, b=2, c=1, d=2 >; Satisfies (t, f)

t3: <a=1, b=0, c=1, d=0 >; Satisfies ({, t)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Guaranteeing fault detection: In class
exercise

Generate single Boolean operator faults in
p,s a<b A c>d

and show that T guarantees the detection of each fault.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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4.4 Tests using predicate syntax

4.4.1: BOR, BRO, and BRE adequate tests

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Algorithms for generating BOR, BRO, and
BRE adequate tests

Define the cross product of two sets A and B as:

AxB={(a,b)|]acEA and bEB}

The onto product of two sets A and B 1is defined as:

A®B={(u,v)|[uEA, vEB, such that each element of A appears at least once as u

and each element of B appears once as v.}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Set products: Example

Let A={t, = >} and B={f, <}
AXB={(t, 1), (t, <), (5, 1), (5, 9, &1, (>,9);

A®B ={(t, 1), (=,<), (>,<)}

Any other possibilities for A®B?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Generation of BOR constraint set

See page 184 for a formal algorithm. An illustration follows.

We want to generate Ty for p,: a<b A c>d
First, generate syntax tree of p,.

A

N

a<b c>d

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Generation of the BOR constraint set

Given node N in the syntax tree for predicate p, we use the following notation:

Sx= Syt U Sy is the constraint set, where

S\'1s the true constraint set, and

S\'is the false constraint.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Generation of the BOR constraint set (contd.)

Second, label each leaf node with the constraint set {(t), (f)}.

We label the nodes as N, N,, and so on for convenience.

N;

N

N, a<b c>d N,
Sni= {(t)a (f)} Sn2= {(t)a (f)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Generation of the BOR constraint set (contd.)

Third, compute the constraint set for the next higher node in the syntax tree, in this

case N5. For an AND node, the formulae used are the following. §
Se={t), (1, (N} 3
Snat = Snit @ Syt ={(1)} ® {()j=1(t, t)} N, A g
N f N, /\ N, é
Sns' = (Sny' X{BHUt 1% Sy, a<b > =
= ({(OY *{ONUEOI L) (0. (O} (.0 3
= {(f, DI, )} §

= {(f, A )}
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Generation of Ty

As per our objective, we have computed the BOR constraint set for the root node of
the AST(p,). We can now generate a test set using the BOR constraint set associated

with the root node.

Sy; contains a sequence of three constraints and Snz={(t,t), (f; 1), (&, )}

hence we get a minimal test set consisting of three

test cases. Here is one possible test set.
N, N,

a<b c>d
Tpop ={t1, 2, t3}

(v, (O] {(®), (]
tl=<a=1, b=2, c=6,d=5> (t,1)

t2=<a=1, b=0, c=6,d=5> (1, 1)
t3=<a=1, b=2,c=1,d=2> (t, 1)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Generation of BRO constraint set

See pages 187-188 for a formal algorithm. An illustration follows.

Recall that a test set adequate with respect to a BRO constraint set for predicate p,,
guarantees the detection of all combinations of single or multiple Boolean operator

and relational operator faults.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BRO constraint set

The BRO constraint set S for relational expression el relop e2:

S=1(>), %), (9}

Separation of S into its true (SY) and false (S)components:

relop: > St={(>)} S={(=), (<)}
relop: > S={(>), =)} S={(9)}

relop: = S={(=)} S={(<), (>)}
relop: < St={(<)} S={(=), (>)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

relop: < S={(<), =)} S={(>)}

Note: t, denotes an element of St and f, denotes an element of Sf
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BRO constraint set: Example

p,: (atb<c)alp v (r>s)
Step 1: Construct the AST for the given predicate.

N6

///// \\\\\\ r>S
N1 N3

a+b<c

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BRO constraint set: Example (contd.)

Step 2: Label each leaf node with its constraint set S.

N6

N4 /\\m NS
N1 / \ N3 {(>), (=), (<)}

a+b<c

(), (=), (<)} |
p N2

{(0), ()}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BRO constraint set: Example (contd.)

Step 2: Traverse the tree and compute constraint set for each internal node.
Stys=Sn2'={(f)} Shva=Snat= {(t)}
S'a=Sn1" ® Sy3'={(<)} ®{(D}={(<. D}
Sha= (ST x{(ty3)}) U {(tn1)} x S'ys)
=({(>,=)} x{(DH}) U (<)} x{(®)})

={, D, & D UA(S, D)
={>. 0, =D, (<, D}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BRO constraint set: Example (contd.)

N6

/\\ "
{(<f)(>f)( f)(< t) =S
/ \ (), (=), (<)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

N3 {(f), {0)}
a+b<c
{>), (=), (<)} |
D N2
(), )}
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BRO constraint set: Example (contd.)

Next compute the constraint set for the rot node (this is an OR-node).

SfN6=SfN4 ® Sst
={(>.).,(=.D(<H)} &{(=)(}={(<, D}
={(> 9f’=) K (= ’f7<) ’(< 7t ’=)}

S'ne= (St x {(fs) DU {(fxg)} x S'ys)
=({(<.DH} x{(®}) U{E.D} x{=)})
={(< =)} UA{Gf>)}
={(<,f,=),>.£>)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BRO constraint set: Example (contd.)

Constraint set for  p,: (a+b<c)A!p v (r>s) )

{(> ’f’=> > (=’f7<) ?(< ’t ’=) 2 (< ’f’z) ’(> ’f7>)} V N6

{(<,D),>,0, =10, (<)} A /\r>s N>
N1 / \ {>), (=), (<)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

N3 {(), ()}
a+b<c !
(), (=), ()} |
p N2
(0, ()
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BRO constraint set: In-class exercise

Given the constraint set for p,: (a+b<c)Alp v (r>s), construct Tgrg -

{(> ’f7=) > (= 7f’<) ’(< ’t ’=) b (< ’f’z) ’<> ’f7>)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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4.4 Tests using predicate syntax

4.4.5: BOR constraints for non-singular expressions

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BOR constraints for non-singular
expressions

Test generation procedures described so far are for singular predicates. Recall that a

singular predicate contains only one occurrence of each variable.
We will now learn how to generate BOR constraints for non-singular predicates.

First, let us look at some non-singular expressions, their respective disjunctive

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

normal forms (DNF), and their mutually singular components.
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Non-singular expressions and DNF:
Examples

Predicate (p,) DNF Mutually singular components in 3

P, §
ab(b+c) abb+abc a; b(b+c) ;:,
a(bct+ bd) abc+abd a; (bctbd) é
a(!b+!c)+cde alba +alctcde a; 'b+!ct+ cde g
a(bct+!b+de) abc+alb+ade a; bet+!b; de 8
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Generating BOR constraints for non-singular
expressions

We proceed in two steps.

First we examine the Meaning Impact (MI) procedure for generating a minimal set

of constraints from a possibly non-singular predicate.

Next, we examine the procedure to generate BOR constraint set for a non-singular

predicate.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Meaning Impact (Ml) procedure

Given Boolean expression E in DNF, the MI procedure produces a set of
constraints Sg that guarantees the detection of missing or extra NOT (!) operator

faults in the implementation of E.

The MI procedure 1s on page 193 and 1s 1llustrated next.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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MI procedure: An Example

Consider the non-singular predicate: a(bc+!bd). Its DNF equivalent is:
E=abc+albd.

Note that a, b, ¢, and d are Boolean variables and also referred to as literals. Each

literal represents a condition. For example, a could represent r<s.

Recall that + is the Boolean OR operator, ! is the Boolean NOT operator, and as

per common convention we have omitted the Boolean AND operator. For example

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

bc is the same as b Ac.
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MI procedure: Example (contd.)

Step 0: Express E in DNF notation. Clearly, we can write E=el+e2, where el=abc

and e2=a!bd.

Step 1: Construct a constraint set T, for el that makes el true. Similarly construct

T, for 2 that makes e2 true.

T, ={(tt,t,t), (t,t,t,1)} T, ={(t.5t1), (LLLT)}

Note that the four t’ s in the first element of T_, denote the values of the Boolean

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

variables a, b,c, and d, respectively. The second element, and others, are to be

interpreted similarly.
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MI procedure: Example (contd.)

Step 2: From each T;, remove the constraints that are in any other T;. This gives

us TS,; and TS;. Note that this step will lead TS; NTS,; =&.

There are no common constraints between T, and T, in our example. Hence we

get:

TS,, ={(tLL1), (LLLD)} TS, ={(t.ELL), (LELD)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




MI procedure: Example (contd.)

Step 3: Construct S'; by selecting one element from each T..

St ={(t,t,t,¢), (t,L,1,)}

Note that for each constraint x in Sz we get E(x)=true. Also, S'; 1s minimal. Check

it out!

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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MI procedure: Example (contd.)

Step 4: For each term in E, obtain terms by complementing each literal, one at a

time.
e!,= labc e?,=albc e’,=ablc

el,=lalbd e?,=abd e3,=albld

From each term e above, derive constraints F_ that make e true. We get the

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

following six sets.
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MI procedure: Example (contd.)

Fe!' .= {(ft.0), (F60}
F621: {(t,f,t,t), (t,f,t,f) }

Fe3 1~ {(tatafyt)a (tatafaf) }

Fel,= {(£,£L,0), (E550)]

Fe?,= {(t,t,t,0), (t,t.f;)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Fel = {(t.ft,D), (t,£.£0)}
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MI procedure: Example (contd.)

Step 5: Now construct FS, by removing from F, any constraint that appeared in any
of the two sets T, constructed earlier.
FSel = FSe!,

FSe?,= {(t,f;t,)} Constraints common to T,

and T, are removed.
FSe3,= FSel,

FSel,=FSel,
FSe?,= {(tLf,0)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

FSe3,= FSel,
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MI procedure: Example (contd.)

Step 6: Now construct ST, by selecting one constraint from each F,

St={(f,t,t,0), (t.f,t,0), (t,t,£1), (1,0}
Step 7: Now construct Sg= St UST,

SE:{ {(tatatat)a (tafafaf)a (fatataf)a (tafataf)a (tatafat)a (fafatat)}

Note: Each constraint in Sty makes E true and each constraint in Sty makes E false.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Check it out!

We are now done with the MI procedure.
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BOR-MI-CSET procedure

The BOR-MI-CSET procedure takes a non-singular expression E as input and
generates a constraint set that guarantees the detection of Boolean operator faults in

the implementation of E.

The BOR-MI-CSET procedure using the MI procedure described earlier.

The entire procedure 1s described on page 195. We illustrate it with an example.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BOR-MI-CSET: Example

Consider a non-singular Boolean expression: E= a(bc+!bd)

Mutually non-singular components of E:
el=a

e2=bc+!bd

We use the BOR-CSET procedure to generate the constraint set for el (singular

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

component) and MI-CSET procedure for €2 (non-singular component).
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BOR-MI-CSET: Example (contd.)

For component el we get:

St ={t}. S ={f}

Recall that St,, is true constraint set for el and S';, is false constraint set for el.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BOR-MI-CSET: Example (contd.)

Component €2 is a DNF expression. We can write e2=u+v where u=bc and v=!

bd.

Let us now apply the MI-CSET procedure to obtain the BOR constraint set for
e2.

As per Step 1 of the MI-CSET procedure we obtain:

T=1t6, (K60 T={(E6Y), (11

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BOR-MI-CSET: Example (contd.)

Applying Steps 2 and 3 to T, and T, we obtain:

TS,=T, TS.,=T,

SteZZ{(tataf)a (f, t, t)}

Next we apply Step 4 to u and v. We obtain the following complemented

expressions from u and v: One possible alternative. Can
/ you think of other alternatives?

ul=!bc u2=bl!c

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

v1=bd v2=!b!d
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BOR-MI-CSET: Example (contd.)

Continuing with Step 4 we obtain:

Fulz{(fatat)a (fstsf)} Fu2:(taf3t)a (tafaf)}

FVIZ{(tatat)o (tafat)} FV2:{(f9t9f)9 (faf&f)}

Next we apply Step 5 to the F constraint sets to obtain:

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

FSu1: {(fataf)} FSuZZ(tofat)a (tofaf)}

ES, =505 FS,={(tL.D), (B10);
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BOR-MI-CSET: Example (contd.)

Applying Step 6 to the FS sets leads to the following

Sfe2: {(fataf)a (tafat) } .

Combing the true and false constraint sets for e2 we get:

SeZZ{(tataf)a (fa ta t)a {(fataf)a (tafat)}°

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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BOR-MI-CSET: Example (contd.)

Summary:
St ={(t)} St=1(D} from BOR-CSET
procedure.
Sto={(tt0), (f, t, 1)} St ={(f,t,f), (t.f;t)} from MI-CSET
procedure.

We now apply Step 2 of the BOR-CSET procedure to obtain the

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

constraint set for the entire expression E.
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BOR-MI-CSET: Example (contd.)

Obtained by applying Step 2 of BOR-CSET to an

S'3=Sv1 ® St AND node.
Shs=(Sfyy x {t2H)U({tl} x S'y,) N3
A {EET), (GRLE), (L), (ERL), (LD}

N2

/w (fl L t)l (fltlf)l (tlflt)}
N1 A0 /\ /\
b C b d

d

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Summary

Most requirements contain conditions under which functions are to be executed.
Predicate testing procedures covered are excellent means to generate tests to

ensure that each condition is tested adequately.
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Summary (contd.)

Usually one would combine equivalence partitioning, boundary value analysis,
and predicate testing procedures to generate tests for a requirement of the

following type:
if condition then action 1, action 2, ...action n;

S J

Apply predicate testing

Apply eq. partitioning, BVA, and predicate
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testing if there are nested conditions.
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Chapter 5

Test Generation from Finite State Models
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Learning Objectives

=  What are Finite State Models?

= The W method for test generation

= The Wp method for test generation

=  Automata theoretic versus control-flow based test generation

UIO method is not covered in these slides. It is left for the students to read on
their own (Section 5.8).
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Where are these methods used?

=  Conformance testing of communications protocols--this 1s where it all started.

= Testing of any system/subsystem modeled as a finite state machine, e.g.
elevator designs, automobile components (locks, transmission, stepper

motors, etc), nuclear plant protection systems, steam boiler control, etc.)

= Finite state machines are widely used in modeling of all kinds of systems.
Generation of tests from FSM specifications assists in testing the

conformance of implementations to the corresponding FSM model.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Alert: It will be a mistake to assume that the test generation methods described

here are applicable only to protocol testing!
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5.2 Finite State Machines
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What is a Finite State Machine?

A finite state machine, abbreviated as FSM, is an abstract representation of behavior

exhibited by some systems.

An FSM is derived from application requirements. For example, a network protocol

could be modeled using an FSM.
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What is a Finite State Machine?

Not all aspects of an application’s requirements are specified by an FSM. Real time
requirements, performance requirements, and several types of computational

requirements cannot be specified by an FSM.
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Requirements or design specification?

An FSM could serve any of two roles: as a specification of the required behavior and/

or as a design artifact according to which an application is to be implemented.

The role assigned to an FSM depends on whether it is a part of the requirements

specification or of the design specification.

Note that FSMs are a part of UML 2.0 design notation.
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Where are FSMs used?

Modeling GUIs, network protocols, pacemakers, Teller machines, WEB applications,

safety software modeling in nuclear plants, and many more.

While the FSM’ s considered in examples are abstract machines, they are abstractions

of many real-life machines.
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FSM and statcharts

Note that FSMs are different from statecharts. While FSMs can be modeled using

statecharts, the reverse is not true.

Techniques for generating tests from FSMs are different from those for generating tests

from statecharts.

The term “state diagram’ is often used to denote a graphical representation of an FSM

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

or a statechart.
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FSM (Mealy machine): Formal definition

An FSM (Mealy) is a 6-tuple: (X, Y, Q, g, 0, O), where:

X 1s a finite set of input symbols also known as the input alphabet.
Y 1s a finite set of output symbols also known as the output alphabet,

Q 1s a finite set states,
qo 1n Q 1s the initial state,

d: Q x X— Q) 1s a next-state or state transition function, and

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

O: Q x X— Y 1s an output function
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FSM (Moore machine): Formal definition

An FSM (Moore) is a 7-tuple: (X, Y, Q, qq 0, O, F), where:
X,Y,Q,qy ando are the same as in FSM (Mealy)

O: Q — Y is an output function

FEQ 1s the set of final or accepting or terminating states.
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FSM: Formal definition (contd.)

Mealy machines are due to G. H. Mealy (1955 publication)

Moore machines are due to E. F. Moore (1956 publication)
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Test generation from FSMs

Our focus
Requirements —— FSM Test generation algorithm 5
| -
1 | :
Test generation for application — S
| | FSM based 3
Application Test inputs Test inputs g
Blue: Generated Test inputs %
data Test driver — — Application o
Pass/fail - Oracle - Observed behavior -
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Embedded systems

Many real-life devices have computers embedded in them. For example, an
automobile has several embedded computers to perform various tasks, engine control
being one example. Another example is a computer inside a toy for processing inputs

and generating audible and visual responses.

Such devices are also known as embedded systems. An embedded system can be as

simple as a child's musical keyboard or as complex as the flight controller in an aircraft.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

In any case, an embedded system contains one or more computers for processing

nputs.
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Specifying embedded systems

An embedded computer often receives inputs from its environment and
responds with appropriate actions. While doing so, it moves from one state to

another.

The response of an embedded system to its inputs depends on its current state. It is
this behavior of an embedded system in response to inputs that is often modeled by

a finite state machine (FSM).
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FSM: lamp example

Simple three state lamp behavior:

ON-BRIGHT

(a) (b)

(a) Lamp switch can be turned clockwise.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

(b) Lamp switch can be turned clockwise and counterclockwise.
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FSM: Actions with state transitions

Machine to convert a sequence of decimal digits to an integer:

d/ADD(num,d)

o /OUT(n um-

d/INIT(num, d)

(a) Notice the ADD, INIT, ADD, and OUT actions.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

(b) INIT: Initialize num. ADD: Add to num. OUT: Output num.
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FSM: Formal definition

An FSM is a quintuple: (X, Y, Q, q, 0, O), where:

X 1s a finite set of input symbols also known as the input alphabet.

Y i1s a finite set of output symbols also known as the output alphabet,

Q 1s a finite set states,

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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FSM: Formal definition (contd.)

qo 1n Q 1s the nitial state,

d: Q x X— Q is a next-state or state transition function, and

O: Qx X— Y 1s an output function.

In some variants of FSM more than one state could be specified as an

initial state. Also, sometimes it is convenient to add FC Q as a set of
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final or accepting states while specifying an FSM.
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State diagram representation of FSM

A state diagram is a directed graph that contains nodes representing states and

edges representing state transitions and output functions.

Each node 1s labeled with the state it represents. Each directed edge in a state
diagram connects two states. Each edge is labeled 1/0 where 1 denotes an input

symbol that belongs to the input alphabet X and o denotes an output symbol that
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belongs to the output alphabet O. 1 1s also known as the input portion of the edge and

o its output portion.
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5.2.2 Tabular representation
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Tabular representation of FSM

A table is often used as an alternative to the state diagram to represent

the state transition function 0 and the output function O.

The table consists of two sub-tables that consist of one or more columns each. The
leftmost sub table is the output or the action sub-table. The rows are labeled by the

states of the FSM. The rightmost sub-table 1s the next state sub-table.
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Tabular representation of FSM: Example

The table given below shows how to represent functions 0 and O for

the DIGDEC machine.
Current Action Next
state state
d * d | *
qo INIT (num, d) 71
q1 ADD (num, d) | OUT (num) | ¢1 | ¢
g2

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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5.2.3 Properties of FSM

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Properties of FSM

Completely specified: An FSM M 1s said to be completely specified if from each

state in M there exists a transition for each input symbol.

Strongly connected: An FSM M is considered strongly connected if for each pair

of states (q; ;) there exists an input sequence that takes M from state g; to state

g;.
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Properties of FSM: Equivalence

V-equivalence: Let M,=(X, Y, Q,, m',, T|, O,) and M,=(X, Y, Q,, m?,, T,, O,) be
two FSMs. Let V denote a set of non-empty strings over the input alphabet X i.e.
vV X

Let q; and g;, 1= J, be the states of machines M, and M,, respectively. g; and g; are

considered V-equivalent if O,(q;, $)=0,(q;, s) for all s in V.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Properties of FSM: Distinguishable

Stated differently, states q; and q; are considered V-equivalent if M, and M, ,

when excited 1n states q; and g;, respectively, yield identical output sequences.

States q; and q; are said to be equivalent if O,(q;, 1)=0,(q;, r) for any set V. If q;and
q; are not equivalent then they are said to be distinguishable. This definition of
equivalence also applies to states within a machine. Thus, machines M, and M,

could be the same machine.
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Properties of FSM: Machine Equivalence

Machine equivalence: Machines M, and M, are said to be equivalent if (a) for each
state 0 in M1 there exists a state ¢ ' in M, such that o and ¢ ' are equivalent and (b)
for each state o in M, there exists a state 0 ' in M, such that ¢ and o ' are

equivalent.

Machines that are not equivalent are considered distinguishable.

Minimal machine: An FSM M i1s considered minimal if the number of states in M

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

is less than or equal to any other FSM equivalent to M.
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Properties of FSM: k-equivalence

k-equivalence: Let M{=(X, Y, Q,, m',, T;, O,) and M,=(X, Y, Q,, m?,, T,, O,) be
two FSMs.

States q;¢ Q, and g;e Q, are considered k-equivalent if, when excited by any input

of length k, yield identical output sequences.
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Properties of FSM: k-equivalence (contd.)

States that are not k-equivalent are considered k-distinguishable.

Once again, M, and M, may be the same machines implying that k-

distinguishability applies to any pair of states of an FSM.

It 1s also easy to see that if two states are k-distinguishable for any k>0 then

they are also distinguishable for any n= k. If M, and M, are not k-
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distinguishable then they are said to be k-equivalent.
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Example: Completely specified machine

d/ADD(num, d) (d|*)/ERROR( )

O

d/INIT (num, d) */OUT(num)

(d|*)/ERROR( )

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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5.4 A fault model
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Faults in implementation

An FSM serves to specify the correct requirement or design of an application. Hence

tests generated from an FSM target faults related to the FSM itself.

What faults are targeted by the tests generated using an FSM?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Fault model

b/0 b/0 b/0

| 4
Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Correct design Operation error Transfer error
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Fault model (contd.)

b/0
\
<

a/l
a/0
‘q2 | a/l @

-..\

o e

b/0
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Extra state error Missing state error
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5.5 Characterization set
5.6 The W-method

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Assumptions for test generation

Minimality: An FSM M is considered minimal if the number of states in M s less

than or equal to any other FSM equivalent to M.

Completely specified: An FSM M is said to be completely specified if from each state

in M there exists a transition for each input symbol.
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Chow’s (W) method

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M.
Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P

from the testing tree.

Step 4: Construct set 7 from W and m.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Step 5: Desired test set=P.Z
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Step 1: Estimation of m

This 1s based on a knowledge of the implementation. In the absence of any such

knowledge, let m=|Q).

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Step 2: Construction of the W-set

Let M=(X, Y, Q, ql, 0, O) be aminimal and complete FSM.

W 1s a finite set of input sequences that distinguish the behavior of any pair of

states in M. Each input sequence in W is of finite length.

Given states i and qj in Q, W contains a string s such that:

O(qi, s)=0(qj, s)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example of a W-set

W={baaa,aa,aaa}

a/0

O(baaa,ql)=1101

b/1

O(baaa,q2)=1100

b/1 b/1

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Thus, baaa distinguishes state q1 from g2 as O(baaa,ql) = O(baaa,q2)
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Steps in the construction of W-set

Step 1: Construct a sequence of k-equivalence partitions of Q denoted as P1, P2, ...Pm,

m>0.

Step 2: Traverse the k-equivalence partitions in reverse order to obtain

distinguishing sequence for each pair of states.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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What is a k-equivalence partition of Q?

A k-equivalence partition of Q, denoted as Py, 1s a collection of n finite sets 2, |, 2,,

2, such that
Ut 24 =Q
States in Z,. are k-equivalent.

If state u is in 2; and v in 2, for i=j, then u and v are k-distinguishable.
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How to construct a k-equivalence partition?

Given an FSM M, construct a 1-equivalence partition, start with a tabular

representation of M. E
Current Output Next state g
state 3 b 3 b g
q1 0 1 q1 q4 2
a2 0 1 a1 a5 8
q3 0 1 g5 q1 o
q4 1 1 q3 q4 5
go 1 1 q2 go
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Construct 1-equivalence partition

Group states i1dentical in their Output entries. This gives us 1-partition P, consisting

of 2,={ql,q2,q3} and X, ={q4, q5}. 5
> Current Output Next state ;f
state a b 3 b é
1 q1 0 1 q1 q4 E
q2 0 1 q1 q5 g
a3 0 1 a5 q S
2 q4 1 1 q3 q4 3
go 1 1 q2 gd

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Construct 2-equivalence partition: Rewrite P, table

Rewrite P, table. Remove the output columns. Replace a state entry q; by q;; where |

is the group number in which lies state q..

> Current Next state
state a b
1 q1 q11 q42
g2 q11 52
q3 952 q11 ="
2 q4 q31 q42
as g21 q52

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Construct 2-equivalence partition: Construct P, table

Group all entries with identical second subscripts under the next state column. This

gives us the P, table. Note the change in second subscripts.

> Current Next state
state a b
1 q1 q11 q43
q2 q11 q53
2 g3 o3 q11
3 g4 gq32 q43
gd g21 g53

Foundations of Software Testing 2E

Author: Aditya P. Mathur

P, Table
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Construct 3-equivalence partition: Construct P, table

Group all entries with identical second subscripts under the next state column. This

gives us the P, table. Note the change in second subscripts.

> Current Next state g

state a b %

1 q1 q11 q43 P; Table g

g2 q11 go4 g

2 q3 q54 q11 E

3 q4 gq32 q43 %
4 gd g21 qo4
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Construct 4-equivalence partition: Construct P, table

Continuing with regrouping and relabeling, we finally arrive at P, table.

> Current Next state P, Table %

state 3 b =
1 q1 q11 q44 %
2 q2 q11 q55 %ﬂ
3 q3 955 q11 %
4 q4 q33 q44 %
5 q5 q22 q99 )
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k-equivalence partition: Convergence

The process is guaranteed to converge.

When the process converges, and the machine is minimal, each state will be in a

separate group.

The next step is to obtain the distinguishing strings for each state.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Finding distinguishing sequences: Example

Let us find a distinguishing sequence for states q1 and g2.

Find tables P, and P, such that (q1, q2) are in the same group in P, and different

groups in P._,. We get P, and P,.

Initialize z=¢. Find the input symbol that distinguishes q1 and g2 in table P3. This

symbol is b. We update z to z.b. Hence z now becomes b.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Finding the distinguishing sequences: Example (contd.)

The next states for q1 and g2 on b are, respectively, g4 and q5.

We move to the P, table and find the input symbol that distinguishes g4 and q5. Let

us select a as the distinguishing symbol. Update z which now becomes ba.

The next states for states g4 and g5 on symbol a are, respectively, q3 and q2.

These two states are distinguished in P, by a and b. Let us select a. We update z to

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

baa.
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Finding the distinguishing sequences: Example (contd.)

The next states for g3 and g2 on a are, respectively, ql and g5.

Moving to the original state transition table we obtain a as the distinguishing

symbol for q1 and g5

We update z to baaa. This 1s the farthest we can go backwards through the various

tables. baaa is the desired distinguishing sequence for states q1 and 2. Check that

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

o(ql ,baaa)=0(q2,baaa).
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Finding the distinguishing sequences: Example (contd.)

Using the procedure analogous to the one used for q1 and g2, we can find the
distinguishing sequence for each pair of states. This leads us to the following

characterization set for our FSM.

W={a, aa, aaa, baaa}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Chow’ s method: where are we?

Step 1: Estimate the maximum number of states (m) in the correct implementation

D
of the given FSM M. one

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P
~ Next (a)

from the testing tree.

Step 4: Construct set Z from W and m.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Step 5: Desired test set=P.Z
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Step 3: (a) Construct the testing tree for M

A testing tree of an FSM 1s a tree rooted at the initial state. It contains at least one
path from the initial state to the remaining states in the FSM. Here 1s how we

construct the testing tree.

State q0, the initial state, 1s the root of the testing tree. Suppose that the testing tree has

been constructed until level k . The (k+1)th level 1s built as follows.

Select a node n at level k. If n appears at any level from 1 through k, then n is a leaf

node and 1s not expanded any further. If n is not a leaf node then we expand it by

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

adding a branch from node nto a new node mif d(n, x)=m for x& X . This branch

is labeled as x. This step is repeated for all nodes at level k.
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Example: Construct the testing tree for M

(ﬁm\ :
a0 \

b/

b/1

b/1 M b/1

Foundations of Software Testing 2E

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Author: Aditya P. Mathur

Start here, initial
state 1s the root.

ql becomes leaf, g4
can be expanded.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

No further expansion
possible

Contents

PEARSON




Chow’ s method: where are we?

Step 1: Estimate the maximum number of states (m) in the correct implementation

D
of the given FSM M. one

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P
. Next, (b)

from the testing tree.

Step 4: Construct set Z from W and m.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Step 5: Desired test set=P.Z
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Step 3: (b) Find the transition cover set from the testing tree

A transition cover set P is a set of all strings representing sub-paths, starting at the
root, in the testing tree. Concatenation of the labels along the edges of a sub-path is

a string that belongs to P. The empty string (€) also belongs to P.

Level 1 (o
"’ *  P={g, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}

la
a
Level 4

@5
=&
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Chow’ s method: where are we?

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M. . Done

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P
) Done

from the testing tree.

Step 4: Construct set Z from W and m. Next
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Step 5: Desired test set=P.Z
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Step 4: Construct set Z from W and m

Given that X is the input alphabet and W the characterization set, we have:

Z=X'WUXI WU ...XwlnWwUyUXmnW

For m=n, we get

Z =X'"W=W

For X={a, b}, W={a, aa, aaa, baaa}, m=6
7 =W U X' W ={a, aa, aaa, baaa} U {a, b} {a, aa, aaa, baaa}
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={a, aa, aaa, baaa, aa, aaa, aaaa, baaaa, ba, baa, baaa, bbaaa}

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Chow’ s method: where are we?

Step 1: Estimate the maximum number of states (m) in the correct implementation

of the given FSM M. ~ Done

Step 2: Construct the characterization set W for M.

Step 3: (a) Construct the testing tree for M and (b) generate the transition cover set P
) Done

from the testing tree.

Step 4: Construct set Z from W and m. Done
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Step 5: Desired test set=P.Z —— Next
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Step 5: Desired test set=P.Z

The test inputs based on the given FSM M can now be derived as:

T=P.Z

Do the following to test the implementation:
1. Find the expected response to each element of T.

2. Generate test cases for the application. Note that even though the application
1s modeled by M, there might be variables to be set before it can be exercised

with elements of T.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

3. Execute the application and check if the response matches. Reset the

application to the initial state after each test.
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Example 1: Testing an erroneous application

Correct design

/
M(t1)=1101001

a/o

q2

all

Error revealing M(t2)=11011
b/1 —

test cases

t1=baaaaaa

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

M 1(t1)= 1 101001 (b) Transfer error in state g2. (c) Transfer error in state g2 and Mz(t2)= 1 1001

operation error in state q5.
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Example 2: Extra state. N=5, m=6.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

(a) (b)

M1 M2
t1=baaba M(t1)=11011 MI1(t1)=11001
t2=baaa M(t2)=1101 M2(t2)=1100
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Error detection process: in-class discussion

Given m=n, each test case tis of the form r.s whererisin Pand sin W.r
moves the application from initial state qO to state qj. Then, s=as” takes it

from qi to state qj or qj .

Correct transfer

|
|

\ s'/
\ a/w
Incorrect transfer ‘ ‘

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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5.7 The Partial W method

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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The partial W (Wp) method

Tests are generated from minimal, complete, and connected FSM.

Size of tests generated is generally smaller than that generated using the W-method.

Test generation process is divided into two phases: Phase 1: Generate a test set using
the state cover set (S) and the characterization set (W). Phase 2: Generate additional

tests using a subset of the transition cover set and state identification sets.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

What is a state cover set? A state identification set?
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State cover set

Given FSM M with input alphabet X, a state cover set S is a finite non-empty set of
strings over X* such that for each state qi in Q, there is a string in S that takes M from

its initial state to qi.

S={¢, b, ba, baa, baaa}

a/0

b/

S is always a subset of the transition

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

cover set P. Also, S is not

necessarily unique.
b/1 b/1
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State identification set

Given an FSM M with Q as the set of states, an identification set for state qiEQ 1s

denoted by W. and has the following properties:

(@) WC W, I=i=n[ldentification set is a subset of W.]

(b) O(q1 s)=O(qj,s), for Isj=n, j=1, s&€ W, [For each state other than qi, there is

a string in W1 that distinguishes qi from qj.]

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

(c) No subset of W. satisfies property (b). [W, 1s minimal.|
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State identification set: Example

- A

Last element of the output string f ) . ) ) -
Si | S X o(Si,x) | 0o(Sj,x) |.
1 2 baaa 1 0 g
ql 3 aa 0 1 g
o 4 |a 0 1 5
y 5 |a 0 1 :
2 |3 aa 0 1 £
,, 4 |a 0 1 -
@ 5 |a 0 : o
o o |3 |4 |a 0 1 5
W,=W,={baaa, aa, a} ° |a 0 1 )

4 3) aaa 1 0

W,={a aa} W,=W.={a, aaa}
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Wp method: Example: Step 1: Compute S, P, W, Wi, v

S={¢, b, ba, baa, baaa}

P={¢, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}

W,=W,={baaa, aa, a}
W,={aaa} W ,=W.={a, aaa}
W={a, aa, aaa, baaa}

W={W1, W2, W3, W4, W5}

a/0

b/

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

b/1 b/1
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Wp method: Example: Step 2: Compute T1 [m=n]

T1=S. W={¢, b, ba, baa, baaa}.{a, aa, aaa, baaa}

Elements of T1 ensure that the each state of the FSM is covered and

distinguished from the remaining states.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Wp method: Example: Step 3: Compute R and 6 [m=n]

R=P-S={¢, a, b, bb, ba, bab, baa, baab, baaa, baaab, baaaa}-{e,b,
ba, baa, baaa}

={a, bb, bab, baab, baaab, baaaa}

Let each element of R be denoted as r;, 1,5,...T;.

O(ry,, m)=q;; , where mEX (the alphabet)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Wp method: Example: Step 4: Compute T2 [m=n]

T2=R®W=U¥._ (r;}. W;;, where W;; is the identification set for state g;;.

1]

o(ql, a)=ql d(ql, bb)=qg4 d(ql, bab)=q5

d(ql, baab)=q5 d(ql, baaab)=q5 0(ql, baaaa)=ql

T2=({a}. W,)U ({bb}.W,) U ({bab}.W,) U ({baab}.W.) U
{baaab}. W)U ({baaaa}. W,)

={abaaa, aaa, aa} U {bba, bbaaa} U {baba, babaaa} U

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

{baaba, baabaaa} U {baaaba, baaabaaa} U {baaaabaaa, baaaaaa, baaaaa}
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Wp method: Example: Savings

Test set size using the W method= 44

Test set size using the Wp method= 34 (20 from T1+14 from T2)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Testing using the Wp method

Testing proceeds in two phases.

Tests from T1 are applied in phase 1. Tests from T2 are applied in phase 2.

While tests from phase 1 ensure state coverage, they do not ensure all transition
coverage. Also, even when tests from phase cover all transitions, they do not apply

the state identification sets and hence not all transfer errors are guaranteed to be

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

revealed by these tests.
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Wp method:

Both sets T1 and T2 are computed a bit differently, as follows:

T1=S. X[m-n], where X[m-n] is the set union of X', 1<i< (m-n)

T2=T2=R. X[m-n] ®W

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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5.8 The UIO sequence method [See the ftext]

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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5.9 Automata theoretic versus control flow based
technigues

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Automata-theoretic vs. Control theoretic techniques

The W and the Wp methods are considered automata-theoretic methods for test

generation.

In contrast, many books on software testing mention control-theoretic techniques
for test generation. Let us understand the difference between the two types of

techniques and their fault detection abilities.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Control theoretic techniques

State cover: A test set T is considered adequate with respect to the state cover
criterion for an FSM M if the execution of M against each element of T causes

each state in M to be visited at least once.

Transition cover: A test set T is considered adequate with respect to the branch/
transition cover criterion for an FSM M if the execution of M against each

element of T causes each transition in M to be taken at least once

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Control theoretic techniques (contd.)

Switch cover: A test set T is considered adequate with respect to the 1-switch
cover criterion for an FSM M if the execution of M against each element of T
causes each pair of transitions (trl, tr2) in M to be taken at least once, where for
some input substring ab trl: qi=0(qj, a) and tr 2: gk=0(qi, b) and qi, qj, gk

are states in M.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Control theoretic techniques (contd.)

Boundary interior cover: A test set T is considered adequate with respect to the
boundary-interior cover criterion for an FSM M if the execution of M against each
element of T causes each loop (a self-transition) across states to be traversed zero times
and at least once. Exiting the loop upon arrival covers the *"boundary"” condition and

entering it and traversing the loop at least once covers the " “interior" condition.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Control theoretic technique: Example 1

Consider the following machines, a correct one (M1) and one with a transfer error

M1). :
{a/0},{b/1} t=abba covers all states but does not not i“:;

b1 . s

M1 M’ S reveal the error. Both machines £
trahsfor generate the same output which is 0111. £

{a/0},{b/1} error é

. Will the tests generated by the W 5

M1’ {a/1},{b/1} = . . 5
method reveal this error? Check it out! <

S
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Control theoretic technique: Example 2

Consider the following machines, a correct one (M2) and one with a transfer error

(M27).

There are 12 branch pairs, such as (trl,

tr2), (trl, tr3), tr6, tr5).

tr:b/1Consider the test set: {bb, baab, aabb,

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

» ty:all aaba, abbaab}. Does it cover all
e a{O . branches? Does it reveal the error?
M2’
transfer Are the states in M2 1-distinguishable?

error
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Control theoretic technique: Example 3

Consider the following machines, a correct one (M3) and one with a transfer error

(M3").

transfer . — * tr,:b/0
error

Consider T={tl: aab, t2: abaab}.T1
causes each state to be entered but loop

not traversed. T2 causes each loop to be

traversed once.

M3 M3’ Is the error revealed by T?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Summary

Behavior of a large variety of applications can be modeled using finite state

machines (FSM). GUIs can also be modeled using FSMs

The W and the Wp methods are automata theoretic methods to generate tests from

a given FSM model.

Tests so generated are guaranteed to detect all operation errors, transfer errors, and
missing/extra state errors in the implementation given that the FSM representing

the implementation is complete, connected, and minimal. What happens if it is not?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Summary (contd.)

Automata theoretic techniques generate tests superior in their fault detection ability

than their control-theoretic counterparts.

Control-theoretic techniques, that are often described in books on software testing,

include branch cover, state cover, boundary-interior, and n-switch cover.

The size of tests sets generated by the W method 1s larger than generated by the Wp

method while their fault detection effectiveness are the same.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Chapter 6

Test Generation: Combinatorial Designs

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Updated: July 16, 2013
Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Learning Objectives

=  What are test configurations? How do they differ from test sets?

=  Why combinatorial design?

=  What are Latin squares and mutually orthogonal Latin squares (MOLS)?

= How does one generate test configurations from MOLS?

=  What are orthogonal arrays, covering arrays and mixed-level covering
arrays?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

= How to generate mixed-level covering arrays and test configurations from
them?
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6.1.1. Test configuration and test set

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test configuration

=  Software applications are often designed to work 1n a variety of environments.
Combinations of factors such as the operating system, network connection, and

hardware platform, lead to a variety of environments.

= An environment 1s characterized by combination of hardware and software.

=  Each environment corresponds to a given set of values for each factor, known

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

as a test configuration.
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Test configuration: Example

=  Windows XP, Dial-up connection, and a PC with 512MB of main memory, is one

possible configuration.

= Different versions of operating systems and printer drivers, can be combined to

create several test configurations for a printer.

= To ensure high reliability across the intended environments, the application must

be tested under as many test configurations, or environments, as possible.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

The number of such test configurations could be exorbitantly large making it

impossible to test the application exhaustively.
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Test configuration and test set

=  While a test configuration is a combination of factors corresponding to hardware
and software within which an application is to operate, a test set is a collection of

test cases. Each test case consists of input values and expected output.

=  Techniques we shall learn are useful in deriving test configurations as well as test

sets.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Motivation

=  While testing a program with one or more input variables, each test run of a

program often requires at least one value for each variable.

= For example, a program to find the greatest common divisor of two integers x and

y requires two values, one corresponding to x and the other to y.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Motivation [2]

While equivalence partitioning discussed earlier offers a set of guidelines to

design test cases, it suffers from two shortcomings:
(a) It raises the possibility of a large number of sub-domains in the partition.

(b) It lacks guidelines on how to select inputs from various sub-domains in the

partition.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Motivation [3]

The number of sub-domains in a partition of the input domain increases in direct
proportion to the number and type of input variables, and especially so when

multidimensional partitioning is used.

Once a partition 1s determined, one selects at random a value from each of the sub-
domains. Such a selection procedure, especially when using uni-dimensional

equivalence partitioning, does not account for the possibility of faults in the program

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

under test that arise due to specific interactions amongst values of different input

variables.
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Motivation [4]

While boundary values analysis leads to the selection of test cases that test a
program at the boundaries of the input domain, other interactions in the mput

domain might remain untested.

We will learn several techniques for generating test configurations or test sets that
are small even when the set of possible configurations or the input domain and the

number of sub-domains 1n its partition, 1s large and complex.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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6.1.2. Modeling the input and configuration spaces

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Modeling: Input and configuration space [1]

The input space of a program P consists of k-tuples of values that could be input

to P during execution.

The configuration space of P consists of all possible settings of the environment

variables under which P could be used.

Consider program P that takes two integers x>0 and y>0 as inputs. The input space of

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

P is the set of all pairs of positive non-zero integers.
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Modeling: Input and configuration space [2]

Now suppose that this program 1s intended to be executed under the Windows and the
MacOS operating system, through the Netscape or Safari browsers, and must be able

to print to a local or a networked printer.

The configuration space of P consists of triples (X, Y, Z) where X represents an

operating system, Y a browser, and Z a local or a networked printer.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Factors and levels

Consider a program P that takes n inputs corresponding to variables X, X,, .. X, . We
refer to the inputs as factors. The mputs are also referred to as test parameters or as

values.

Let us assume that each factor may be set at any one from a total of ¢, Isi=<n
values. Each value assignable to a factor is known as a level. |F| refers to the

number of levels for factor F.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Factor combinations

A set of values, one for each factor, 1s known as a factor combination.

For example, suppose that program P has two input variables X and Y. Let us say
that during an execution of P, X and Y may each assume a value from the set

{a, b, c} and {d, e, f}, respectively.

Thus, we have 2 factors and 3 levels for each factor. This leads to a total of 32=9
factor combinations, namely (a, d), (a, €), (a, f), (b, d), (b, €), (b, 1), (c, d), (c, e),
and (c, f).

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Factor combinations: Too large?

In general, for k factors with each factor assuming a value from a set of n values, the

total number of factor combinations is n*.

Suppose now that each factor combination yields one test case. For many
programs, the number of tests generated for exhaustive testing could be

exorbitantly large.

For example, 1f a program has 15 factors with 4 levels each, the total number of

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

tests is 41° ~10°. Executing a billion tests might be impractical for many software

applications.
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Example: Pizza Delivery Service (PDS) [1]

A PDS takes orders online, checks for their validity, and schedules Pizza for delivery.

A customer is required to specify the following four items as part of the online
order: Pizza size, Toppings list, Delivery address and a home phone number. Let

us denote these four factors by S, T, A, and P, respectively.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Pizza Delivery Service (PDS): Specs

Suppose now that there are three varieties for size: Large, Medium, and Small.

There 1s a list of 6 toppings from which to select. In addition, the customer can

customize the toppings.

The delivery address consists of customer name, one line of address, city, and the

zip code. The phone number is a numeric string possibly containing the dash
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(" "--") separator.
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PDS: Input space model

Factor Levels
Size Large Medium _ Small The total number of factor
Toppings | Custom Preset combinations is 24+23=24.
Address Valid Invalid
Phone Valid Invalid

Suppose we consider 6+1=7 levels for Toppings. Number of combinations=

244+5x23+423+45x22=84.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Different types of values for Address and Phone number will further increase the

combinations
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Example: Testing a GUI

The Graphical User Interface of application T consists of three menus labeled File,

Edit, and Format.

Factor Levels
File New Open Save Close
Edit Cut Copy  Paste Select

Typeset Lalex BibTex PlainTeX Makelndex

We have three factors in T. Each of these three factors can be set to any of four

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

levels. Thus, we have a total 43=64 factor combinations.
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Example: The UNIX sort utility

The sort utility has several options and makes an interesting example for the

identification of factors and levels. The command line for sort 1s given below.

sort [-cmu] [-ooutput] [-Tdirectory] [-y [ kmem]] [-zrecsz] [-dfiMnr] [-b] [ tchar] [-
kkeydef] [+pos][-pos2]] [file...]

We have identified a total of 20 factors for the sort command. The levels listed in
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Table 11.1 of the book lead to a total of approximately 1.9x10° combinations.
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Example: Compatibility testing

There 1s often a need to test a web application on different platforms to ensure that
any claim such as “*Application X can be used under Windows and Mac OS X" are

valid.

Here we consider a combination of hardware, operating system, and a browser as a

platform. Let X denote a Web application to be tested for compatibility.

Given that we want X to work on a variety of hardware, OS, and browser

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

combinations, it is easy to obtain three factors, i.e. hardware, OS, and browser.
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Compatibility testing: Factor levels

Hardware

Operating System

Browser

Dell Dimension Series

Apple G4

Apple G5

Windows Server 2003-
Web Edition

Windows Server 2003-
64-bit Enterprise Edition

Windows XP Home Edition

OS 10.2

OS 10.3

Internet Explorer 6.0

Internet Explorer 5.5

Netscape 7.3

Safari 1.2.4

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Enhanced Mosaic

Foundations of Software Testing 2E
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Compatibility testing: Combinations

There are 75 factor combinations. However, some of these combinations are infeasible.

For example, Mac OS10.2 1s an OS for the Apple computers and not for the Dell
Dimension series PCs. Similarly, the Safari browser 1s used on Apple computers and not

on the PC 1n the Dell Series.

While various editions of the Windows OS can be used on an Apple computer using an

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

OS bridge such as the Virtual PC, we assume that this is not the case for testing

application X.
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Compatibility testing: Reduced combinations

The discussion above leads to a total of 40 infeasible factor combinations corresponding
to the hardware-OS combination and the hardware-browser combination. Thus, in all

we are left with 35 platforms on which to test X.

Note that there is a large number of hardware configurations under the Dell Dimension
Series. These configurations are obtained by selecting from a variety of processor types,

e.g. Pentium versus Athelon, processor speeds, memory sizes, and several others.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Compatibility testing: Reduced combinations-2

While testing against all configurations will lead to more thorough testing of application

X, 1t will also increase the number of factor combinations, and hence the time to test.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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6.2. Combinatorial test design process

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Combinatorial test design process

factors and Test set

Model the levels . .
, combinatorial | Generate
input space — —

object test set
— Generate
combinatorial

. | design : Test
Model the | | configurations
: P |
testenvironment | factors and I_ Gengrate t‘est
levels configuration
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Modeling of input space or the environment is not exclusive and one might apply either

one or both depending on the application under test.
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Combinatorial test design process: steps

Step 1: Model the input space and/or the configuration space. The model is expressed in

terms of factors and their respective levels.

Step 2: The model is input to a combinatorial design procedure to generate a
combinatorial object which 1s simply an array of factors and levels. Such an object is also

known as a factor covering design.

Step 3: The combinatorial object generated is used to design a test set or a test

configuration as the requirement might be.
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Steps 2 and 3 can be automated.
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Combinatorial test design process: test inputs

Each combination obtained from the levels listed in Table 6.1 can be used to generate

many test inputs.

For example, consider the combination in which all factors are set to *"Unused" except
the -0 option which is set to **Valid File" and the file option that is set to *'Exists.” Two

sample test cases are:

t,: sort -o afile bfile

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

t,: sort -o cfile dfile

Is one of the above tests sufficient?
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Combinatorial test design process: summary

Combination of factor levels 1s used to generate one or more test cases. For each test
case, the sequence in which inputs are to be applied to the program under test must be

determined by the tester.

Further, the factor combinations do not indicate in any way the sequence in which the
generated tests are to be applied to the program under test. This sequence too must be

determined by the tester.

The sequencing of tests generated by most test generation techniques must be determined
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by the tester and is not a unique characteristic of test generated in combinatorial testing.
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6.3. Fault model

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Fault model

Faults aimed at by the combinatorial design techniques are known as interaction faults.

We say that an interaction fault 1s triggered when a certain combination of t=1 input

values causes the program containing the fault to enter an invalid state.

Of course, this invalid state must propagate to a point in the program execution where it

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

1s observable and hence is said to reveal the fault.
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t-way interaction faults

Faults triggered by some value of an input variable, i.e. t=1, regardless of the values of

other mput variables, are known as simple faults.
For t=2, the faults are known as pairwise interaction faults.

In general, for any arbitrary value of t, the faults are known as t--way interaction faults.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Pairwise interaction fault: Example

1 begin
2 int X, Y, Z;
3 input (X, y, z); -
4 if(X==z1 and Yy==y2) g
5 output (f(x, y, z)); ;f
6 else if(X==z2 and Yy==y;) ‘:g
7 output (g(x, ));
8 else %
9 output (f(x, y, z)+g(x, y)) < This statement is not protected correctly. =<
10 end §
Correct output: f(x, y, z2)-g(X, y) when X=x1 and Y=yl. %

This is a pairwise interaction fault due to the interaction between factors

Xand.
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3-way interaction fault: Example

begin
int X, Y, Z, pP;
input (X, vy, z);
p=(x+y)*z; <« This statement must be p=(x—y)*z
if(p=0)
output (f(x, y, z));
else

output (g(x, y));

end

© OND g AW N =

This fault is triggered by all inputs such that x+y=x-y and z = 0. However,
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the fault is revealed only by the following two of the eight possible input

combinations: x=-1, y=1, z=1 and x=-1, y=-1, z=1.
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Fault vectors

Given a set of k factors f1, £2,.., fk, each at q1, 1= 1 < k levels, a vector V of factor
levels 1s (11, 12,.., 1k), where 11, 1 =1 < k is a specific level for the corresponding

factor. V 1s also known as a run.

Arun V is a fault vector for program P if the execution of P against a test case
derived from V triggers a fault in P. V is considered as a t-fault vector if any t = k

elements in V are needed to trigger a fault in P. Note that a t-way fault vector for P
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triggers a t-way fault in P.
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Fault vectors: Example

begin
int X, Y, Z, p;

input (X, vy, z);
p=(x+Yy)*z; <« This statement must be p=(x—y)*z
if(p=0)

output (f(x, y, z));
else

output (g(x, y));

4 The input domain consists of three factors x, y, and z each
en

© ON®D g HW N =

having two levels. There 1s a total of eight runs. For

example, (1,1, 1) and (-1, -1, 0) are two runs.
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Of these eight runs, (-1, 1, 1) and (-1, -1, 1) are three fault vectors that trigger the 3-way
fault. (x1, y1, *) 1s a 2-way fault vector given that the values x1 and y1 trigger the two-

way falﬂt. Contents
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Goal reviewed

The goal of the test generation techniques described in this chapter is to generate a
sufficient number of runs such that tests generated from these runs reveal all t-way

faults in the program under test.
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Goal reviewed

The number of such runs increases with the value of t. In many situations, t is set to 2

and hence the tests generated are expected to reveal pairwise interaction faults.

Of course, while generating t-way runs, one automatically generates some t+1, t+2, .., t
+k-1, and k-way runs also. Hence, there is always a chance that runs generated with t=2

reveal some higher level interaction faults.
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6.4. Latin squares
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Latin Squares

Let S be a finite set of n symbols. A Latin square of order n 1s an n x n matrix such
that no symbol appears more than once in a row and column. The term ""Latin
square" arises from the fact that the early versions used letters from the Latin

alphabet A, B, C, etc. in a square arrangement.
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A B B A S={A, B}. Latin squares of order 2.

B A A B

1 2 3 2 3 1 2 1 3 s={1,2, 3} Latin
2 3 1 1 2 3 3 2 1 squares of order 3.
3 1 2 3 1 2 1 3 2
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Larger Latin Squares

Larger Latin squares of order n can be constructed by creating a row of n distinct

symbols. Additional rows can be created by permuting the first row.

For example, here is a Latin square M of order 4

constructed by cyclically rotating the first row and

- O MN
N = B W
Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

A ON =
WN =B

placing successive rotations in subsequent rows.
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Modulo arithmetic and Latin Squares

A Latin square of order n>2 can also be constructed easily by doing modulo
arithmetic. For example, the Latin square M of order 4 given below is constructed

such that M(i, j)=i+ (mod 4), 1= (i, j) < 4.

A Latin square based on integers 0, 1... n is said to

be in standard form if the elements in the top row

A ON =

- Ol WIN| —

N = OIWN

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

and the leftmost column are arranged in order.

WQIN =IO W
VN =D
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6.5. Mutually orthogonal Latin squares
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Mutually Orthogonal Latin Squares (MOLS)

Let M1 and M2 be two Latin squares, each of order n. Let M 1(1, j) and M2(1, j)

denote, respectively, the elements in the ith row and jth column of M1 and M2.

We now create an n x n matrix M from M1 and M2 such that the L(i, j) 1s M1(1,

1)M2(1, ), 1.e. we simply juxtapose the corresponding elements of M1 and M2.

If each element of M 1is unique, 1.e. it appears exactly once in M, then M1 and M2 are

said to be mutually orthogonal Latin squares of order n.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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MOLS: Example

There are no MOLS of order 2. MOLS of order 3 follow.

1 2 3 2 3 1 1:;

M= 2 3 1 My=1 2 3 v
3 1 2 3 1 2 £

12 23 31 ot dine el , 2
L—21 32 13 Juxtaposing the corresponding elements gives us L. o
33 11 22 Its elements are unique and hence M1 and M2 are g
MOLS. .
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MOLS: How many of a given order?

MOLS(n) 1s the set of MOLS of order n. When n is prime, or a power of prime,
MOLS(n) contains n-1 mutually orthogonal Latin squares. Such a set of MOLS i1s a

complete set.

MOLS do not exist for n=2 and n=6 but they do exist for all other values of n>2.

Numbers 2 and 6 are known as Fulerian numbers after the famous mathematician

Leonhard Euler (1707-1783). The number of MOLS of order n 1s denoted by N(n).
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When n 1s prime or a power of prime, N(n)=n-1.

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




MOLS: Construction [1]

Example: We begin by constructing a Latin square of order 5 given the symbol set

S={1,2,3,4,5!.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

S

I
AN =
IR
N = 0w
W= ok
AN = o0

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




MOLS: Construction [2]

Next, we obtain M2 by rotating rows 2 through 5 of M1 by two positions to the left.

S

I
AN OW =
aw=5a0N
- BN OW
N O W= A
W= AN O

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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MOLS: Construction [3]

M3 and M4 are obtained similarly but by rotating the first row of M1 by 3 and 4

positions, respectively.

1 2 3 4 5 1 2 3 4 5
4 5 1 2 3 5 1 2 3 4
My=2 3 4 5 1 Mi=— 4 5 1 2 3
5 1 2 3 4 3 4 5 1 2
3 4 5 1 2 2 3 4 5 1

Thus, we get MOLS(5)={M1, M2, M3, M4}. It is easy to check that indeed the elements
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of MOLS(5) are mutually orthogonal by superimposing them pairwise.
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MOLS: Construction, limitation

The method illustrated in the previous example is guaranteed to work only when
constructing MOLS(n) for n that 1s prime or a power of prime. For other values of n, the

maximum size of MOLS(n) 1s n-1.

There 1s no general method available to construct the largest possible MOLS(n) for n
that 1s not a prime or a power of prime. The CRC Handbook of Combinatorial Designs

gives a large table of MOLS.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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6.6. Pairwise designs: Binary factors

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Pairwise designs

We will now look at a simple technique to generate a subset of factor combinations from
the complete set. Each combination selected generates at least one test input or test

configuration for the program under test.

Only 2-valued, or binary, factors are considered. Each factor can be at one of two levels.

This assumption will be relaxed later.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Pairwise designs: Example

Suppose that a program to be tested requires 3 inputs, one corresponding to each input

variable. Each variable can take only one of two distinct values.

Considering each input variable as a factor, the total number of factor combinations is 2.
Let X, Y, and Z denote the three input variables and {X1, X2}, {Y1, Y2}, {Z1, Z2} their

respective sets of values. All possible combinations of these three factors follow.
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(X1, Y1, 21) (X1, Y1, 2)
(X1, Y2, 21) (Xq, Yo, Z0)
(X2, Y1.21) (Xa, Y1, Z3)
(Xa, Yo, 71) (X2, Y2, Z)
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Pairwise designs: Reducing the combinations

Now suppose we want to generate tests such that each pair appears in at least one test.
There are 12 such pairs: (X1, Y1), (X1,Y2), (X1,Z1), (XI1,Z22), (X2,Y1), (X2,Y2),
(X2,71), (X2,72), (Y1,Z1), (Y1,Z2), (Y2,Z1), and (Y2, Z2). The following four

combinations cover all pairs:

(X1, Y1,2) (Xq, Yo, Zy)
(X2, Y1.21) (Xa, Yo, Z5)

The above design is also known as a pairwise design. It 1s a balanced design because

each value occurs exactly the same number of times. 7/here are several sets of four
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combinations that cover all 12 pairs.
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Example: ChemFun applet

A Java applet ChemFun allows its user to create an in-memory database of chemical
elements and search for an element. The applet has 5 inputs listed after the next slide

with their possible values.

We refer to the inputs as factors. For simplicity we assume that each input has exactly

two possible values.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example: ChemFun applet

Welcome to CS 177 /178 Programming with Multimedia Objects
Fall 2004
Chemical Element Fun

s ~
©
ha
Create Element X
Type element name here. 4;
o
N o —
E > ©
©
o
—
p—
Show Element -
Q
2
' - Type element symbol here. o
- ~ ©
£
4
[@)]
Show All Elements c
-
o
- &)
K R
Type element atomic number here. 0',_4"
o
o\l
Save To File ©
)
Type properties here. -g.’
N —
e >
(e
@]
. O
Exit
D G —tt—i—ti———) -« >
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Example: ChemFun applet: Factor identification

Factor Name Levels Comments ;
1 Operation {Create, Show} Two buttons S
2 Name {Empty, Non-empty} Data field, string expected _:
3 Symbol {Empty, Non-empty} Data field, string expected g
4 Atomic number  {Invalid, Valid} Data field, data typed > 0 ?’
5 Properties {Empty, Non-empty} Data field, string expected g

©
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ChemFun applet: Input/Output

Input: n=5 factors

Output: A set of factor combinations such that all pairs of input

values are covered.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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ChemFun applet: Step 1

Compute the smallest integer k such that n< [S,, ||

S,..1: Set of all binary strings of length 2k-1, k>0.
2k—1
Sok1™ ( k )

For k=3 we have S;= 10 and for k=2, S;= 3. Hence the desired integer k=3.

(2) = !(n_"’i) %

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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ChemFun applet: Step 2

Select any subset of n strings from S,, ;. We have, k=3 and we have the following

strings in the set S..

We select first five of the 10

strings in Ss.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

OhwWN =
O = = 00—
- O = = 0O|N
g )
O = 0O = =|ha
- 00 O =’

SO0 NO A WN =

-~ 240 == 0==00=
O—==0==0==0|N
OCOO0 =0 = = =2 4w
- 0O = 0= 0 =0 = =i
—_ = m A O = 000 =W,
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ChemFun applet: Step 3

Append 0's to the end of each selected string. This will increase the size of each

string from 2k-1 to 2Kk.

bW =
O = = 0 O|=
- 0O = = 0N
O )
nhwWN =

O = = 0 O|=
- 0O = = 0o|Nn
S X
O = O = =i
- 000 =n
oo oooom

O = O — —| N
- O O O = O

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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ChemFun applet: Step 4

Each combination 1s of the kind (X, X,,..., X, ), where the value of each variable is

selected depending on whether the bit in column i, Isi1<n,isa0ora 1.

A wWN =
O = =0 Ol=
- O = = 0OlNn
- = oW
O = O = =i
- 000 =’
o0 o0ooo®

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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ChemFun applet: Step 4 (contd.)

The following factor combinations by replacing the Os and 1s in each column by the

corresponding values of each factor.

1 2 3 4 5 6 zg?
2|0 1 1 1 0 O g
3|1 1 1 0 0 O k5
41 0 1 1 0 0 <
5|0 1 1 0 1 0 £

1 2 3 4 .. 5 . 6

1 | Create Create Show Show “ Show " Create
2 | Empty Non-empty Non-empty Non-empty Empty Empty
3 | Non-empty Non-empty Non-empty Empty Empty Empty
4 | Valid Invalid Valid Valid Invalid Invalid
5 | Empty Non-empty Non-Empty Empty Non-empty Empty

Foundations of Software Testing 2E
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ChemFun applet: tests

1 2 3 4 5 6 :

1 || Create Create Show Show Show Create =
2 || Empty Non-empty Non-empty Non-empty Empty Empty <
3 [|Non-empty| Non-empty Non-empty Empty Empty Empty §
4 || Valid Invalid Valid Valid Invalid Invalid £
5 || Empty Non-empty Non-Empty Empty Non-empty Empty =
t; : < Button = Create, Name = “”, Symbol = ‘C”, s

Atomic number = 6, Properties = “” > °
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ChemFun applet: All tests

T ={ t: < Button= Create,Name = “’, Symbol = ‘C”,
Atomic number = 6, Properties = “* >

t - < Button = Create, Name = “Carbon”, Symbol = ‘C”,
Atomic number = —6, Properties = “Non-metal” > Recall that the total

t3: < Button = Show,Name = “Hydrogen”, Symbol = ‘Cnumber of

Atomic number = 1, Properties = “Non-metal” > L .
Pe combinations 1s 32.

t4 : < Button = Show,Name = “Carbon”, Symbol = ‘C”,

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Atomic number = 6, Properties = «* > Requiring only
ts : < Button = Show,Name = “”, Symbol = “”, pairwise coverage
Atomic number = —6, Properties = “Non-metal”
» FTOP > reduces the tests to
te : < Button = Create, Name = 7, Symbol = “”,
Atomic number = —6, Properties = “” > 6.
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6.7. Pairwise designs: Multi-valued factors

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Pairwise designs: Multi-valued factors

Next we will learn how to use MOLS to construct test configurations when:

The number of factors is two or more,
The number of levels for each factor is more than two,

 All factors have the same number of levels.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Multi-valued factors: Sample problem

DNA sequencing is a common activity amongst biologists and other researchers.
Several genomics facilities are available that allow a DNA sample to be submitted

for sequencing.

One such facility is offered by The Applied Genomics Technology Center (AGTC)
at the School of Medicine in Wayne State University.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

The submission of the sample itself is done using a software application available

from AGTC. We refer to this software as AGTCS.
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Sample problem (contd.)

AGTCS 1s supposed to work on a variety of platforms that differ in their hardware
and software configurations. Thus, the hardware platform and the operating system

are two factors to be considered while developing a test plan for AGTCS.

In addition, the user of AGTCS, referred to as PI, must either have a profile
already created with AGTCS or create a new one prior to submitting a sample.

AGTCS supports only a limited set of browsers.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

For simplicity we consider a total of four factors with their respective levels given

next.
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DNA sequencing: factors and levels

Factor Levels

F1". Hardware PC Mac

F2" Operating system | Windows 2000 ~ Windows XP MacOS9 Mac OS 10
F3". Browser Internet Explorer Nescape 4.x Firefox ~ Mozilla
F4" Pl New Existing

There are 64 combinations of the factors listed. As PCs and Macs run their

dedicated operating systems, the number of combinations reduces to 32.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

We want to test under enough configurations so that all possible pairs of factor levels

are covered.
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DNA sequencing: Approach to test design

We can now proceed to design test configurations in at least two ways. One way 1s to
treat the testing on PC and Mac as two distinct problems and design the test
configurations independently. Exercise 6.12 asks you to take this approach and

explore its advantages over the second approach used in this example.

The approach used in this example is to arrive at a common set of test configurations

that obey the constraint related to the operating systems.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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DNA sequencing: Test design algorithm

Input: n=4 factors. |F1’ |=2, [F2" |=4, |F3’ |=4, [F4’ |=2, where F1' , F2" , F3’, and F4’

denote, respectively, hardware, OS, browser, and PI.

Output: A set of factor combinations such that all pairwise combinations are covered.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test design algorithm: Step 1

Reliable the factors as F1, F2, F3, F4 such that |[F1|=|F2| = |[F3| = |F4|.

Doing so gives us F1=F2', F2=F3', F3=F1', F4=F4', b=k=4. Note that a different

assignment is also possible because |[F1|=|F4|and [F2|=|F3].

Let b=|F1|=4 and k=|F2|=4

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test design algorithm: Step 2

Block Row Fl F2 F3 F4 g
Prepare a table containing 4 columns 1 1 z
2 o
and b x k=16 rows divided into 4 3 5
4 5
blocks. Label the columns as F,, F,, 2 1 J
2 k=
. X
... F,. Each block contains k rows. 3 2
4 5
3 1 =
2 R
3 ©
4 S
4 1 &
> S
3
4
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Test design algorithm: Step 3 (contd.)

Block Row
1 1

Fy Fs Fy

[y

Fill column F1 with 1's in Block 1, 2's in
Block 2, and so on. Fill Block 1 of column

F2 with the sequence 1, 2,.., k in rows 1

through k (k=4).

w
A WON=-PEPON=PRPON—=PPO®N
A AP BROOWOWOMNMNDN N = = =y
A ON=2PAON=2APAON=2A~P,ON-—
Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test design algorithm: Step 4

Find MOLS of order 4. As 4 1s a power of prime, we can use the procedure

described earlier.

We choose the following set of MOLS of order 4.

1 2 3 4 1 2 3 4 1 2 3 4
2 1 4 3 3 4 1 2 4 3 2 1
Mi=q 4 1 Ma=y 5 5 Ms=1H 4 4 3
4 3 2 1 2 1 4 3 3 4 1 2

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test design algorithm: Step 5
From M1 From M2

N\

Block Row F, Fy Fs3 Fu
1 1 1 1 1 1 o
Fill the remaini lumns of the tabl > |2 2l :
11l the remaining two columns ot the table 3 y 3 3= 4 =
constructed earlier using columns of M1 for n L & 4 2 5
2 1 2| 1 2| 2 3
F, and M2 for F,,. 2 |2 2 1 4" g
3 2 3 4 3" S
4 |2 4 3 A 2
A boxed entry in each row indicates a pair 3 s 1% & :
2 3 2 4 1 =
that does not satisfy the operating system 3 3| 3 1] 2 A
, , 4 |3 4 2 & 5
constraint. An entry marked with an 4 1 4 1 4 4 =
. . L 2 |4 2 3 2 8

*
asterisk (*) indicates an invalid level. 5 |4 5 o 1
4 4 4 1 3"
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Test design algorithm: Step 6 [1]

Using the 16 entries in the table above, we can obtain 16 distinct test configurations
for AGTCS. However, we need to resolve two problems before we get to the design

of test configurations.

Problem 1: Factors F3 and F4 can only assume values 1 and 2 whereas the table above
contains other infeasible values for these two factors. These infeasible values are marked

with an asterisk.

Solution: One simple way to get rid of the infeasible values is to replace them by an

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

arbitrarily selected feasible value for the corresponding factor..
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Test design algorithm: Step 6 [ 2]

Problem 2: Some configurations do not satisfy the operating system constraint. Four
such configurations are highlighted in the design by enclosing the corresponding numbers

in rectangles. Here 1s an example:

) F,: Operating system=1(Win 2000) F3:
3 3 & Hardware=2 (Mac) is infeasible.
4

—r —r
—
—r
—
Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Here we are assume that one is not using
Virtual PC on the Mac.
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Test design algorithm: Step 6 [3]

Delete rows with conflicts?: Obviously we cannot delete these rows as that would leave

some pairs uncovered. Consider block 3.

3 1 3 1 3 3
2 3 2 4" 1
3 3| 3 1 2
o 3 4 2 4"

Removing Row~3 will leave the following five pairs uncovered: (F,=3, F,=3), (F,=3,

F4:2)9 (F2:39 F3:1)9 (F2:3a F4:2)9 and (F3:19 F4:2)‘

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test design algorithm: Step 6 [4]

Proposed solution: We follow a two step procedure to remove the highlighted

configurations and retain complete pairwise coverage.
Step 1: Modify the four highlighted rows so they do not violate the constraint.

Step 2: Add new configurations that cover the pairs that are left uncovered when we

replace the highlighted rows.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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: Step 6 [5]
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Test design algorithm: Design configurations

We can easily construct 20 test configurations from the design obtained. This

1s 1n contrast to 32 configurations obtained using a brute force method.

Can we remove some rows from the design without

affecting pairwise coverage?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Shortcomings of using MOLS

A sufficient number of MOLS might not exist for the problem at hand.

While the MOLS approach assists with the generation of a balanced design in
that all interaction pairs are covered an equal number of times, the number of
test configurations is often larger than what can be achieved using other

methods.
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6.8. Orthogonal Arrays

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Orthogonal arrays

Examine this matrix and extract as many properties as you can:

Run | Fi Fy Fy
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

An orthogonal array, such as the one above, is an N x k matrix in which the entries

are from a finite set S of s symbols such that any N x t sub array contains each t-tuple

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

exactly the same number of times. Such an orthogonal array 1s denoted by OA(N, k,

s, t).
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Orthogonal arrays: Example

The following orthogonal array has 4 runs and has a strength of 2. It uses symbols
from the set {1, 2}. This array 1s denoted as OA(4, 3, 2, 2). Note that the value of
parameter k is 3 and hence we have labeled the columns as F1, F2, and F3 to indicate

the three factors.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Run | Fi Fy Fy
1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1
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Orthogonal arrays: Index

The index of an orthogonal array is denoted by A and is equal to N/s'. N is referred to

as the number of runs and t as the strength of the orthogonal array.

A\ =4/2=1 implying that each pair (t=2) appears

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Run | F; Fy Fy exactly once (A =1) in any 4 x 2 sub array. There is
1 1 1 1 a total of s'=22=4 pairs given as (1, 1), (1, 2), (2, 1),
g ; ? 2 and (2, 2). It 1s easy to verify that each of the four
4 2 2 1 pairs appears exactly once in each 4 x 2 sub array.
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Orthogonal arrays: Another example

What kind of an OA is this?

It has 9 runs and a strength of 2. Each of the

four factors can be at any one of 3 levels. This

array is denoted as OA(9, 4, 3, 2) and has an

@OD\IO’(J’IAO)I\)—'-:U
-
-
W WWMNNN = = =y
—
WN = WN = WN =y
b
N = W= WN WN = hy
o
SN WW=NNW =Ny
s
Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

index of 1.
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Orthogonal arrays: Alternate notations

k
Ly (s%) Orthogonal array of N runs where k factors take

on any value from a set of s symbols.

3 23
Arrays shown earlier are L4(27) and Lo(37)

L, denotes an orthogonal array of 9 runs. t, k, s are determined from the

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

context, 1.e. by examining the array itself.
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6.9. Mixed-level Orthogonal Arrays

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mixed level Orthogonal arrays

So far we have seen fixed level orthogonal arrays. This is because the
design of such arrays assumes that all factors assume values from the

same set of s values.

In many practical applications, one encounters more than one factor, each
taking on a different set of values. Mixed orthogonal arrays are useful in

designing test configurations for such applications.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mixed level Orthogonal arrays: Notation

ki ko kp
MA(N sy 557 ... sp", 1) Strength=t. Runs=N.

k1 factors at sl levels, k2 at s2 levels, and so on.

Total factors: 2P _ ki

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mixed level Orthogonal arrays: Index and balance

The formula used for computing the index A of an orthogonal array does not apply
to the mixed level orthogonal array as the count of values for each factor is a

variable.

The balance property of orthogonal arrays remains intact for mixed level
orthogonal arrays in that any N x t sub array contains each t-tuple corresponding to

the t columns, exactly the same number of times, which 1s A.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mixed level Orthogonal arrays: Example

Run | Iy F, Fy Fy Fs
MA(8,2%41,2) 1 1 1 1 1 T
2 |2 2 2 2 {1 i
This array can be used to design test 3 L 1 2 2 2 .
4 |2 2 1 1 2 3
configurations for an application that contains 4 5 1 2 1 2 8 ;
6 2 1 2 1 3
factors each at 2 levels and 1 factor at 4 levels. 5 ; o o 1 4 m
8 2 1 1 2 4 )
Can you identify some properties? 0
| . c
Balance: In any sub array of size 8 x 2, each possible pair occurs exactly the same number £
of times. In the two leftmost columns, each pair occurs exactly twice. In columns 1 and 3, 8

each pair also occurs exactly twice. In columns 1 and 5, each pair occurs exactly once.
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Mixed level Orthogonal arrays: Example

6 3 Run Fl F2 F3 F4 F5 Fs F7 Fg Fg

MA(16,2°,4%,2) 1 T 1 1 1 1 1 1 1 1

2 |2 2 1t 2 1 2 1 3 3

3 |1 2 2 2 2 1 3 1 3

This array can be used to generate 4 |2 1 2 1 2 2 3 3 1

5 |1 1 2 2 2 2 1 4 4

test configurations when there are 6 |2 2 2 1 2 1 1 2 2
7 (1t 2 1 1 1 2 3 4 2 >

six binary factors, labeled F, 8 |2 1 1 2 1 1 3 2 a4

9 |2 2 1 1 2 2 4 1 4

through F, and three factors each 011 1 1 2 2 1 4 13 =2
with four possible levels, labeled 1 ; ? ; 2 ? 1 f 2 ; i »

13 |2 2 2 2 1 1 4 4 A

F; through F,. 14 (1 1 2 1 1 2 4 2 3

15 |2 1 1 1t 2 1 2 4 3

6 [1 2 1 2 2 2 2 2 A

LOIILENILS
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Mixed level Orthogonal arrays: Test generation: Pizza
delivery

Factor Levels
Size Large Medium Small
Toppings | Custom Preset
Address Valid Invalid
Phone Valid Invalid

We have 3 binary factors and one factor at 3 levels. Hence we can use the

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

following array to generate test configurations:
MA(12,23,31,2)
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Test generation: Pizza delivery: Array

Run | Size Toppings Address Phone 45:
1 1 1 1 1 =
o 1 1 2 1 Check that all possible pairs of B
3 1 < 1 2 factor combinations are covered 2
4 1 2 2 2 E
5 o 1 1 2 in the design above. What kind of %
6 2 1 2 2 errors will likely be revealed g
7 2 2 1 1 3
8 5 o 2 1 when testing using these 12 ©
9 3 1 1 2 configurations? s
10 3 1 2 1 S
11 3 2 1 1
12 3 2 2 2
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Test generation: Pizza delivery: test configurations

Run | Size Toppings Address Phone
1 Large Custom Valid Valid
2 Large Custom Invalid Valid
3 Large Preset Valid Invalid
4 Large Preset Invalid Invalid
5 Medium Custom Valid Invalid
6 Medium Custom Invalid Invalid
7 Medium Preset Valid Valid
8 Medium Preset Invalid Valid
9 Small Custom Valid Invalid

10 Small Custom Invalid Valid
11 Small Preset Valid Valid
12 Small Preset Invalid Invalid
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6.9. Covering and mixed-level covering arrays

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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The “Balance” requirement

Observation [Dalal and Mallows, 1998]: The balance requirement is often

essential in statistical experiments, it is not always so in software testing.

For example, if a software application has been tested once for a given pair of
factor levels, there 1s generally no need for testing 1t again for the same pair, unless

the application is known to behave non-deterministically.

For deterministic applications, and when repeatability is not the focus, we can relax

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

the balance requirement and use covering arrays, or mixed level covering arrays for

combinatorial designs.
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Covering array

A covering array CA(N, k, s, t) 1s an N x k matrix in which entries are from a finite
set S of s symbols such that each N x t sub-array contains each possible t-tuple at

least A times.

N denotes the number of runs, k the number factors, s, the number of levels for

each factor, tthe strength, and A the index

While generating test cases or test configurations for a software application, we use

A=1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Covering array and orthogonal array

While an orthogonal array OA(N, k, s, t) covers each possible t-tuple A times in any N
X t sub array, a covering array CA(N, Kk, s, t) covers each possible t-tuple at least A

times in any N X t sub array.

Thus, covering arrays do not meet the balance requirement that is met by orthogonal
arrays. This difference leads to combinatorial designs that are often smaller in size than

orthogonal arrays.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Covering arrays are also referred to as unbalanced designs. We are interested in

minimal covering arrays.
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Covering array: Example

A balanced design of strength 2 for 5 binary factors, requires 8 runs and is denoted by

OA(8, 3, 2, 2). However, a covering design with the same parameters requires only 6

rumns.
0A(8,5,2,2)= CA(6,5,2,2)=
Run F1 F2 F3 F4 F5 Run Fl F2 F3 F4 F5
1 1 1 1 1 1 1 1 1 1

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

O ks WM

O~N® OA WN
N = NN = =N =
(CI VR DR S
NN =N = =
S~ O == NN
S~ N = NN =N
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Mixed level covering arrays

A mixed-level covering array is denoted as

MCA(N, sksk2 s 1)

P

and refers to an N x Q matrix of entries such that, Q= E Kk, and each N x t sub-
i=1

array contains at least one occurrence of each t-tuple corresponding to the t columns.

sl, s2,,... denote the number of levels of each the corresponding factor.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Mixed-level covering arrays are generally smaller than mixed-level orthogonal arrays

and more appropriate for use in software testing.
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Mixed level covering array: Example

MCA(6,2331,2) Run | Size Toppings Address Phone g
2 2 2 1 2 g

3 3 1 2 2 g

4 1 2 o) o g

6 3 2 1 1 ‘é

°

Comparing this with )74(12, 2231, 2) notice a reduction of 6 configurations.

Is the above array balanced?
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6.10. Arrays of strength >2

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Arrays of strength >2

Designs with strengths higher than 2 are sometimes needed to achieve higher

confidence 1n the correctness of software. Consider the following factors in a g
pacemaker. é
Parameter Levels £
Pacing mode AAl VVI DDD-R =
QT interval Normal Prolonged Shortened 0
Respiratory rate Normal Low High g
Blood temperature | Normal Low High g
Body activity Normal Low High B
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Pacemaker example

Due to the high reliability requirement of the pacemaker, we would like to test it to

ensure that there are no pairwise or 3-way interaction errors.

Thus, we need a suitable combinatorial object with strength 3. We could use an
orthogonal array OA(54, 5, 3, 3) that has 54 runs for 5 factors each at 3 levels and is
of strength 3. Thus, a total of 54 tests will be required to test for all 3-way

interactions of the 5 pacemaker parameters

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Could a design of strength 2 cover some triples

and higher order tuples?
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Generating mixed level covering arrays

We will now study a procedure due to Lei and Tai for the generation of mixed level

covering arrays. The procedure 1s known as [n-parameter Order (IPO) procedure.

Inputs: (a) n =2: Number of parameters (factors). (b) Number of values (levels) for

cach parameter.

Output: MCA

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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6.11. Generating covering arrays

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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IPO procedure

Consists of three steps:

Step 1: Main procedure.
Step 2: Horizontal growth.

Step 3: Vertical growth.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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IPO procedure: Example

Consider a program with three factors A, B, and C. A assumes values from the set
{al, a2, a3}, B from the set {bl, b2}, and C from the set {c1, ¢2, c3}. We want to

generate a mixed level covering array for these three factors..

We begin by applying the Main procedure which is the first step in the
generation of an MCA using the IPO procedure.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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IPO procedure: main procedure

Main: Step 1: Construct all runs that consist of pairs of values of the first two

parameters. We obtain the following set.

T = {(ala bl):\ (ala b2)~ (0/2, bl)a (ag, b'2)~ (a3v bl)v (a'3v b2)}

Let us denote the elements of 7 as t1, t2,...t6.

The entire IPO procedure would terminate at this point 1f the number of parameters

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

n=2. In our case n=3 hence we continue with horizontal growth.
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IPO procedure: Horizontal growth

HG: Step 1: Compute the set of all pairs AP between parameters A and C, and

parameters B and C. This leads us to the following set of fifteen pairs.

(India) Pvt. Ltd

AP={(a1, Cl)a (ala 62)3 (ala C3)a (a’Za Cl)v (a’Qa CQ)? (an 63)3 (0/3, Cl)v (a?n CQ)? (a3? 03)

(bl, Cl), (bla CQ)a (bla CS): (b2~ Cl)a (b2~ 02)3 (b?1 03)}

HG: Step 2: AP is the set of pairs yet to be covered. Let T' denote the set of runs

Copyright © 2013 Dol

obtained by extending the runs in T. At this point T" is empty as we have not

extended any run in T.
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Horizontal growth: Extend

HG: Steps 3, 4: Expand tl, t2, t3 by appending cl, c2, ¢3. This gives us:

t1’=(al, bl, cl), t2" =(al, b2, ¢2), and t3" =(a2, b1, ¢3)
Update T" which now becomes {al, bl, cl), (al, b2, ¢2), (a2, bl, ¢3)}

Update pairs remaining to be covered AP={(al, c3), (a2, cl), (a2, c2), (a3, cl), (a3,
c2), (a3, c3), (bl, c2), (b2, cl), (b2, c3)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Update T which becomes {(al, bl, c1), (al, b2, c2), (a2, bl, c3)}
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Horizontal growth: Optimal extension

HG. Step 5: We have not extended t4, t5, t6 as C does not have enough elements. We

find the best way to extend these in the next step.
HG: Step 6: Expand t4, t5, t6 by suitably selected values of C.
If we extend t4=(a2, b2) by c1 then we cover two of the uncovered pairs from AP,

namely, (a2, cl) and (b2, cl). If we extend it by c2 then we cover one pair from AP.

If we extend 1t by c3 then we cover one pairs in AP. Thus, we choose to extend t4 by

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

cl.
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Horizontal growth: Update and extend remaining

T ={(al, bl, cl), (al, b2, ¢2), (a2, bl, c3), (a2, b2, c1)}

AP={(al, c3), (a2, c2), (a3, cl), (a3, c2), (a3, c3), (b1, c2), (b2, c3)}

HG: Step 6: Similarly we extend t5 and t6 by the best possible values of parameter
C. This leads to:

t5" =(a3, bl, ¢3) and t6’ =(a3, b2, cl)

T ={(al, bl, cl), (al, b2, c2), (a2, bl, c3), (a2, b2, cl), (a3, bl, ¢3), (a3, b2, c1)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

AP={(al, c3), (a2, c2), (a3, c2), (bl, c2), (b2, c3)}
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Horizontal growth: Done

We have completed the horizontal growth step. However, we have five pairs

remaining to be covered. These are:

AP= {(al, c3), (a2, c2), (a3, c2), (bl, c2), (b2, c3)}

Also, we have generated six complete runs namely:

T ={(al, bl, cl), (al, b2, c2), (a2, bl, c3), (a2, b2, cl), (a3, bl, c3), (a3, b2,
cl)}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

We now move to the vertical growth step of the main IPO procedure to cover the

remaining pairs.
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Vertical growth

For each missing pair p from AP, we will add a new run to T  such that p is

covered. Let us begin with the pair p= (al, c3).

The run t= (al, *, ¢3) covers pair p. Note that the value of parameter Y does not

matter and hence is indicated as a * which denotes a don’ t care value.

Next , consider p=(a2, ¢2). This is covered by the run (a2, *, c2)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Next , consider p=(a3, ¢2). This is covered by the run (a3, *, c2)
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Vertical growth (contd.)

Next , consider p=(b2, ¢3). We already have (al, *, ¢3) and hence we can modify it

to get the run (al, b2, ¢3). Thus, p is covered without any new run added.

Finally, consider p=(b1, c2). We already have (a3, *, c2) and hence we can modify it

to get the run (a3, b1, ¢2). Thus, p is covered without any new run added.

We replace the don’ t care entries by an arbitrary value of the corresponding factor

and get:

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

T={(al, bl, cl), (al, b2, c2), (al, bl, c3), (a2, bl, c2), (a2, b2, cl), (a2, b2, ¢3), (a3,
bl, c3), (a3, b2, cl), (a3, bl, c2)}
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Final covering array

Run | F1(X) | F2(Y) F3(2)

MCA(9, 21 32, 2)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Practicalities

That completes our presentation of an algorithm to generate covering arrays. A

detailed analysis of the algorithm has been given by Lei and Tai.

Lei and Tai offer several other algorithms for horizontal and vertical growth that are

faster than the algorithm mentioned here.

Lei and Tai found that the PO algorithm performs almost as well as AETG 1n the
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size of the generated arrays.
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Tools

AETG from Telcordia is a commercial tool to generate covering arrays. It allows
users to specify constraints across parameters. For example, parameter A might not

assume a value a2 when parameter B assumes value b3.

AETG is covered by US patent 5,542,043.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Publicly available tool: ACTS from Jeff Lie’s group a UT Arlington.
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Summary

Combinatorial design techniques assist with the design of test configurations and
test cases. By requiring only pair-wise coverage and relaxing the “balance
requirement, combinatorial designs offer a significant reduction in the number of

test configurations/test cases.

MOLS, Orthogonal arrays, covering arrays, and mixed-level covering arrays are
used as combinatorial objects to generate test configurations/test cases. For

software testing, most useful amongst these are mixed level covering arrays.

Handbooks offer a number covering and mixed level covering arrays. We

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

introduced one algorithm for generating covering arrays. This continues to be a

research topic of considerable interest.
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Chapter 7

Test Adequacy Measurement and Enhancement:
Control and Data flow
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Learning Objectives

=  What is test adequacy? What is test enhancement? When to measure test

adequacy and how to use it to enhance tests?

= Control flow based test adequacy; statement, decision, condition, multiple

condition, LCSAJ, and MC/DC coverage

= Data flow coverage

=  Strengths and limitations of code coverage based measurement of test

adequacy

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

» The “subsumes” relation amongst coverage criteria

= Tools for the measurement of code coverage
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/.1 Test adequacy: basics

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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What is adequacy?

= Consider a program P written to meet a set R of functional requirements. We
notate sucha P and R as (P,R). Let R contain n requirements labeled R1,

R2,...,Rn.

=  Suppose now that a set T containing k tests has been constructed to test P to
determine whether or not it meets all the requirements in R . Also, P has been

executed against each test in T and has produced correct behavior.

=  Wenow ask: [s T good enough? This question can be stated differently as: Has

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

P been tested thoroughly?, or as: Is T adequate?
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Measurement of adequacy

= In the context of software testing, the terms " “thorough," "good enough," and

““adequate," used in the questions above, have the same meaning.

* Adequacy i1s measured for a given test set designed to test P to determine

whether or not P meets its requirements.

= This measurement 1s done against a given criterion C . A test set is considered
adequate with respect to criterion C when it satisfies C. The determination of

whether or not a test set T for program P satisfies criterion C depends on the
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criterion itself and is explained later.
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Example

Program sumProduct must meet the following requirements:

R1 Input two integers, say x and y , from the standard input device.

R2.1  Find and print to the standard output device the sum of x and y if x<y.

R2.2  Find and print to the standard output device the product of x and y if x=
y.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example (contd.)

Suppose now that the test adequacy criterion C 1s specified as:

C:Atest T for program ( P, R) is considered adequate if for each requirement r
in R there is at least one test case in T that tests the correctness of P with

respectto r.

Obviously, T={t: <x=2, y=3> 1s inadequate with respect to C for program

sumProduct. The lone test case t in T tests R1 and R2.1, but not R2.2.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Black-box and white-box criteria

For each adequacy criterion C, we derive a finite set known as the coverage domain

and denoted as Ce .

A criterion C 1is a white-box test adequacy criterion if the corresponding coverage

domain Ce depends solely on program P under test.

A criterion C is a black-box test adequacy criterion if the corresponding

coverage domain Ce depends solely on requirements R for the program P
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under test.
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Coverage

We want to measure the adequacy of T. Given that Ce has n= 0 elements, we say
that T covers Ce if for each element ¢' in Ce there is at least one test case in T

that tests e'. The notion of “tests” is explained later through examples.

T is considered adequate with respect to C 1f it covers all elements in the coverage
domain. T is considered inadequate with respect to C if it covers k elements of

Ce where k<n.

The fraction k/n is a measure of the extent to which T 1s adequate with respect

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

to C . This fraction 1s also known as the coverage of T with respectto C, P, and

R.
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Example

Let us again consider the following criterion: “A test T for program (P, R) is
considered adequate if for each requirement r in R there is at least one test case in

T that tests the correctness of P with respect to r.”

In this case the finite set of elements Ce={RI1, R2.1, R2.2}. T covers Rl and
R2.1 butnot R2.2.Hence T is not adequate with respect to C . The coverage of
T with respectto C, P,and R 1s 0.66.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Another Example

Consider the following criterion: “Atest T for program ( P, R ) is considered

adequate if each path in P is traversed at least once.”

Assume that P has exactly two paths, one corresponding to condition x<y and the
other to x=y. We refer to these as pl and p2, respectively. For the given adequacy

criterion C we obtain the coverage domain Ce to be the set { pl, p2}.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Another Example (contd.)

To measure the adequacy of T of sumProduct against C, we execute P against

each testcasein T .

As T contains only one test for which x<y, only the path pl is executed. Thus,
the coverage of T with respectto C,P,and R 1s 0.5 and hence T is not adequate

with respect to C. We can also say that p1 is tested and p2 1s not tested.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Code-based coverage domain

In the previous example we assumed that P contains exactly two paths. This
assumption is based on a knowledge of the requirements. However, when the
coverage domain must contain elements from the code, these elements must be

derived by analyzing the code and not only by an examination of its requirements.

Errors in the program and incomplete or incorrect requirements might cause the

program, and hence the coverage domain, to be different from the expected.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example

sumProductl

begin This program 1s obviously incorrect as per the
int X, Y,
input (x, y); requirements of sumProduct.
SUM=X+Y;
output (sum);
end

OO hs ON -

There is only one path denoted as p1. This path traverses all the statements. Using

the path-based coverage criterion C, we get coverage domain Ce={ pl}. T={t:
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<x=2, y=3> }1is adequate w.r.t. C but does not reveal the error.

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Example (contd.)

sumProduct2 E
1 begin This program is correct as per the requirements of f‘;
2 int X, Y; 2
3 input (x, y); sumProduct. It has two paths denoted by pl and p2. 5
4 if(x<y) 5
5 then z
6 output(x+y); 8
7 else Ce={pl, p2}. T={t: <x=2, y=3>} 1s inadequate w.r.t. "
g doutp ut(x’y); the path-based coverage criterion C. o

en o

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Lesson

An adequate test set might not reveal even the most obvious error in a
program. This does not diminish in any way the need for the measurement

of test adequacy as increasing coverage might reveal an error!.
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Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




/.1.3 Test enhancement
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Test Enhancement

While a test set adequate with respect to some criterion does not guarantee an error-
free program, an inadequate test set 1s a cause for worry. Inadequacy with respect to

any criterion often implies test deficiency.

Identification of this deficiency helps in the enhancement of the inadequate test set.
Enhancement 1n turn is also likely to test the program in ways it has not been tested
before such as testing untested portion, or testing the features in a sequence different

from the one used previously. Testing the program differently than before raises the
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possibility of discovering any uncovered errors.
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Test Enhancement: Example

For sumProduct2, to make T adequate with respect to the path coverage criterion we
need to add a test that covers p2. One test that does so is {<x=3>, y=1>}. Adding

this test to T and denoting the expanded test set by T' we get:

T'={tl: <x=3, y=4>, 12: <x=3, y=1>}

Executing sum-product-2 against the two tests in T causes paths pl and p2 are

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

traversed. Thus, T' is adequate with respect to the path coverage criterion.
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Test Enhancement: Procedure

Requirements

Construct a
non-empty
testsetT

Execute P
against elements

Foundations of Software Testing 2E

of T

Yes
Remove

Any fallures
error from P

observed ?

Test enhancement
cycle
completed

All tests
executed?

Enhance T by

adding one or
more test cases

Requirements

Author: Aditya P. Mathur
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Test Enhancement: Example

1 begin 45:
2 int X, y; Consider a program intended to compute xY &
3 int product, count; : : 3
4 input (x, y): given integers x and y. For y<0 the program S
S if(y=0) { skips the computation and outputs a suitable 5
6 product=1; count=y; £
7 while(count>0) { error message. 2
8 product=product*x; g
9 count=count-1; =
10 } A
11 output(product); 5
12} 3
13 else °
14 output ( “Input does not match its specification.”);

15 end
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Test Enhancement: Example (contd.)

Suppose that test T is considered adequate if it tests the exponentiation
program for at least one zero and one non-zero value of each of the two

inputs x and y.

The coverage domain for C can be determined using C alone and without any
inspection of the program For C we get Ce={x=0, y=0}, x=0, y= 0. Again, one
can derive an adequate test set for the program by an examination of Ce. One

such test set is
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T={tl: <x=0, y=1>, t2: <x=1, y=0>}.
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Test Enhancement: Example: Path coverage

Criterion C of the previous example is a black-box coverage criterion as it does not

require an examination of the program under test for the measurement of adequacy

Let us now consider the path coverage criterion defined in in an earlier example.
An examination of the exponentiation program reveals that it has an

indeterminate number of paths due to the while loop. The number of paths
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depends on the value of y and hence that of count.
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Example: Path coverage (contd.)

Given that y is any non-negative integer, the number of paths can be arbitrarily
large. This simple analysis of paths in exponentiation reveals that for the path

coverage criterion we cannot determine the coverage domain.

The usual approach in such cases 1s to simplify C and reformulate it as follows: 4
test T'is considered adequate if it tests all paths. In case the program contains a

loop, then it is adequate to traverse the loop body zero times and once.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example: Path coverage (contd.)

product=1;
count=count-1;
output(product)
output("Input does..")

Foundations of Software Testing 2E

The modified path coverage criterion leads to
C‘={pl, p2, p3}. The elements of C_ are
enumerated below with respect to flow graph for the

exponentiation program.

nmi[l—=2—-3—-4—-5-=7-=19]

mp[l—=2—-3—-4—=5—-6—6—5—9

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

pi[l = 2—=3—=8—=9]
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Example: Path coverage (contd.)

count=count-1;

nmi[l—=2—-3—-4—-5-=7-=19]

/ p[l—=2=-3—-4=5—=6—6—5—=9]
CGutputCinput does > 8 pi[l=2—3—=8—9]

)

@ 2 We measure the adequacy of T with respect to C'. .

3 As T does not contain any test with y<0, p3 ;i

. remains uncovered. Thus, the coverage of T with g

respect to C' 1s 2/3=0.66. ¢

> <

product=1; 6 §
0

§
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Example: Path coverage (contd.)

—

@ , Any test case with y<0 will cause p3 to be traversed. Let
us use t:<x=5, y=-1>. Testt covers path p3 and P behaves
correctly. We add t to T. The loop in the enhancement
terminates as we have covered all feasible elements of C. .

¢ The enhanced test set is:

product=1;
count=count-1;

output(product)
output("Input does..") 8

:

6 T={<x=0, y=1>, <x=1, y=0>, <x=5, y=-1>}

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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/.1.4 Infeasibility and test adequacy
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Infeasibility

An element of the coverage domain 1s infeasible if it cannot be covered by any test

in the input domain of the program under test.

There does not exist an algorithm that would analyze a given program and
determine if a given element in the coverage domain is infeasible or not. Thus, it is
usually the tester who determines whether or not an element of the coverage

domain is infeasible.
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Demonstrating feasibility

Feasibility can be demonstrated by executing the program under test against a test

case and showing that indeed the element under consideration is covered.

Infeasibility cannot be demonstrated by program execution against a finite number
of test cases. In some cases simple arguments can be constructed to show that a
given element is infeasible. For complex programs the problem of determining

infeasibility could be difficult. Thus, an attempt to enhance a test set by executing
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a test aimed at covering element e of program P, might fail.
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Infeasible path: Example

This program inputs two integers x and y, and

; beigx:tnX, y: computes z. C.={p1, p2, p3}. é
3 int Z; g
; Iinfp(l;t<(;’ZI)1,dZy2’0){ Pill=2-3-4-5-6-7-8-1)
6 Z=X*X: poi[l =2 -3 4578 0]
7 1£(y> 0) Z=z+1; ' ;
g ! p3:[1l —-2—3—-7—8—9] %
9 else Z=X"X"X; :
10 output(z); :
11 } °
12 end
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Example: Flow graph and paths

Coar> r:1l—-2—-3—-4—-5—-6—-7—8—09]
1

p2i[l =2 —-3—-4—-5—-7—8 — 9]

@ 2
’ p3: [l —2—3—-7—8— 0]

if (x<0 and y<0)

false

pl 1s infeasible and cannot be traversed by any test case.
This 1s because when control reaches node 5, condition

y=0 1s false and hence control can never reach node 6.

wn
Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Thus, any test adequate with respect to the path

COEE

Node nmeerS only cover p2 and p3

coverage criterion for the exponentiation program will
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Adequacy and infeasibility

In the presence of one or more infeasible elements in the coverage domain, a test 1s

considered adequate when all feasible elements in the domain have been covered.

While programmers might not be concerned with infeasible elements, testers
attempting to obtain code coverage are. Prior to test enhancement, a tester usually does
not know which elements of a coverage domain are infeasible. Unfortunately, it is only

during an attempt to construct a test case to cover an element that one might realize
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the infeasibility of an element.
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/.1.5 Error detection and test enhancement
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Test enhancement

The purpose of test enhancement 1s to determine test cases that test the untested
parts of a program or exercise the program using uncovered portions of the input
domain. Even the most carefully designed tests based exclusively on requirements

can be enhanced.

The more complex the set of requirements, the more likely it is that a test set designed

using requirements 1s inadequate with respect to even the simplest of various test
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adequacy criteria.
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Example

A program to meet the following requirements is to be developed.

R,: Upon start the program offers the following three options to the user:

e Compute z¥ for integers xand y > 0.
e Compute the factorial of integer = > 0.
o EXit.

Ry 1: If the “Compute z¥” option is selected then the user is asked to supply the values of x
and y, z¥ is computed and displayed. The user may now select any of the three options
once again.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example (contd.)

Ry 5: If the “Compute factorial x” option is selected then the user is asked to supply the value
of x andfactorial of x is computed and displayed. The user may now select any of the
three options once again.

R, 5: Ifthe “Exit” option is selected the program displays a goodbye message and exits.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example (contd.)

Consider the following program written to meet the requirements stated earlier.

begin
int X, Y,
int product, request;
#define exp=1
#define fact=2
#define exit=3

S O B WO N —

~

get_request (request); // Get user request (one of three possibilities).
8  product=1;// Initialize product.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

9 // Setup the loop to accept and execute requests.

10 while (request # exit) {
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Example (contd.)

11 // Process the “exponentiation” request.

12 if(request == 1){

13 input (x, y); count=y;

14 while (count > 0){

15 product=product * x; count=count-1;
16 }

17 } // End of processing the “exponentiation” request.

18 // Process “factorial” request.

19 else if(request == 2){

20 input (x); count=Xx;

21 while (count >0){

22 product=product * count; count=count-1;
23 }

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

24 } // End of processing the “factorial” request.
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Example (contd.)

25 I/ Process “exit” request.

26 else if(request == 3){
27 output( “Thanks for using this program. Bye!"); break; / Exit the loop.
28 }//End of if.

29  output(product); // Output the value of exponential or factorial and re-enter the loop.
30  getrequest (request); // Get user request once again and jump to loop begin.
31}

32 end

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Example (contd.)

Suppose now that the following set containing three tests has been developed to test

whether or not our program meets its requirements.

T={<request=1, x=2, y=3>, <request=2, x=4>, <request=3>}

For the first two of the three requests the program correctly outputs 8 and 24,
respectively. The program exits when executed against the last request. This program
behavior is correct and hence one might conclude that the program is correct. /7 will

not be difficult for you to believe that this conclusion is incorrect.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Example (contd.)

Let us now evaluate T against the path coverage criterion.

In class exercise: Go back to the example

program and extract the paths not covered by T.

The coverage domain consists of all paths that traverse each of the three loops zero

and once 1n the same or different executions of the program. This is left as an exercise

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

and we continue with one sample, and “tricky,” uncovered path.
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Example (contd.)

Consider the path p that begins execution at line 1, reaches the outermost while at
line 10, then the first if at line 12, followed by the statements that compute the
factorial starting at line 20, and then the code to compute the exponential starting at

line 13.

p is traversed when the program is launched and the first input request is to compute
the factorial of a number, followed by a request to compute the exponential. It is easy

to verify that the sequence of requests in T does not exercise p. Therefore T is
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inadequate with respect to the path coverage criterion.
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Example (contd.)

To cover p we construct the following test:

T’ ={<request=2, x=4>, <request=1, x=2, y=3>, <request=3>}

When the values in T' are input to our example program in the sequence given, the

program correctly outputs 24 as the factorial of 4 but incorrectly outputs 192 as the value

of 23.

This happens because T' traverses our “tricky path which makes the computation of the
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exponentiation begin without initializing product. In fact the code at line 14 begins with
the value of product set to 24.
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Example (contd.)

In our effort to increase the path coverage we constructed T'. Execution of the
program under test on T' did cover a path that was not covered earlier and revealed an

error in the program.

This example has illustrated a benefit of test enhancement based on code coverage.
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/.1.6 Single and multiple executions
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Multiple executions

In the previous example we constructed two test sets T and T'. Notice that both T
and T' contain three tests one for each value of variable request. Should T (or T’ ) be

considered a single test or a sequence of three tests?
T’ ={<request=2, x=4>, <request=1, x=2, y=3>, <request=3>}

we assumed that all three tests, one for each value of request, are input in a sequence

during a single execution of the test program. Hence we consider T as a test set
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containing one test case and write 1t as follows:
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Multiple executions (contd.)

We assumed that all three tests, one for each value of request, are input in a sequence
during a single execution of the test program. Hence we consider T as a test set

containing one test case and write it, it as follows:

T t: <<request=1,x=2,y=3> —
a < request = 2,1 =4 > — < request = 3 >>

T"=TUT (1 <<request=1,x=2,y=3> — <request=2r=4> — )

< request = 3 >>
to: << request =2,2=4> —
\ <request =1,z =2,y=3> — < request =3>> )

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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/.2.1 Statement and block coverage
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Declarations and basic blocks

Any program written in a procedural language consists of a sequence of statements.
Some of these statements are declarative, such as the #define and int statements in C,
while others are executable, such as the assignment, if, and while statements in C and

Java.

Recall that a basic block 1s a sequence of consecutive statements that has exactly one
entry point and one exit point. For any procedural language, adequacy with respect to

the statement coverage and block coverage criteria are defined next.
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Notation: (P, R) denotes program P subject to requirement R.
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Statement coverage

The statement coverage of T with respect to ( P, R ) is computed as Sc/(Se-Si1) , where
Sc 1s the number of statements covered, Si is the number of unreachable statements,
and Se 1is the total number of statements in the program, i.e. the size of the coverage

domain.

T 1is considered adequate with respect to the statement coverage criterion if the

statement coverage of T with respect to (P, R) 1s 1.
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Block coverage

The block coverage of T with respect to (P, R) is computed as Bc/(Be -Bi1) , where Bce
1s the number of blocks covered, Bi is the number of unreachable blocks, and Be 1is

the total number of blocks in the program, i.e. the size of the block coverage domain.

T 1is considered adequate with respect to the block coverage criterion if the statement

coverage of T with respect to (P, R) is 1.
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Example: statement coverage

Coverage domain: Se={2,3,4,5, 6,7,7b,9, 10}
Let T,={tl:<x=-1, y=-1>t 2:<x=1, y=1>}

1 begin p
2 int X, Y; Statements covered: s
3. imtz t1:2,3,4, 5,6, 7,and 10 2
4 input (x, y); z=0; 3
5 if(x<0 and y<0){ t2:2,3,4,9, and 10. é
6 Z=X"X; =
7 if(y> 0) z=z+1; (b) Sc=6, Si=1, Se=7. The statement coverage for T is §
8 ! 6/(7-1)=1 . Hence we conclude that T, 1s adequate  n
N for (P, R ) with respect to the statement coverage i
9 else Z=X"X"X; o . ©
criterion. Note: 7b is unreachable. £
10 output(z); 2
11 } 8
12 end
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Example: block coverage

Coverage domain: Be={1, 2, 3,4, 5

h: <z=-1 y=-1>
Ty = th: <x=-3 y=-—1> =
int x,y; int z: 1 I3: <x= —1 Yy = —3 > 7%;
input x,y; z=0; . =
false if (x<0 and y<0) Blocks covered: >
frue tl: Blocks 1, 2, 5 3
Z=x"; 2 -
false if (y>=0) t2, t3: same coverage as of t1. £
} true a
z=7+1; 3 ) g
Be=5, Bc=3, Bi=1. N
- X4X = Block coverage for T,= 3/(5-1)=0.75. 2
output(z); 5 §

| Hence T, is not adequate for (P, R) with respect to
Block nlumbers the block coverage criterion.
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Example: block coverage (contd.)

@ T1 1s adequate w.r.t. block coverage criterion. In
o
’ class exercise: Verify this statement! g
int x,y;intz; Tg
input x,y; z=0; L S
false if (x<0 and y<0) >
true g
Z=X*x; ) Also, if test t2 in T1 is added to T2, we obtain a test <
false if (y>=0) g
} true set adequate with respect to the block coverage g
z=7+1; 3 o
criterion for the program under consideration. In g
Z=X*x*x; Bl . . ) y=
] class exercise: Verify this statement! 2
output(z); 5 §

Block numbers
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Coverage values

The formulae given for computing various types of code coverage, yield a
coverage value between 0 and 1. However, while specifying a coverage
value, one might instead use percentages. For example, a statement coverage

of 0.65 1s the same as 65% statement coverage.
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/.2.2 Conditions and decisions
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Conditions

Any expression that evaluates to true or false constitutes a condition. Such an

expression is also known as a predicate.

Given that A, and B are Boolean variables, and x and y are integers, A,

x>y, AORB, AAND (x<y), (AAND B), are all sample conditions.

Note that in programming language C, x and x+y are valid conditions, and

the constants 1 and O correspond to, respectively, true and false.
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Simple and compound conditions

A simple condition does not use any Boolean operators except for the not

operator. It 1s made up of variables and at most one relational operator from
the set {<, =>, =, ==, = }. Simple conditions are also referred to as atomic
or clementary conditions because they cannot be parsed any further into two

or more conditions.

A compound condition 1s made up of two or more simple conditions joined

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Conditions as decisions

Any condition can serve as a decision in an appropriate context within a program. most

high level languages provide if, while, and switch statements to serve as contexts for

decisions.

if (A)
taskifA is true;
else

(a)

task if A is false;

while(A) switch (e)

task while A is true; task for e=el

else

task for e=e2

else
task for e=en

else
default task

(b) (c)

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Outcomes of a decision

A decision can have three possible outcomes, true, false, and undefined. When the

condition corresponding to a decision to take one or the other path is taken.

In some cases the evaluation of a condition might fail in which case the corresponding

decision's outcome is undefined.
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Undefined condition

1 bool foo(int a_parameter){ The condition inside the if
2 while(true){ // Aninfinite loop.
3 a_parameter=0;
4
5

statement at line 6 will remain

) undefined because the loop at lines g

} Il End of function foo(). 2-4 will never terminate. Thus, the %
decision at line 6 evaluates to 5

_ undefined. g

6  if(x< y and foo(y)){ //foo() does not terminate. £
7 compute(xy); &
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Coupled conditions

How many simple conditions are there in the compound condition: Cond=(A AND B)
OR (C AND A)? The first occurrence of A 1is said to be coupled to its second

occurrence.

Does Cond contain three or four simple conditions? Both answers are correct
depending on one's point of view. Indeed, there are three distinct conditions A, B,
and C. The answer is four when one 1s 1nterested in the number of occurrences of

simple conditions 1n a compound condition.
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/.2.3 Decision coverage
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Conditions within assignments

Strictly speaking, a condition becomes a decision only when it is used in the

appropriate context such as within an if statement.

At line 4, x<y does not constitute a decision and neither does A*B.

A =z <y; I/ Asimple condition assigned to a Boolean variable A.
X =P or Q;// A compound condition assigned to a Boolean variable x.

T =1y+zx*s,if (x)...// The condition will be true if z = 1 and false otherwise.
A=z <y, z=A4%B;ll Ais used ina subsequent expression for x but not as a decision.

= O N —
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Decision coverage

A decision is considered covered if the flow of control has been diverted to all
possible destinations that correspond to this decision, i.e. all outcomes of the decision

have been taken.

This implies that, for example, the expression in the if or a while statement has
evaluated to true in some execution of the program under test and to false in the same

or another execution.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Decision coverage: switch statement

A decision implied by the switch statement is considered covered if during one or
more executions of the program under test the flow of control has been diverted to all

possible destinations.

Covering a decision within a program might reveal an error that is not revealed by

covering all statements and all blocks.
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Decision coverage: Example

1 begin This program inputs an integer x, and if necessary, :
2 int X, Z; transforms it into a positive value before invoking 0
3 input (x); foo-1 to compute the output z. The program has an é
4 if(x<0) 3
5 Z=-X: error. As per its requirements, the program 1s S
6 z=foo-1(x); supposed to compute z using f00-2 when x=0. 5
7 output(z); =
8 end o

§

There should have been an else clause before this statement.
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Decision coverage: Example (contd.)

Consider the test set T={tl:<x=-5>}. It i1s adequate =

1 be.g " : with respect to statement and block coverage &
2 int X, Z; T
3 input (x); criteria, but does not reveal the error. f;
4 if(x<0) 5
5 Z=-X; $
6 z=foo-1(x); =
7 output(z): Another test set T'={t1:<x=-5> t2:<x=3>} does g
8 end reveal the error. It covers the decision whereas T %
does not. Check! g

@)

There should have been an else clause before this statement.
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Decision coverage: Computation

The previous example illustrates how and why decision coverage might help in
revealing an error that is not revealed by a test set adequate with respect to statement

and block coverage.

The decision coverage of T with respect to ( P, R ) is computed as Dc/(De -Di) , where
Dc 1s the number of decisions covered, D1 i1s the number of infeasible decisions, and
De is the total number of decisions in the program, 1.e. the size of the decision coverage

domain.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

T is considered adequate with respect to the decisions coverage criterion if the decision

coverage of T with respectto (P,R)is 1.
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Decision coverage: domain

The domain of decision coverage consists of all decisions in the program under test.

Note that each 1f and each while contribute to one decision whereas a switch

contribute to more than one.
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/.2.4 Condition coverage
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Condition coverage

A decision can be composed of a simple condition such as x<0 , or of a more

complex condition, such as (( x<0 AND y<0 ) OR ( p=q)).

AND, OR, XOR are the logical operators that connect two or more simple

conditions to form a compound condition.

A simple condition is considered covered if it evaluates to true and false in one or
more executions of the program in which it occurs. A compound condition is

considered covered if each simple condition it 1s comprised of is also covered.
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/.2.5 Condition/decision coverage

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Decision and condition coverage

Decision coverage 1s concerned with the coverage of decisions regardless of whether
or not a decision corresponds to a simple or a compound condition. Thus, in the

statement

1 if(z <0 and y <0) {
2 z=foo(x,y);

there is only one decision that leads control to line 2 if the compound condition

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

inside the if evaluates to true. However, a compound condition might evaluate to true

or false 1n one of several ways.
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Decision and condition coverage (contd)

1  if(z <0 and y <0){
2 z=foo(x,y);

The condition at line 1 evaluates to false when x=0 regardless of the value of .
Another condition, such as x<0 OR y<0, evaluates to true regardless of the value of
y, when x<0.

With this evaluation characteristic in view, compilers often generate code that uses
short circuit evaluation of compound conditions.
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Decision and condition coverage (contd)

Here is a possible translation:

1 if (z < 0 and y < 0) { 1 if (x<0)
2 z=foo(x,y); 2 if (y<O0)
3 z=foo(x,y);

We now see two decisions, one corresponding to each simple condition in the if
statement.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Condition coverage

The condition coverage of T with respect to ( P, R ) is computed as Cc/(Ce -Ci) ,
where Cc 1s the number of simple conditions covered, Ci is the number of infeasible
simple conditions, and |[Ce is the total number of simple conditions in the program, i.e.

the size of the condition coverage domain.

T 1is considered adequate with respect to the condition coverage criterion if the

condition coverage of T with respectto ( P,R)is 1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Condition coverage: alternate formula

An alternate formula where each simple condition contributes 2, 1, or 0 to Cc

depending on whether it is covered, partially covered, or not covered, respectively. is:

Ce
2 X (Ce — Cz)
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Condition coverage: Example

Partial specifications for computing z:

1 begin

2 int X, Y, Z; :
3 input (x, y); 5
4 if(x<0 and y<O0) x< 0 y< 0 Output (z) ?
5 z=foo1(x,y): true | true | fool(x,y) | ¢
6 else true false | foo2(x,y) ?’
7 z=foo2(x.,y); false | true foo2(x,y) §
8 output(z); false | false | fool(x,y) |¢
9 end g
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Condition coverage: Example (contd.)

Consider the test set:

1 begin I={ti<z==3y=-2> ty<r=-4y=-2>} g
2 int X, Y, Z; :
3 input (X, y); Check that T is adequate with respect to the 3
) i£(z<0 and y<0) statement, block, and decision coverage criteria g
5 z=foo1(X.,y); o
6 clse and the program behaves correctly against t1 and 5
7 z=f002(X,y); 2. 2

©
8 output(z); =
9 end Cc=1, Ce=2, Ci=0. Hence condition coverage for 2

T=0.5.
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Condition coverage: Example (contd.)

Add the following test case to T:

1 begin g

, _ t3: <x=3, y=4> o
2 int X, Y, Z; E
3 input (X, y); y
4 if(x<0 and y<0) Check that the enhanced test set T is adequate g
5 z=foo1(x.y); with respect to the condition coverage criterion £
6 else _ . 8
v 2=f002(X.y): and possibly reveals an error in the program. g
8 output(z); Under what conditions will a possible error at 2
9 end line 7 be revealed by t3? §
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Condition/decision coverage

When a decision 1s composed of a compound condition, decision coverage does not
imply that each simple condition within a compound condition has taken both

values true and false.

Condition coverage ensures that each component simple condition within a

condition has taken both values true and false.

However, as illustrated next, condition coverage does not require each decision to

have taken both outcomes. Condition/decision coverage is also known as branch

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Condition/decision coverage: Example

Consider the following program and two test sets.

{ lh1: <rx=-3 y=-2> } ;
T, = ‘ -
1 begin la: <=4 y=-—2> g
2 int X, Y, Z; S
3 input(x,y); - t: <z=-3 y=2> 7
4 if(x<0 or y<0) 2 = th: <xz=4 y=—-2> 2
5 z=foo-1(x,y); p
6 else _ . . %
7 z=foo-2(x,y); In class exercise: Confirm that T1 is adequate with respectto @
8 output(z); . . 2
9  end to decision coverage but not condition coverage. ©

In class exercise: Confirm that T2 1s adequate with respect to §

condition coverage but not decision coverage.
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Condition/decision coverage: Definition

The condition/decision coverage of T with respect to (P, R) i1s computed as (Cc
+Dc)/((Ce -Ci1) +(De-D1)) , where Cc is the number of simple conditions covered,
Dc 1is the number of decisions covered, Ce and De are the number of simple
conditions and decisions respectively, and Ci and Di are the number of infeasible

simple conditions and decisions, respectively.

T 1s considered adequate with respect to the multiple condition coverage criterion 1f
the condition coverage of T with respectto (P, R )1s I.
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Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Condition/decision coverage: Example

begin
int X, y, Z;
input (x, y):
if(x<0 or y<0)
z=foo-1(x,y);
else
z=foo-2(x,y);
output(z);
end

CoOoO~NOOH,ON -

Foundations of Software Testing 2E

In class exercise: Check that the following test set is
adequate with respect to the condition/decision
coverage criterion.

T — thh: <zx=-3 y=-2>
l: <r=4 y=2>
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/.2.6 Multiple Condition coverage
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Multiple condition coverage

Consider a compound condition with two or more simple conditions. Using condition
coverage on some compound condition C implies that each simple condition within C

has been evaluated to true and false.

However, does it imply that all combinations of the values of the individual simple

conditions in C have been exercised?
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Multiple condition coverage: Example

Consider D=(A<B) OR (A>C) composed of two simple conditions A<B and A>C.
The four possible combinations of the outcomes of these two simple conditions are

enumerated in the table. Consider T:

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

A<B|A>-C| D h: <A=2 B= -

1| t t ..

) tzzz f;l:e tx: Check: Does T cover all four combinations?

3 || false | true true , ) )

1 || false | false | false Check: Does T cover all four combinations?
ti: <A=2 B=3 C=1> )

) b <A=2 B=1 C=3> |
") &: <A=2 B=3 C=5>

ts: <A=2 B=1 C=5>
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Multiple condition coverage: Definition

Suppose that the program under test contains a total of n decisions. Assume also that
each decision contains kl, k2, ..., kn simple conditions. Each decision has several

combinations of values of its constituent simple conditions.

For example, decision i will have a total of 24 combinations. Thus, the total

number of combinations to be covered is

3o
i=1

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Multiple condition coverage: Definition (contd.)

The multiple condition coverage of T with respect to ( P, R ) is computed as Cc/(C, -
C1) , where Cc is the number of combinations covered, ; is the number of infeasible

simple combinations, and C, is the total number of combinations in the program.

T 1s considered adequate with respect to the multiple condition coverage criterion if the
condition coverage of T with respectto (P, R )i1s 1.
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Multiple condition coverage: Example

Consider the following program with specifications in the table.

; beginABCSO A<B | A>C | S

int A, B, C, 5=0;
3 input (A, B, C): 1 || true true f1(P,Q,R)
4  if(A<B and A>C) S=f1(A, B, C); 2 || true | false | f2(P,Q,R)
5 if(A<B and A<C) S=f2(A, B, C); 3 || false | true f3(P,Q,R)
6 if(A>B and A<C) S=f4(A, B, C);
7 ;utpm(S)?n ) ( 4 || false | false | f4(P,Q,R)
8 end

There 1s an obvious error in the program, computation of S for one of

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Multiple condition coverage: Example (contd.)

Is T adequate with respect to decision coverage? Multiple

condition coverage? Does it reveal the error?

e _{t1: <A=2 B=3 C:1>}%

egin T = 3
2 intA B,C,S=0; : <A=2 B=1 C=3>] ¢
3 input (A, B, C); £
4 if(A<B and A>C) S=f1(A, B, C); :
5 if(A<B and A<C) S=f2(A, B, C); S
6 if(A>B and A<C) S=f4(A, B, C); ©
7 output(S); S
8 end g
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Multiple condition coverage: Example (contd.)

To improve decision coverage we add t3 to T and obtain T .

1 begin ;'n%
3 input (A, B, C); T — >
= t A=2,B=1,C =3 o

4 if(A<B and A>C) S=f1(A, B, C); tQ = s — 2’ B 3’ C—-5 ~ =
5  if(A<B and A<C) S=f2(A, B, C); 3: <A=s580=50=0>] 3
6 if(A>B and A<C) S=f4(A, B, C); S
7 output(S); ©
8 end c
Does T’ reveal the error? 8
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Multiple condition coverage: Example (contd.)

In class exercise: Construct a table showing the simple conditions covered by T’ . Do

you notice that some combinations of simple conditions remain uncovered?

Now add a test to T" to cover the uncovered combinations. Does your test reveal the

error? If yes, then under what conditions?
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/.2.7 LCSAJ coverage
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Linear Code Sequence and Jump (LCSAJ)

Execution of sequential programs that contain at least one condition, proceeds in pairs
where the first element of the pair is a sequence of statements, executed one after the

other, and terminated by a jump to the next such pair.

A Linear Code Sequence and Jump is a program unit comprised of a textual code
sequence that terminates in a jump to the beginning of another code sequence and

jump.

An LCSAJ is represented as a triple (X, Y, Z) where X and Y are, respectively,

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

locations of the first and the last statements and Z is the location to which the

statement at Y jumps.
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Linear Code Sequence and Jump (LCSAJ)

LCSAJ StartlLine EndLine Jumpto

Consider this program. 1 1 © exit ;

2 1 4 7 &

1 begin 3 7 8 exit E

2 int x, vy, p; 2

3 inpUt (X, Y); The last statement in an LCSAJ (X, Y, Z) is a jump and Z %

4 if(x<0) may be program exit. When control arrives at statement X, E

5 = ] : S

" 1p 9(y); follows through to statement Y, and then jumps to statement §

else £

+« . Z,wesay thatthe LCSAJ(X,Y, Z)1s traversed or covered €

7 p=9(y"y); . §
8 end or exercised.
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LCSAJ coverage: Example 1

1 begin T lh: <x=-5 y=2> g
2 intX,YsP; 1‘;2: <X:9 y:2> \:i
3 inPUt (xs Y); §
4 if(x<0) :
S p=9(y); t1 covers (1,4,7) and (7, 8, exit). t2 covers (1, 6, exit) §
6 else 1s executed. T covers all three LCSAJs. %

* - 9
7 p=9(y"y); :
8 end 5
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LCSAJ coverage: Example 2

1 begin
2 // Compute z¥ given non-negative integers x and y. _
3 int x, vy, p; g
4 input (x, y); 3
5  p=T; 3
6 count=Y; _ , g
In class exercise: Find all LCSAJs o
7 while(count>0){ =
8 P=P X; :
9 count=count-1; %
10}
11 output(p); )
12 end
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LCSAJ coverage: Example 2 (contd.)

LCSAJ StartlLine EndLine Jumpto

1 1 10 7

2 7 10 7 g

3 7 7 11 ;;

4 1 7/ 11 3

5 11 12 exit
Verify: This set covers all LCSAJs. g
T flh: <x=5 y=0> %

tp: <x=5 y=2> S
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LCSAJ coverage: Definition

The LCSAJ coverage of a test set T with respect to (P, R) 1s computed

as

Number of LCSAJs exercised
Total number of feasible LCSAJs

T 1s considered adequate with respect to the LCSAJ coverage criterion if

the LCSAJ coverage of T with respect to (P, R) is .
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/.2.8 Modified condition/decision coverage
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Modified Condition/Decision (MC/DC) Coverage

Obtaining multiple condition coverage might become expensive when there are many
embedded simple conditions. When a compound condition C contains n simple

conditions, the maximum number of tests required to cover C is 2" .

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

n | Minimum tests | Time to execute all tests
1 |2 2 1S

4 116 16 ms

8 | 256 256 ms

16 | 65536 65.5 seconds

32 | 4294967296 49.5 days
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Compound conditions and MC/DC

MC/DC coverage requires that every compound condition in a program must be
tested by demonstrating that each simple condition within the compound condition

has an independent effect on its outcome.

Thus, MC/DC coverage is a weaker criterion than the multiple condition coverage

criterion.
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MC/DC coverage: Simple conditions

Test | C; C5 C Comments

Condition: C, = (C; and C5)

t true true true Tests #; and t, cover (.
15 true false | false

t3 false | true false | Tests #; and #3 cover C].

MC/DC adequate test set for C, = {t1, t2, t3}

Condition: C, = (C; or ()

ty false | true true Tests t, and t5 cover C.
ts false | false | false
ts true true false | Tests #, and 5 cover (.

MC/DC adequate test set for Cy = {1y, t5, g}

Condition: C. = (C; xor (3)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

tr true true false | Tests t7 and g cover (5.
ts true false | true
to false | false | false | Tests #g and #9 cover C;.

MC/DC adequate test set for C. = {t7, tg, to}
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/.2.9 MC/DC adeqguate tests for compound conditions
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Generating tests for compound conditions

Let C=C1 and C2 and C3. Create a table with five columns and four rows. Label the

columns as Test, C1, C2, C3 and C, from left to right. An optional column labeled

“Comments” may be added. The column labeled Test contains rows labeled by test

case numbers tl through t4 . The remaining entries are empty.

Ci

Cy | C3 | C

Comments

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Generating tests for compound conditions (contd.)

Copy all entries in columns C1, C2, and C from the table for simple conditions into

columns C2, C3, and C of the empty table.

Test | C; | Cs C3 C Comments
121 true true true

o true false | false

i3 false | true false

ty

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Generating tests for compound conditions (contd.)

Fill the first three rows in the column marked C1 with true and the last row with false.

Test | C} Co Cs C Comments
t1 true true true true

to true true false | false

ta true false | true false

i false

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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MC/DC coverage: Generating tests for compound
conditions (contd.)

Fill the last row under columns labeled C2, C3,and C with true, true, and false,

respectively. s
Test | C} Co (s C Comments jf;

t true | true | true | true | Tests t; and # cover Cs. 5

to true | true | false | false é

t3 true | false | true | false | Tests t; and ¢; cover Cs. 8

| U false | true | true | false | Tests ¢; and ¢, cover Cj. 2
©

We now have a table containing MC/DC adequate tests for C=(C1 AND C2 AND C3) §

derived from tests for C=(C1 AND C2).
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MC/DC coverage: Generating tests for compound
conditions (contd.)

The procedure illustrated above can be extended to derive tests for any compound

condition using tests for a simpler compound condition (solve Exercises 7.15 and

7.16).
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/.2.10 Definition of MC/DC coverage
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MC/DC coverage: Definition

A test set T for program P written to meet requirements R, is considered adequate
with respect to the MC/DC coverage criterion if upon the execution of P on each test

in T, the following requirements are met.

Each block in P has been covered.
*  Each simple condition in P has taken both true and false values.
* Each decision in P has taken all possible outcomes.

*  Each simple condition within a compound condition C in P has been shown to
independently effect the outcome of C. 7%is is the MC part of the coverage we
discussed.
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Analysis

The first three requirements above correspond to block, condition, and decision

coverage, respectively.

The fourth requirement corresponds to " "MC" coverage. Thus, the MC/DC coverage

criterion is a mix of four coverage criteria based on the flow of control.

With regard to the second requirement, it is to be noted that conditions that are not part

of a decision, such as the one in the following statement A= (p<q) OR (x>y) are also

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

included in the set of conditions to be covered.
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Analysis (contd.)

With regard to the fourth requirement, a condition such as (A AND B) OR (C AND A)
poses a problem. It is not possible to keep the first occurrence of A fixed while varying

the value of its second occurrence.

Here the first occurrence of A 1s said to be coupled to its second occurrence. In such
cases an adequate test set need only demonstrate the independent effect of any one

occurrence of the coupled condition

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Adequacy

Let C,, C,, .., Cy be the conditions in P.ni denote the number of simple conditions
in C; , e; the number of simple conditions shown to have independent affect on the

outcome of C,, and f. the number of infeasible simple conditions in C, .

The MC coverage of T for program P subject to requirements R, denoted by MC,, 1s

computed as follows.
N
_ el
2,21 (e — fi)

MC.
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Test set T 1s considered adequate with respect to the MC coverage if MC =1 of T

1s 1.
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Example
Consider the following requirements:
R1.1: Invoke fire-1 when (x<y) AND (z * z>y) AND (prev=""East").
R1.2: Invoke fire-2 when (x<y) AND (z * z <y) OR (current=""South").

R 1.3: Invoke fire-3 when none of the two conditions above 1s true.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

R2: The invocation described above must continue until an input Boolean

variable becomes true.
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Example (contd.)

1 begin

2 float X, Y, Z;

3 direction d; E
4 string prev, current; s
5 bool done; S
6 input (done); ’j
7 current="North”; £
8 while (—done){  « Condition C.
9 input (d); 0
10 prev=current; current=f(d); s;
11 input (x, vy, z); S
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Example (contd.)

12 if((x<y) and (z*z >Y) and (prev=="East’)) « Condition Cs.

13 fire-1(x, y);

14 else if ((x<y and (z* z <Y) or (current=="South”))  « Condition Cs.
15 fire-2(x, y);

16 else

17 fire-3(x, y);

18 Input (done);

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

19 |}
20 output(“Firing completed.”);
21 end
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Example (contd.)

Verify that the following set T1 of four tests, executed in the given order, is

adequate with respect to statement, block, and decision coverage criteria but not

with respect to the condition coverage criterion.

Test | Requirement || done d X y z
t1 R false | East 10 | 15 | 3
to Ri1 false | South | 10 | 15 | 4
i3 Ri3 false | North 10 | 15 | 5
ty Rs true - - - -

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Example (contd.)

Verify that the following set T2, obtained by adding t5 to T1, 1s adequate with respect
to the condition coverage but not with respect to the multiple condition coverage

criterion. Note that sequencing of tests is important in this case!

Test set T, for P6.14

Test | Requirement || done | d x y z
t Ri.2 falae | East 1015 | 3
to Ri.1 falae | South | 10| 15 | 4
ta Ri3 falae | North | 10 | 15 | 5§
ts R; and Ry, false | South [ 10| 5 |5
t4 Ro true | - - - -

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example (contd.)

Verify that the following set T3, obtained by adding t6, t7, t8, and t9 to T2 is adequate

with respect to MC/DC coverage criterion. Note again that sequencing of tests 1s

important in this case (especially for t1 and t7)!

Test set Ty for P6.14

Test | Requirement || done d x y z
(21 Ry false | East 10|15 | 3
te R falae | East 105 (2
tr R false | East 10|15 | 3
to Ri.1 false | South | 10 | 15 | 4
ta Ri3 falae | North | 10 | 15 | 5
ts Riiand Ry s falae | South | 10 | 5 5
tg R false | South | 10 | 5 2
tn Ri1 false | North (10| 5 |2
iy Rao true - - - -

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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/.2.12 Error detection and MC/DC adequacy
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MC/DC adequacy and error detection

We consider the following three types of errors.

Missing condition: One or more simple conditions 1s missing from a compound
condition. For example, the correct condition should be (x<y AND done) but the

condition coded 1s (done).

Incorrect Boolean operator: One or more Boolean operators is incorrect. For example,

the correct condition is (x<y AND done) which has been coded as (x<y OR done).

Mixed: One or more simple conditions is missing and one or more Boolean operators is
incorrect. For example, the correct condition should be (x<y AND z*x = y AND

d=""South") has been coded as (x<y OR z*x = vy).

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Example

Suppose that condition C=C; AND C, AND C; has been coded as C'=C; AND C,. Four
tests that form an MC/DC adequate set are in the following table. Verify that the

following set of four tests is MC/DC adequate but does not reveal the error.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Test C C’ Error
Detected
Oy, Oy, Cg (1 and Cy and O3 | O} and (s
f1 | true, true, true true true No
o | false, false, false | false false No
f3 | true, true, false false false No
ty | false, false, true | false false No
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MC/DC and condition coverage

Several examples in the book show that satisfying the MC/DC adequacy criteria does not
necessarily imply that errors made while coding conditions will be revealed. However,

the examples do favor MC/DC over condition coverage.

The examples also show that an MC/DC adequate test will /ikely reveal more errors

than a decision or condition-coverage adequate test. (Note the emphasis on “likely.”)
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MC/DC and short circuit evaluation

Consider C=C1 AND C2.

The outcome of the above condition does not depend on C2 when C1 is false. When

using short-circuit evaluation, condition C2 is not evaluated if C1 evaluates to false.

Thus, the combination Cl1=false and C2=true, or the combination C1=false and

C2=false may be infeasible if the programming language allows, or requires as in

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

C, short circuit evaluation.
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MC/DC and decision dependence

Dependence of one decision on another might also lead to an infeasible combination.

Consider, for example, the following sequence of statements.

int A, B, C

input (A, B, C);

if(A>10 or B>30) {
S1=f1(A, B, C)
if(A<5 and B>10){
Se,=f2(A, B, C);

}

Infeasible condition A<5

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Infeasibility and reachability

Note that infeasibility is different from reachability. A decision might be reachable but
not feasible and vice versa. In the sequence above, both decisions are reachable but the

second decision is not feasible. Consider the following sequence.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

1 int A, B, C

2 input (A, B, C);

3 if(A>A+1) { In this case the second decision 1s not reachable
4 5=11(A, B, C) due an error at line 3. It may, however, be

5 if(A>5 and B>10){

6 S,=f2(A, B, C); feasible.

7
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/.2.15 Tracing ftest cases to requirements
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Test trace back

When enhancing a test set to satisfy a given coverage criterion, it 1s desirable to ask the
following question: What portions of the requirements are tested when the program
under test 1s executed against the newly added test case? The task of relating the new

test case to the requirements 1s known as test trace-back.

Advantages of trace back: Assists us in determining whether or not the new test

case 1s redundant.

It has the likelihood of revealing errors and ambiguities in the requirements.
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It assists with the process of documenting tests against requirements.

See example 7.27.
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/.3 Concepts from data flow
/.3.1 Definitions and uses
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Basic concepts

We will now examine some test adequacy criteria based on the flow of “data” in a
program. This is in contrast to criteria based on “flow of control” that we have

examined so far.

Test adequacy criteria based on the flow of data are useful in improving tests that

are adequate with respect to control-flow based criteria. Let us look at an example.
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Example: Test enhancement using data flow

Here is an MC/DC adequate test set that does not

1 begin reveal the error. z
2 int x, y; float z; %
3 input (x, y); Test | x | v | z S
4  z=0; ty o[0]o0.0 S
5  if (x!=0) to 1]11]1.0 =
6 Z=2Z+Yy, E
7 else z=2z-y; é
8 if (y! =0) — This condition should be (y! =0 and x! =0) 3
9 z=2z/x; °
10 else z=z"x; g
11 output(z); S
12 end
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Example (contd.)

Neither of the two tests force the use of z defined on

line 6, at line 9. To do so one requires a test that causes 2
1 begin g
) int x, y; float z; conditions at lines 5 and & to be true. =
3 input (x, y); 5:;
4 z=0; §
5 if (x! =0) £
6 Z=2Z+Y, £
7 else z=2z-y; é
8 if (y! =0) — This condition should be (y! =0 and x! =0) 3
9 z=z/x; g
10 else z=z'x; An MC/DC adequate test does not force the %
11 output(z); S
12  end execution of this path and hence the divide by

Zero error 1s not revealed.
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Example (contd.)

Verify that the following test set covers all def-use pairs of z and reveals the

eITOT. 5
Test | x |y | z *def-use pairs covered té;
th 0(0]|00](47),(7,10) £
t 111]1.0] (4, 6),(6,9) g
ta 0|1]00] (4,7),(7,9) £
ts 11010 (4 6),(610) -
*In the pair (14, k), z is defined in [; and used in line k. §

Would an LCSAJ adequate test also reveal the error?
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Definitions and uses

A program written in a procedural language, such as C and Java, contains variables.

Variables are defined by assigning values to them and are used in expressions.
Statement x=y+z defines variable x and uses variables y and .
Declaration int x, y, A[10]; defines three variables.

Statement scanf(" %d %d", &x, &v) defines variables x and v.
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Statement printf(" Output: %d \n", x+v) uses variables x and v.
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Definitions and uses (contd.)

A parameter x passed as call-by-value to a function, is considered as a use of, or a

reference to, x.

A parameter x passed as call-by-reference, serves as a definition and use of x

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Definitions and uses: Pointers

Consider the following sequence of statements that use pointers.

z=&X;
y=z+1;
*z=25;
y="z+1;

The first of the above statements defines a pointer variable z the second defines vy

and uses 7 the third defines x through the pointer variable 7z and the last defines vy
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and uses x accessed through the pointer variable 7.
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Definitions and uses: Arrays

Arrays are also tricky. Consider the following declaration and two statements in C:

int A[10];
Alil=x+y;

The first statement defines variable A. The second statement defines A and uses 1, x,
and y. Alternate: second statement defines A|1] and not the entire array A. The

choice of whether to consider the entire array A as defined or the specific element

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

depends upon how stringent is the requirement for coverage analysis.
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/.3.2 C-use and p-use

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




c-use

Uses of a variable that occur within an expression as part of an assignment
statement, 1n an output statement, as a parameter within a function call, and in
subscript expressions, are classified as c-use, where the “'c" in c-use stands for

computational.

How many c-uses of x can you find in the following statements?

z=x+1;
A[x-1]= B[2];

Answer: 5 foo(x"x)
output(x);

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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p-use

The occurrence of a variable 1n an expression used as a condition in a branch
statement such as an 1f and a while, 1s considered as a p-use. The “"p" in p-use

stands for predicate.

How many p-uses of z and x can you find in the following statements?

if(z>0){output (x)};
while(z>x){...};

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Answer: 3 (2 of zand 1 of x)
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p-use: possible confusion

Consider the statement:

if(A[x+1]>0){output (x)};

The use of A is clearly a p-use.

Is the use of x in the subscript, a c-use or a p-use? Discuss.
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C-uses within a basic block

P=y+2Z;
x=p+1;

p=z"z;

Consider the basic block

While there are two definitions of p in this block, only the second definition will
propagate to the next block. The first definition of p 1s considered local to the block
while the second definition is global. We are concerned with global definitions, and

uses.

Note that y and z are global uses; their definitions flow into this block from some

other block.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




/.3.4 Data flow graph
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Data flow graph

A data-flow graph of a program, also known as def-use graph, captures the flow of

definitions (also known as defs) across basic blocks in a program.

It is similar to a control flow graph of a program in that the nodes, edges, and all
paths thorough the control flow graph are preserved in the data flow graph. An

example follows.
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Example

Given a program, find its basic blocks, compute defs, c-uses and p-uses in each
block. Each block becomes a node in the def-use graph (this is similar to the

control flow graph).

Attach defs, c-use and p-use to each node in the graph. Label each edge with the

condition which when true causes the edge to be taken.

We use d (x) to refer to the definition of variable x at node 1. Similarly, u.(x) refers to
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the use of variable x at node 1.
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Example (contd.)

Node def c-use | p-use

. (or Block)
i mva (1 &9

2 {z} {x} | {v} S

int x,y;intz . 3 {z} {z} {} S

input x,y; z=0; 4 >

false if (x<0 and y<0) 5 Ez}} }:i E i ©
| true \:é,

Z=x"): 5 %

false if (y>=0) g
} true <

z=z+1; 3 g

E

| =X 4 o

o

.; o\l

©

~ output(z); |+ 5 ye

def={z} 5

Block n[umbers / c-use={z} §

Unreachable node
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/.3.5 Def-clear paths
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Def-clear path

Any path starting from a node at which variable x 1s
defined and ending at a node at which x is used,

without redefining x anywhere else along the path, is a

def-clear path for x.
(x<0and y<0)
Path 2-5 1s def-clear for variable z defined at node 2 y>=0
and used at node 5. Path 1-2-5 1s NOT def-clear for
def={z}
c-use=(z}

variable z defined at node 1 and used at node 5.
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Thus, definition of z at node 2 1s live at node 5 while

that at node 1 is not live at node 5.
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Def-clear path (another example)

P7.16 def={x,y, z, count} Node Lines

1  begin c-use=i} 1 1,2, 3,4
2 float x, y, z=0.0; 2 5,6 5
3 int count; 3 7 ﬁ
4 input (x, y, count); 4 89,10 <
5 do { 5 11, 12, 132
6 if (x<0) { 6 14, 15, 165
7 if (y20) { 7 17,18 2
8 z=y*z+1; ’ g
9 } g
10 } y>=0 g
11 else{ def={count, y} §
12 z=1/x; c-use{count, x, y, z} P

def=({z} p-use{count} =
13 } c-use={y. count!=0 iy
14 y=x*y+z ’ ’ ©
15 count—count-1 '§’
16 while (count>0) §
17 output (z); ©
el Find def-clear paths for defs and uses of x and z.

Which definitions are live at node 4? Contents
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/.3.6 def-use pairs
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Def-use pairs

Def of a variable at line 1, and its use at line 1, constitute a def-use pair. 1, and 1,

can be the same.
dcu (di(x)) denotes the set of all nodes where di(x)) is live and used.

dpu (di(x)) denotes the set of all edges (k, 1) such that there is a def-clear path from node 1
to edge (k, 1) and x is used at node k.

We say that a def-use pair (d;(x), u,(x)) 1s covered when a def-clear path that includes

pyright © 2013 Dorling Kindersley (India) Pvt. Ltd

nodes 1 to node j is executed. If u(x)) 1s a p-use then all edges of the kind (j, k) must also &
be taken during some executions.
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Def-use pairs (example)

def={x,y, z, count}
c-use={}

def={count, y}
c-use{count, x, y, z}

def=(z} p-use{count} §
c-use={y, z} count!=0 c
count==0 -
Variable (v) | Defined in node (n) | dcu (v, n) | dpu (v, n) S’
x 1 5.6 |{@3).(25)] 0
y 1 {4, 6} {(3,4), (3, 6)} A
y 6 {46} | {(3.4).(3 6)} 2
z 1 (4,6, 7} | {} €
z 4 14,6,7} (1} §
z 5 14,6, 7} {}
count 1 {6} {(6,2), (6,7) }
count 6 {6} 1(6,2),(6,7) }
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Def-use pairs: Minimal set

Def-use pairs are items to be covered during testing. However, in some cases, coverage
of a def-use pair implies coverage of another def-use pair. Analysis of the data flow
graph can reveal a minimal set of def-use pairs whose coverage implies coverage of all

def-use pairs.

Exercise: Analyze the def-use graph shown in the previous slide and determine a

minimal set of def-uses to be covered.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Data flow based adequacy

CU: total number of c-uses in a program.

PU: total number of p-uses.

CU==%r =% |dcu(v,j)|

i=1=

pU — E.'.zlz;":l | dpu(viaj) |

Given a total of n variables v,, v,...v, each defined at d; nodes.
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/.4 Adequacy criteria based on data flow
/.4.1, c-use coverage

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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C-use coverage

C-use coverage:

The c-use coverage of T with respect to (P, R) is computed as

CU,
(CU - CTy)

where CUg Is the number of c-uses covered and CUs the number of infeasible c-uses.
T is considered adequate with respect to the c-use coverage criterion if its c-use cov-
erageis 1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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C-use coverage: path traversed

Path (Start, .. q, k, .., z, .. End) covers the c-use at node z

of x defined at node q given that (k ..., z) 1s def clear

€

with respect to x

def={x...}
decu(x, q}={s,..}

Exercise: Find the c-use coverage when program

c-use of x  P7.16 is executed against the following test:

-

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Y

tl: <x=35, y=-1, count=1>
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/.4 Adequacy criteria based on data flow
/.4.2 p-use coverage

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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p-use coverage

P-use coverage:

The p-use coverage of T with respect to (P, R) is computed as

PU,
(PU — PUy)
where PUg is the number of p-uses covered and PUy the number of infeasible p-uses.

T is considered adequate with respect to the p-use coverage criterion if its p-use cov-
erage is 1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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p-use coverage: paths traversed

Exercise: Find the p-use coverage £
) def={x, ..} when program P7.16 is executed E
:(@:id ={(z, 1), (Z5),.. . . I
' @ PO SIS against the following test: 5
Covers edge (z, r) when 5 T
path (k,....z) is def-clear ® £2: <x=-2, y=-1, count=3> E,
wrt X. \ e e
dpu(x,..)*, a
S c lc % 3
RN /. Coversedge (z,s) when 5
H“. path (k,..z) is def-clear 3
CEnd <™ e
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/.4 Adequacy criteria based on data flow
/.4.3, all-uses coverage

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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All-uses coverage

All-uses coverage:

The all-uses coverage of T with respect to (P, R) is computed as

(CU. + PU.)
((CU + PU) — (CU; + PUy))

where CU is the total c-uses, CU¢ is the number of c-uses covered, PU¢ is the number
of p-uses covered, CUf the number of infeasible c-uses and PUf the number of infea-
sible p-uses. T is considered adequate with respect to the all-uses coverage criterion
if its c-use coverage is 1.

Exercise: Is T={tl, t2} adequate w.r.t. to all-uses coverage for P7.16?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Infeasible p- and c-uses

Coverage of a c- or a p-use requires a path to be traversed through the program.
However, if this path is infeasible, then some c- and p-uses that require this path

to be traversed might also be infeasible.

Infeasible uses are often difficult to determine without some hint from a test

tool.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Infeasible c-use: Example

def={x,y, z, count}
c-use={}

Consider the c-use at node 4 of z defined

at node 5.

Show that this c-use is infeasible.

def={count, y}
c-use{count, x, y, z}
def={z} p-use{count}

count!=0

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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/.4.4 k-dr chain coverage

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Other data-flow based criteria

There exist several other adequacy criteria based on data flows. Some of these are
more powerful in their error-detection effectiveness than the c-, p-, and all-uses

criteria.

Examples: (a) def-use chain or k-dr chain coverage. These are alternating sequences
of def-use for one or more variables. (b) Data context and ordered data context

coverage.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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/.6 The “subsumes’ relation

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Subsumes relation

Subsumes: Given a test set T that is adequate with respect to criterion C1, what can

we conclude about the adequacy of T with respect to another criterion C2?

Effectiveness: Given a test set T that is adequate with respect to criterion C, what can

we expect regarding its effectiveness in revealing errors?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Subsumes relationship

input domain

all paths

all-uses multiple condition

VA

- -uses .
c-uses P condition

N\

decision

lock
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Summary

We have introduced the notion of test adequacy and enhancement.

Two types of adequacy criteria considered: one based on control flow and the other

on data flow.

Control flow based: statement, decision, condition, multiple condition, MC/DC, and

LCSAJ coverage. Many more exist.

Data flow based: c-use, p-uses, all-uses, k-dr chain, data context, elementary data

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

context. Many more exist.
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Summary (contd.)

Use of any of the criteria discussed here requires a test tool that measures coverage
during testing and displays it in a user-friendly manner. xSUDS 1s one such set of
tools. Several other commercial tools, such as PaRTe, Cobertura, and Bullseye, are

available.

Several test organizations believe that code coverage is useful at unit-level. This is a
myth and needs to be shattered. Incremental assessment of code coverage and

enhancement of tests can allow the application of coverage-based testing to large

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

programes.
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Summary (contd.)

Even though coverage is not guaranteed to reveal all program errors, it 1s the perhaps
the most effective way to assess the amount of code that has been tested and what

remains untested.

Tests derived using black-box approaches can almost always be enhanced using one

or more of the assessment criteria discussed.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Chapter 8

Test Adequacy Measurement and
Enhancement Using Mutation

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Learning Objectives

=  What is test adequacy? What is test enhancement? When to measure test

adequacy and how to use it to enhance tests?

=  What is program mutation?

=  Competent programmer hypothesis and the coupling effect.

= Strengths and limitations of test adequacy based on program mutation.

=  Mutation operators

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

= Tools for mutation testing
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What is adequacy?

=  Consider a program P written to meet a set R of functional requirements. We

notate sucha P and R as (P,R). Let R contain n requirements labeled R1,

R2,...,Rn.

=  Suppose now that a set T containing k tests has been constructed to test P to
determine whether or not it meets all the requirements in R . Also, P has been

executed against each test in T and has produced correct behavior.

=  Wenow ask: [s T good enough? This question can be stated differently as: Has

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

P been tested thoroughly?, or as: Is T adequate?
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What is program mutation?

=  Suppose that program P has been tested against a test set T and P has not failed

on any test case in T. Now suppose we do the following:

Changed to
P - P’

What behavior do you expect from P’ against tests in T?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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What is program mutation? [2]

= P’ is known as a mutant of P.

»  There might be a test t in T such that P(t)#P’ (t). In this case we say that t
distinguishes P’ from P. Or, that t has killed P’ .

»  There might be not be any test t in T such that P(t)#P’ (t). In this case we say that

T is unable to distinguish P and P . Hence P’ is considered live in the test

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Pprocess.
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What is program mutation? [3]

= Ifthere does not exist any test case t in the input domain of P that distinguishes P

from P’ then P’ is said to be equivalent to P.

= IfP’ is not equivalent to P but no test in T is able to distinguish it from P then T

is considered inadequate.

= A non-equivalent and live mutant offers the tester an opportunity to generate a

new test case and hence enhance T.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

We will refer to program mutation as mutation.
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Test adequacy using mutation [1]

= (@Given a test set T for program P that must meet requirements R, a test adequacy

assessment procedure proceeds as follows.

= Step 1: Create a set M of mutants of P. Let M={M,,, M,...M, }. Note that we have

k mutants.

= Step 2: For each mutant M. find if there exists a t in T such that M.(t) #P(t). If

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

such a t exists then M. is considered killed and removed from further

consideration.
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Test adequacy using mutation [2]

= Step 3: At the end of Step 2 suppose that k, < k mutants have been killed and (k-

k,) mutants are live.

Case 1: (k-k,)=0: T 1s adequate with respect to mutation.

Case 2: (k-k,)>0 then we compute the mutation score (MS) as follows:

MS=k,/(k-e)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

where e 1s the number of equivalent mutants. Note: e < (k-k;).
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Test enhancement using mutation

=  One has the opportunity to enhance a test set T after having assessed its

adequacy.

= Step |: If the mutation score (MS) is 1, then some other technique, or a different

set of mutants, needs to be used to help enhance T.

= Step 2: If the mutation score (MS) is less than 1, then there exist live mutants that

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

are not equivalent to P. Each live mutant needs to be distinguished from P.
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Test enhancement using mutation [2]

=  Step 3: Hence a new test t 1s designed with the objective of distinguishing at least

one of the live mutants; let us say this mutant 1s m.

= Step 4: If t does not distinguish m then another test t’ needs to be designed to

distinguish m. Suppose that t does distinguish m.

= Step 5: Itis possible that t also distinguishes other live mutants.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test enhancement using mutation [3]

= Step 6: Add tto T and re-compute the mutation score (MS).

= Repeat the enhancement process from Step 1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Error detection using mutation

= As with any test enhancement technique, there is no guarantee that tests derived
to distinguish live mutants will reveal a yet undiscovered error in P. Nevertheless,
empirical studies have found to be the most powerful of all formal test

enhancement techniques.

= The next simple example illustrates how test enhancement using mutation detects

CITOTS.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Error detection using mutation [2]

=  Consider the following function foo that 1s required to return the sum of two

integers x and y. Clearly foo 1s incorrect.

int foo(int X, y)

return (X-y); ~——  This should be return (x+y)

)

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Error detection using mutation [3]

=  Now suppose that foo has been tested using a test set T that contains two tests:

T={tl: <x=1, y=0>, t2: <x=-1, y=0>}

=  First note that foo behaves perfectly fine on each test in, 1.e. foo returns the

expected value for each test case in T. Also, T is adequate with respect to all

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

control and data flow based test adequacy criteria.

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Error detection using mutation [4]

Let us evaluate the adequacy of T using mutation. Suppose that the following

three mutants are generated from foo.

ML int foo(int x, y){ M2 int foo(int x, y){ M3 int foo(int x, y){
return (x+y); return (x-0); return (O+y);
) | |

= Note that M1 is obtained by replacing the - operator by a + operator, M2 by
replacing y by 0, and M3 by replacing x by 0.

Contents
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Error detection using mutation [4]

Next we execute each mutant against tests in T until the mutant is distinguished

or we have exhausted all tests. Here is what we get.

T={tl: <x=1, y=0>, t2: <x=-1, y=0>}

Test (1) foo(t) M1 (t) M2(t) M3(t)

t1 1 1 1 0

t2 -1 -1 -1 0
Live Live Killed

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Error detection using mutation [5]

After executing all three mutants we find that two are live and one is
distinguished. Computation of mutation score requires us to determine of any of

the live mutants 1s equivalent.

In class exercise: Determine whether or not the two live mutants are equivalent

to foo and compute the mutation score of 1.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Error detection using mutation [6]

Let us examine the following two live mutants.

MI1: lnt fOO(int X, y){ M2: lnt fOO(int X, Y){
return (x+y); return (x-0);
! b

Let us focus on M1. A test that distinguishes M1 from foo must

satisfy the following condition:

X-y#x+y implies y #O0.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Hence we get t3: <x=1, y=1>
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Error detection using mutation [7]

Executing foo on t3 gives us foo(t3)=0. However, according to the requirements

we must get foo(t3)=2. Thus, t3 distinguishes M1 from foo and also reveals %
the error. 0
ML= it foo(int x, y){ M2 int foo(int x, y){ S

return (x+y); return (x-0); g

} }

In class exercise: (a) Will any test that distinguishes also reveal the error? (b) ;?

Will any test that distinguishes M2 reveal the error?

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Guaranteed error detection

Sometimes there exists a mutant P’ of program P such that any test t that

distinguishes P* from P also causes P to fail. More formally:

Let P’ be a mutant of P and t a test in the input domain of P. We say
that P’ is an error revealing mutant if the following condition holds

for any t.

P’ (t) #P(t) and P(t) #R(t), where R(t) is the expected response of P

based on its requirements.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Is M1 in the previous example an error revealing mutant? What about

M?2?
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Distinguishing a mutant

A test case t that distinguishes a mutant m from its parent program P program

must satisfy the following three conditions:

Condition 1: Reachability: t must cause m to follow a path that arrives at the

mutated statement in m.

Condition 2: Infection: If S, 1s the state of the mutant upon arrival at the

mutant statement and S . the state soon after the execution of the mutated

out
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statement, then S; # S,

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Distinguishing a mutant [2]

Condition 3: Propagation: If difference between S, and S_ , must propagate to

out

the output of m such that the output of m is different from that of P.

Exercise: Show that in the previous example both t1 and t2 satisfy

the above three conditions for M3.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Equivalent mutants

*  The problem of deciding whether or not a mutant is equivalent to its
parent program is undecidable. Hence there 1s no way to fully automate

the detection of equivalent mutants.

*  The number of equivalent mutants can vary from one program to another.
However, empirical studies have shown that one can expect about 5% of

the generated mutants to the equivalent to the parent program.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

* Identifying equivalent mutants is generally a manual and often time
consuming--as well as frustrating--process.
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A misconception

There 1s a widespread misconception amongst testing educators, researchers, and

practitioners that any “coverage” based technique, including mutation, will not be

able to detect errors due to missing path. Consider the following programs. 2
Program under test Correct program %
int foo(int x, y){ int foo(int x, y){ S
int p=0; int p=0; é
if(x<y) ——  Missing else iH(x<y) :
p=p+l; p=p+l; 5
return(x+p*y) else s
j p=p-1; 5
return(x+p*y)
§ Contents
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A misconception [2]

(a) Suggest at least one mutant M of foo that is guaranteed to reveal the error;

in other words M is an error revealing mutant.
(b) Suppose T is decision adequate for foo. Is T guaranteed to reveal the error?

(c) Suppose T is def-use adequate for foo. Is T guaranteed to reveal the error?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mutant operators

* A mutant operator O is a function that maps the program under test to a set

of k (zero or more) mutants of P.

M1

O(P) < M2
Mk

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mutant operators [2]

* A mutant operator creates mutants by making simple changes in the

program under test.

«  For example, the “variable replacement” mutant operator replaces a
variable name by another variable declared in the program. An “relational
operator replacement” mutant operator replaces relational operator wirh

another relational operator.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mutant operators: Examples

Mutant operator InP In mutant S

Variable replacement 7=x*y+1; Xx=x*y+1; g

z=Xx*x+1; ;g

Relational operator if (x<y) 1f(x>y) ;;

replacement if(x<=y) 3

Off-by-1 7=x*y+1; z=x*(y+1)+1; é’

z=(x+1)*y+1; g

Replacement by 0 7=x*y+1; z=0*y+1; 2

z=0; é

Arithmetic operator 7=x*y+1; 7=x*y-1; 3
replacement 7=x+y-1;
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Mutants: First order and higher order

« A mutant obtained by making exactly “one change” is considered first

order.

* A mutant obtained by making two changes is a second order mutant.
Similarly higher order mutants can be defined. For example, a second
order mutant of z=x+y; is x=z+y; where the variable replacement operator

has been applied twice.

* In practice only first order mutants are generated for two reasons: (a) to

lower the cost of testing and (b) most higher order mutants are killed by
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tests adequate with respect to first order mutants. [See coupling effect

later. ]
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Mutant operators: basis

* A mutant operator models a simple mistake that could be made by a

programmer

*  Several error studies have revealed that programmers--novice and
experts--make simple mistakes. For example, instead of using x<y+1 one

might use x<y.

e While programmers make “complex mistakes” too, mutant operators
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model simple mistakes. As we shall see later, the “coupling effect”

explains why only simple mistakes are modeled.
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Mutant operators: Goodness

* The design of mutation operators is based on guidelines and experience. It
1s Thus, evident that two groups might arrive at a different set of mutation
operators for the same programming language. How should we judge

whether or not that a set of mutation operators is “good enough?”

e Informal definition:

* Let S1 and S2 denote two sets of mutation operators for language L.

Based on the effectiveness criteria, we say that S1 1s superior to S2 1f
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mutants generated using S1 guarantee a larger number of errors

detected over a set of erroneous programs.
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Mutant operators: Goodness [2]

* Generally one uses a small set of highly effective mutation operators

rather than the complete set of operators.

*  Experiments have revealed relatively small sets of mutation operators for
C and Fortran. We say that one is using “constrained” or “selective”

mutation when one uses this small set of mutation operators.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Mutant operators: Language
dependence

* For each programming language one develops a set of mutant operators.

* Languages differ in their syntax thereby offering opportunities for making
mistakes that duffer between two languages. This leads to differences in

the set of mutant operators for two languages.

*  Mutant operators have been developed for languages such as Fortran, C,
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Ada, Lisp, and Java. [See the text for a comparison of mutant operators

across several languages. ]
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Competent programmer hypothesis
(CPH)

« (CPH states that given a problem statement, a programmer writes a
program P that is in the general neighborhood of the set of correct

programs.

* An extreme interpretation of CPH is that when asked to write a program
to find the account balance, given an account number, a programmer 1s
unlikely to write a program that deposits money into an account. Of

course, while such a situation is unlikely to arise, a devious programmer
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might certainly write such a program.
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Competent programmer hypothesis
(CPH) [2]

A more reasonable interpretation of the CPH i1s that the program written
to satisfy a set of requirements will be a few mutants away from a correct

program.

 The CPH assumes that the programmer knows of an algorithm to solve

the problem at hand, and if not, will find one prior to writing the program.

e Itis Thus, safe to assume that when asked to write a program to sort a list

of numbers, a competent programs knows of, and makes use of, at least
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one sorting algorithm. Mistakes will lead to a program that can be

corrected by applying one or more first order mutations.
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Coupling effect

«  The coupling effect has been paraphrased by DeMillo, Lipton, and
Sayward as follows: “Test data that distinguishes all programs differing
from a correct one by only simple errors is so sensitive that it also

implicitly distinguishes more complex errors”

»  Stated alternately, again in the words of DeMillo, Lipton and Sayward

..seemingly simple tests can be quite sensitive via the coupling effect."
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Coupling effect [2]

«  For some input, a non-equivalent mutant forces a slight perturbation in
the state space of the program under test. This perturbation takes place at
the point of mutation and has the potential of infecting the entire state of

the program.

e Itis during an analysis of the behavior of the mutant in relation to that of

its parent that one discovers complex faults.
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Tools for mutation testing

« As with any other type of test adequacy assessment, mutation based

assessment must be done with the help of a tool.

«  There are few mutation testing tools available freely. Two such tools are
Proteum for C from Professor Jos¢ Maldonado and muJava for Java from
Professor Jeff Offutt. We are not aware of any commercially available
tool for mutation testing. See the textbook for a more complete listing of

mutation tools.
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Tools for mutation testing: Features

» Atypical tool for mutation testing offers the following features.

= A selectable palette of mutation operators.
=  Management of test set T.

= Execution of the program under test against T and saving the output for

comparison against that of mutants.

=  Generation of mutants.
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Tools for mutation testing: Features

[2]

= Mutant execution and computation of mutation score using user identified

equivalent mutants.

= Incremental mutation testing: i.e. allows the application of a subset of

mutation operators to a portion of the program under test.

=  Mothra, an advanced mutation tool for Fortran also provided automatic

test generation using DeMillo and Offutt’ s method.
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Mutation and system testing

= Adequacy assessment using mutation is often recommended only for

relatively small units, e.g. a class in Java or a small collection of functions

in C.

= However, given a good tool, one can use mutation to assess adequacy of

system tests.

=  The following procedure is recommended to assess the adequacy of

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

system tests.
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Mutation and system testing [2]

= Step |: Identify a set U of application units that are critical to the safe and
secure functioning of the application. Repeat the following steps for each

unit in U.

= Step 2: Select a small set of mutation operators. This selection is best
guided by the operators defined by Eric Wong or Jeff Offutt. [See the text
for details. ]

= Step 3: Apply the operators to the selected unit.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Mutation and system testing [3]

= Step 4: Assess the adequacy of T using the mutants so generated. If

necessary, enhance T.

= Step 5: Repeat Steps 3 and 4 for the next unit until all units have been

considered.

=  We have now assessed T, and perhaps enhanced it. Note the use of

incremental testing and constrained mutation (i.e., use of a limited set of

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

highly effective mutation operators).
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Mutation and system testing [4]

=  Application of mutation, and other advanced test assessment and
enhancement techniques, 1s recommended for applications that must meet

stringent availability, security, safety requirements.
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Summary

=  Mutation testing is the most powerful technique for the assessment and

enhancement of tests.

=  Mutation, as with any other test assessment technique, must be applied

incrementally and with assistance from good tools.

= Identification of equivalent mutants is an undecidable problem--similar

the identification of infeasible paths in control or data flow based test

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

assessment.
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Summary [2]

*  While mutation testing 1s often recommended for unit testing, when done
carefully and incrementally, it can be used for the assessment of system

and other types of tests applied to an entire application.

=  Mutation is a highly recommended technique for use in the assurance of

quality of highly available, secure, and safe systems.
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Chapter 9

Test Selection, Minimization, and Prioritization
for Regression Testing

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Learning Objectives

What is regression testing?

How to select a subset of tests for regression testing?

How to select or minimize a set of tests for regression testing?

How to prioritize a set of tests for regression testing?
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?.1. What is regression testinge

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Regression testing

=

-

z

Version 1 Version 2 )
c

1.Develop P 4. Modify Pto P’ %
g

2. Test P 5.Test P’ for new functionality i
c

5

3.Release P 6. Perform regression testing on P’ -
to ensure that the code carried over §

from P behaves correctly ©

5

7.Release P’ =

o

O
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What tests to use?

Idea 1:

All valid tests from the previous version and new tests created to test
any added functionality. [This 1s the TEST-ALL approach.]

What are the strengths and shortcomings of this approach?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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The test-all approach

The test-all approach is best when you want to be certain that the the
new version works on all tests developed for the previous version

and any new tests.

But what if you have limited resources to run tests and have to meet
a deadline? What if running all tests as well as meeting the deadline
1s simply not possible?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test selection

Idea 2:

Select a subset Tr of the original test set T such that successful
execution of the modified code P’ against Tr implies that all the

functionality carried over from the original code P to P “is intact.

Finding Tr can be done using several methods. We will discuss two
of these known as test minimization and test prioritization.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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9.3. Regression test selection: The problem
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Regression Test Selection problem

Given test set T, our goal is to determine Tr such

that successful execution of P* against Tr

implies that modified or newly added code in P’
T e has not broken the code carried over from P.

'
Functionality i
retained across |

Note that some tests might become obsolete
when P is modified to P" . Such tests are not

included in the regression subset Tr. The task of

identifying such obsolete tests is known as test
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Regression Test Process

Now that we know what the regression test selection problem is, let us
look at an overall regression test process.

Test selection = —— Testsetup  —— Test sequencing

Test execution

|

Error correction ——  QOutput analysis

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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9.5. Test selection using execution frace
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Overview of a test selection method

Step 1: Given P and test set T, find the execution trace of P for each test in T.

Step 2: Extract test vectors from the execution traces for each node in the

CFGof P

Step 3: Construct syntax trees for each node in the CFGs of P and P’ . This

step can be executed while constructing the CFGs of P and P’.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Step 4: Traverse the CFGs and determine the a subset of T appropriate for

regression testing of P’ .
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Execution Trace [1]

Let G=(N, E) denote the CFG of program P. N is a finite set of nodes and E
a finite set of edges connecting the nodes. Suppose that nodes in N are
numbered 1, 2, and so on and that Start and End are two special nodes as

discussed in Chapter 1.

Let T, be the set of all valid tests for P" . Thus, T, contains only tests valid
for P . It is obtained by discarding all tests that have become obsolete for

SOme reason.
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Execution Trace [2]

An execution trace of program P for some test t in T, is the sequence of nodes in

G traversed when P 1s executed against t. As an example, consider the following E

program. ;‘ig
1 main(){ 1 int gl(int a, b){ 1 int g2 (int a, b){ %
2 int x,y,p; 2 int a,b; 2 int a,b; T
3 input (x,y); 3 1if(a+ 1==Db) 3 if(a==(b+1l)) %
4 if (x<y) 4 return(a*a); 4 return(b*b); %
5 p=gl(x,y); 5 else 5 else g
6 else 6 return(b*b); 6 return(a*a); S
7 p=g2(x,¥)i 7 } 7} £
8 endif =
9 output (p): §
10 end
11}
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Execution Trace [3]

Here is a CFG for our example program.
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Execution Trace [4]

Now consider the following set of three tests and the corresponding trace.

B

-

h:=x=1,y=3=> s

T=3b:=x=2,y=1 = ©

“ ©

hi=x=3,y=1=> S

3

£

X

Test (1) Execution trace (frace(t)) g
S

. . . o

4] main.Start, main.1l, main.2, gl.Start, gl.1, gl.3, gl .End, ™
main.2, main.4, main.End. 2

) main.Start, main.l, main.3, g2.Start, g2.1, g2.2, g2 . End, 2
main.3, main.4, main.End. =

. . . Q

f3 main.Start, main.1, main.2, gl.Start, gl.1, gl.2, gl .End, S

main.2. main.4. main.End.
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Test vector

A test vector for node n, denoted by test(n), is the set of tests that traverse node n

in the CFG. For program P we obtain the following test vectors.

Test vector (fest(n)) for node n

Function 1 2 3 4
main N, h, I3 h, 3 h h,h iz
gl h, 3 £} 3| —
g2 t t None —

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Syntax trees

A syntax tree is constructed for each node of CFG(P) and CFG(P"). Recall that

each node represents a basic block. Here sample syntax trees for the example

program.

main.1

return

*

N
a a

gl.2andg2.3

S
p call

palram parlam

X y

main.2

e — e —— o —— - —— - —— o — — - — — o — — o —— o — — o — — o —— — — ]

return

*
N
b b
gl.3andg2.2

N
- b
function
I a 1
gl
gl.l

Foundations of Software Testing 2E

Author: Aditya P. Mathur
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Test selection [1]

Given the execution traces and the CFGs for P and P’ , the following three steps

are executed to obtain a subset T' of T for regression testing of P’ .

Step 1 Set 7" = #. Unmark all nodes in G and in its child CFGs.

Step 2 Call procedure selectTests (G. Start, G'.Start’), where

G.Start and G’.Start’ are, respectively, the start nodes in G
and G'.

Step 3 77 is the desired test set for regression testing P’.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test selection [ 2]

The basic idea underlying the SelectTests procedure is to traverse the two CFGs

from their respective START nodes using a recursive descent procedure.

The descent proceeds in parallel and the corresponding nodes are compared. If
two two nodes N in CFG(P) and N' in CFG( P") are found to be syntactically
different, all tests in test (N) are added to T .

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Test selection example

Suppose that function gl in P is modified as follows.

1 int gl(int a, b){ <« Modified gl.
2 1int a, b;

3 1if(a-1==b) <« Predicate modified.
4 return(a*a),

5 else

6 return(b*b),

7 }

Try the SelectTests algorithm and check if you get T' ={t1, t3}.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Issues with SelectTests

Think:
What tests will be selected when only, say, one declaration is modified?

Can you think of a way to select only tests that correspond to variables in the

modified declaration?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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9.6. Test selection using dynamic slicing
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Dynamic slice

Let L be a location in program P and v a variable used at L.

Let trace(t) be the execution trace of P when executed against test t.

The dynamic slice of P with respect to t and v, denoted as DS(t, v, L), is the
set of statements in P that (a) lie in trace(t) and (b) effected the value of v at
L.

Question: What is the dynamic slice of P with respect to v and t if L is not in
trace(t)?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Dynamic dependence graph (DDG)

The DDG 1s needed to obtain a dynamic slice. Here is how a DDG G is

constructed.

Step 1: Initialize G with a node for each declaration. There are no edges

among these nodes.

Step 2: Add to G the first node in trace(t).

Step 3: For each successive statement in trace(t) a new node n is added to

G. Control and data dependence edges are added from n to the existing

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

nodes in G. [Recall from Chapter 2 the definitions of control and data

dependence edges.]

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Construction of a DDG: Example [1]

1 input (x, v); Let t: <X=2, y=4> 2
2 while (x < y){ =
3 if (fl(x)==)0 5
4 z=£f2(x); Assume successive values of x to be 2, 0 and 5, and for these g
else values f1(x) 1s 0, 2, and 3 respectively. S

5 z=£3(x); %
6 x=Ff4(x); trace(t)={1,2,3,4,6,7,2,3,5,6,7,2,8} <
7 w=f5(z); é
} S
8 output (w) . . .. 9
end Ignore declarations for simplicity. Add a node to G 5
corresponding to statement 1. §

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N
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Construction of a DDG: Example [2]

trace(t)={1,2,3,4,6,7,2,3,5,6,7,2,8}

1 input (x, vy);
2 while (x < ¥){ Add another node corresponding to statement 2 in trace(t). .
Z it fflz( ¥)==)0  Also add a data dependence edge from 2 to 1 as statement 2 is z
B=te(x) data dependent on statement 1. =
else 2
5 z=f3(x); %
6 x=fd4(x); %
7 w=f5(z2); é
X
} 2
8 output (w) Add yet another node corresponding to statement 3 in trace(t). §
end Also add a data dependence edge from node 3 to node 1 as "
statement 3 is data dependent on statement 1 and a control o
should be... o
_ edge from node 3 to 2. 5
3 if(f1(x)==0) 2
O
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Construction of a DDG: Example [3]

1 input (x, y); trace(t)={1,2,3,4,6,7,2,3,5,6,7,2,8} z
2 while (x < y){ . . . . =
3 if (£1(x)==)0 Continuing this way we obtain the following DDG for S
1 2=£2(x); program P and trace(t). e
else §
5 z=f£3(x); £
6 x=fd4(x); =
7 w=f5(z); é
} 5
8 output (w) ©
end g
S

should be...

3 if(f1(x)==0)
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Obtaining dynamic slice (DS)

Step 1: Execute P against test t and obtain trace(t).
Step 2: Construct the dynamic dependence graph G from P and trace(t).

Step 3: Identify in G node n labeled L that contains the last assignment to v.
If no such node exists then the dynamic slice is empty, other wise execute
Step 4.

Step 4: Find in G the set DS(t, v, n) of all nodes reachable from n, including
n. DS(t, v, n) 1s the dynamic slice of P with respect to v at location L and
test t.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Obtaining dynamic slice: Example

Suppose we want to compute the dynamic slice of P with respect to variable w
at line 8 and test t shown earlier.

We already have the DDG of P for t.

First identify the last definition of w in the DDG. This occurs at line 7 as
marked.

Traverse the DDG backwards from node 7 and collect all nodes reachable from
7. This gives us the following dynamic slice: {1,2,3,5,6,7, 8}.
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Test selection using dynamic slice

Let T be the test set used to test P. P’ is the modified program. Let n1, n2, ..nk
be the nodes in the CFG of P modified to obtain P’ . Which tests from T should

be used to obtain a regression test T' for P’ ?

Find DS(t) for P. If any of the modified nodes is in DS(t) then add t to T" .

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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In class exercise

Suppose line 4 in the example program P shown earlier is modified to obtain

P’ .
(a) Should t be included in T’ ?

(b) Will t be included in T  if we were to use the execution slice instead of

the dynamic slice to make our decision?

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Teasers [1]

You may have noticed that a DDG could be huge, especially for large
programs. How can one reduce the size of the DDG and still obtain the

correct DS?

The DS contains all statements in trace(t) that had an effect on w, the
variable of interest. However there could be a statement s in trace(t) that
did not have an effect but could affect w if changed. How can such

statements be identified? [Hint: Read about potential dependence.]

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd
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Teasers [2]

Suppose statement s in P is deleted to obtain P° ? How would you find

the tests that should be included in the regression test suite?

Suppose statement s is added to P to obtain P’ ? How would you find the

tests that should be included in the regression test suite?

In our example we used variable w to compute the dynamic slice. While

selecting regression tests, how would you select the variable for which

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

to obtain the dynamic slice?
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9.8 Test selection using test minimization
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Test minimization [1]

Test minimization is yet another method for selecting tests for regression

testing.

To illustrate test minimization, suppose that P contains two functions,
main and f. Now suppose that P is tested using test cases t1 and t2.
During testing it was observed that t1 causes the execution of main but

not of f and t2 does cause the execution of both main and f.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




Test minimization [2]

Now suppose that P* is obtained from P by making some modification
to f.

Which of the two test cases should be included in the regression test
suite?

Obviously there is no need to execute P° against t1 as it does not cause
the execution of f. Thus, the regression test suite consists of only t2.

In this example we have used function coverage to minimize a test suite
{tl, t2} to a obtain the regression test suite {t2}.
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Test minimization [3]

Test minimization is based on the coverage of testable entities in P.

Testable entities include, for example, program statements, decisions,

def-use chains, and mutants.

One uses the following procedure to minimize a test set based on a

selected testable entity.
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A procedure for test minimization

Step 1: Identify the type of testable entity to be used for test minimization.
Let el, €2, ..ek be the k testable entities of type TE present in P. In

our previous example TE is function.

Step 2: Execute P against all elements of test set T and for each test t in T

determine which of the k testable entities is covered.

Step 3: Find a minimal subset T of T such that each testable entity is

covered by at least one testin T .
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Test minimization: Example

Step 1: Let the basic block be the testable entity of interest. The basic

blocks for a sample program are shown here for both main and

function f1. %

Step 2: Suppose the coverage of the basic =

_ blocks when executed against three é;
main f1 b
1, Ctart D PRELD tests is as follows: E
3,4,5 A1) 3 (1) tl: main: 1,2, 3. f1: 1,3 §
f t f t : o

t2: main: 1, 3. f1: 1, 3 S

6 | (D A RED o
, . tl: main: 1,3.f1:1,2,3 gg
(3D 3

‘ Step3: A minimal test set for regression
@ @ testing 1s {tl, t3}.
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Test minimization: Teasers

Is the minimal test set unique? Why or why not?

Is test minimization NP hard? How is the traditional set cover problem in

mathematics related to the test minimization problem?

What criteria should be used to decide the kind of
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testable entity to be used for minimization?
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9.9 Test selection using test prioritization
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Test prioritization

Note that test minimization will likely discard test cases. There is a small
chance that if P* were executed against a discarded test case it would reveal

an error in the modification made.

When very high quality software is desired, it might not be wise to discard
test cases as in test minimization. In such cases one uses test prioritization.

Tests are prioritized based on some criteria. For example, tests that cover the
maximum number of a selected testable entity could be given the highest

priority, the one with the next highest coverage m the next higher priority

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

and so on.
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A procedure for test prioritization

Step 1: Identify the type of testable entity to be used for test minimization.
Lete,,e,, .., be the k testable entities of type TE present in P. In

our previous example TE is function.

Step 2: Execute P against all elements of test set T and for each test t in T.
For each t in T compute the number of distinct testable entities

covered.
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Step 3: Arrange the tests in T in the order of their respective coverage. Test

with the maximum coverage gets the highest priority and so on.
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Using test prioritization

Once the tests are prioritized one has the option of using all tests for
regression testing or a subset. The choice is guided by several factors
such as the resources available for regression testing and the desired

product quality.

In any case test are discarded only after careful consideration that does

not depend only on the coverage criteria used.

Copyright © 2013 Dorling Kindersley (India) Pvt. Ltd

Contents

Foundations of Software Testing 2E Author: Aditya P. Mathur P E A RS O N




92.10. Tools
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Tools for regression testing

Methods for test selection described here require the use of an

automated tool for all but trivial programs.

xSuds from Telcordia Technologies can be used for C programs to

minimize and prioritize tests.

Many commercial tools for regression testing simply run the tests
automatically; they do not use any of the algorithms described here for

test selection. Instead they rely on the tester for test selection. Such tool
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are especially useful when all tests are to be rerun.
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Summary [1]

Regression testing is an essential phase of software product development.

In a situation where test resources are limited and deadlines are to be met,
execution of all tests might not be feasible.

In such situations one can make use of sophisticated technique for selecting
a subset of all tests and hence reduce the time for regression testing.
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Summary [2]

Test selection for regression testing can be done using any of the following
methods:

Select only the modification traversing tests [based on CFGs].
Select tests using execution slices [based on execution traces].

Select tests using dynamic slices [based on execution traces and dynamic
slices].

Select tests using code coverage [based on the coverage of testable entities].
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Summary [3]

Select tests using a combination of code coverage and human judgment
[based on amount of the coverage of testable entities].

Use of any of the techniques mentioned here requires access to sophisticated
tools. Most commercially available tools are best in situations where test
selection is done manually and do not use the techniques described in this

chapter.
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Chapter 10

Unit Testing

[Under Construction]
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Chapter 11

Integration Testing

[Under Construction]
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