
Verifying Distributed Controllers with Local
Invariants

Yiqun Wang, Shengwei An, Xiaoxing Ma, Chun Cao, and Chang Xu
State Key Laboratory for Novel Software Technology at Nanjing University

Institute of Computer Software, Deptartment of Computer Science and Technology, Nanjing University

Nanjing 210023, Jiangsu, China

{wyqqrince, njuasw, xiaoxing.ma, caochun}@gmail.com, changxu@nju.edu.cn

Abstract—Controllers restrict systems to behave only in good
manners. Different from controlling monolithic systems where
controllers can be automatically synthesized from specifications,
controlling distributed systems often has to use distributed
controllers that are manually programmed. To ensure their
correctness, manually programmed controllers themselves need
to be formally verified. This task can be challenging due to
the complexity caused by the autonomy and asynchrony of
distributed controllers. The limited scalability of existing model
checkers also exacerbates the problem. In this paper we explore
the modeling and verification of distributed controllers using
Alloy. Besides resorting to the Small Scopes Hypothesis of the
Alloy methodology, we also leverage local invariant based modu-
lar verification techniques for better scalability. A local invariant
characterizes a logical relationship between a local sub-system
and its neighbors and abstracts away the concrete interactions.
These concrete interactions would otherwise explode the system
state space during verification. The approach is first illustrated
with the well-understood Two-Phase Commit protocol, and then
is applied to the verification of several dynamic software update
protocols, which gives an initial evidence of its effectiveness.

Keywords—Distributed Controllers, Alloy, Modular Verifica-
tion, Dynamic Software Update

I. INTRODUCTION

Software systems are increasingly ubiquitous in everyday

life. It is essential to guarantee that software should behave

in a correct and reliable manner as life might depend on

it. Controllers provide a way to ensure the systems behave

themselves. A (discrete event) controller [1], [2] restricts the

occurrence of actions it controls based on its observation of

the system’s actions that have occurred.

Controllers of monolithic systems can be synthesized auto-

matically from high-level specifications [3], [4]. However, it

can be challenging to control distributed systems [5]. Using

centralized controller is not an option in many cases, because it

would require consistent global snapshots of the system under

control, and taking global snapshots of distributed systems

could be very expensive [6]. Therefore, we prefer distributed

controllers. Each controller is deployed locally with a sub-

system. A controller observes actions of its sub-system and

communicates with other controllers if necessary. However,

we can hardly synthesize distributed controllers automatically

because of their complexity. Instead, they are created manu-

ally.

Verifying manually distributed controllers is highly moti-

vated, because faulty controllers may lead the system to behave

worse or in unexpected ways even if the controlled systems

are free from errors, which will mislead developers to check

faultless parts. As a representative of traditional verification

techniques, model checking is fully automatic and is capable

of producing a counterexample. However, it can handle very

limited instances of concurrent systems, mostly because of

the very large number of possible states and of possible

interleavings of executions. The state space of a concurrent

system with distributed controllers booms even faster, since

distributed controllers ensure that the system meets global

properties, which requires cooperation and communication of

distributed controllers. It cannot be decomposed into subprob-

lems where each part of the global properties is verified locally

and separately.

To address that, we give an exercise of verifying distributed

controllers with Alloy [7]. Alloy is a lightweight specification

modeling tool and it has been successfully applied to a

wide range of application domains [8], [9], [10], [11]. With

Alloy, the scopes of verification could be restricted since the

designers of Alloy justify the decision work within limited

scopes through an appeal to Small Scope Hypothesis [12].
While bounded verification with a certain scope is typically

faster than exhaustive verification, it can still be a daunting

task for distributed systems with unlimited behaviors. Hence

we intend to integrate modular verification [13], [14], [15] with

Alloy to support better scalability. In our approach, we first

devise some local invariants. A local invariant characterizes

a logical relationship between a local sub-system and its

neighbors and abstracts away the concrete interactions. Then

we leverage them in the specification to make the verification

process more efficient.

We use controllers in the Two-Phase Commit (2PC) pro-

tocol [16] and several dynamic software update (DSU) pro-

tocols to demonstrate our approach. The 2PC protocol is a

classic transaction commit protocol which helps to ensure the

consistent termination of a number of transactions, whether to

commit or abort. The transaction should be committed only

if all parts of system are willing to commit it and should be

aborted if any part of system chooses to abort it. The 2PC

protocol is widely utilized since it can achieve its goal even

2016 IEEE International Conference on Software Quality, Reliability and Security

978-1-5090-4127-5/16 $31.00 © 2016 IEEE

DOI 10.1109/QRS.2016.24

120

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

in many cases of system failures involving process failures and

communication failures. DSU, unlike offline update, updates

the running systems on the fly. DSU is not trivial because it

is difficult to guarantee the correctness, since it might lead to

misbehaviors that never present in either versions. To ensure

the correctness of DSU, target component should reach a safe

state. In the past decades, many algorithms and protocols [17],

[18], [19] have defined what a safe state for DSU is.

This paper has two intended contributions. First, we propose

a carefully designed modularization technique to improve the

scalability of the verification of distributed controllers in Alloy.

We devise some local invariants which characterize logical

relationships between each local sub-system and its neighbors,

and leverage them for efficient verification. Second, our case

study provides a formal verification of the correctness of

several DSU protocols [17], [18], [19], whose original proofs

are semi-formal.

The rest of paper is organized as follows. Section II in-

troduces backgrounds of controllers and Alloy. Section III

gives the overview of our approach and uses 2PC protocol to

demonstrate our approach. Section IV applies our approach to

DSU protocols. Section V discusses related work and section

VI concludes the paper.

II. BACKGROUND

A. Controllers

Consider a system N represented by all its possible be-

haviors. This system can be viewed as a plant to be con-
trolled [20]. The plant’s behaviors satisfying some properties

are defined as good ones. A controller M is another system

restricting the plant to behave only in good ways. Follow-
ing [21], an action of the plant is monitored/controllable if
such action is uncontrollable/controllable by the controller.

Controller restricts the occurrence of controllable actions

based on its observation of the plant’s actions.
As a simple example, consider the system in Fig. 1a. A

node denotes a state of system and an edge denotes an action.

Suppose we want to use a controller to ensure that system

cannot have action a but must have action c1. The controller in
Fig. 1b is a solution. The dashed action a cannot be controlled
by the controller while others can. It forbids the appearance

of action a by restricting transition from s1 to s3, since if the
system has reached state s3, action a is about to happen. In
addition, the controller prohibits the transition on action c2
from s2 to s1 to guarantee the appearance of action c1.

s2 s1 s3

c2

c1, c2

c1 a

(a) System

s1 s2

c2

c1

(b) Controller

Fig. 1: A controller example

B. The Alloy Specification Language

Alloy is a lightweight declarative relational modeling tool.

It consists of the Alloy language and the Alloy Analyzer. The
Alloy language is simple but expressive, and its syntax, based
on first-order logic, is designed to make it easy to build models

incrementally. The Alloy Analyzer is a solver that takes the
specification of a model and locates satisfiable instances by

converting it into SAT. A simple object model of binary tree

is presented as follows.

sig Key {}
sig Tree { root : one Node}
sig Node {
left, right : lone Node,
value : Key,

}

fun parent(): Node->Node {~(left + right)}

fact {
all n : Node | n.right != n and n.left != n
all n : Node | some n.(left + right) implies n.

left != n.right
all n : Node | (some t : Tree | t.root = n and no

n.parent) or one n.parent
}

pred NoDisjointValue {
no disj n1, n2 : Node | n1.value = n2.value

}

assert Acyclic {no n : Node | n in n.^parent}

run NoDisjointValue for 5
check Acyclic for 10

Fig. 2: A simple model of binary tree in Alloy

The Alloy language uses signature to indicate the existence
of disjoint sets or atoms. This object model consists of three

signatures, Key, Tree and Node. The Key signature contains
no field and is used here to represent a string value. The Tree
signature contains a field root which is a binary relation that
maps every tree to exactly one node. The Node signature
contains three binary relations. The left and right relations
map nodes to their children and value maps nodes to keys.
The qualifier lone indicates that every node is related to zero
or one node with the left and right relations.
The model also includes a function, a fact, a predicate and

an assertion. In general, an Alloy function denotes a relation
between its arguments and the result. The parent function
returns a binary relation maps nodes to nodes. We can use

n.parent to represent the parent of n. The constraints in the
fact are always assumed to hold. In above model, we assume

that every node cannot have a left or right relation to itself
and that its left and right are disjoint and that every node
has one parent except the root node. The constraints in the

predicate are assumed to hold when invoked. For instance, the

binary tree model might require that the value of every node is

unique. The constraints in assertion are the intended properties

in the model, i.e., properties to be checked.

121

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

A key advantage of using Alloy as modeling language is that

object models can be analyzed fully automatically. Although

first-order logic is undecidable, it is possible to analyze Alloy

models by restricting the search space to a certain finite scope.

The analysis can be used either to explore the model by

generating sample instances, or to check properties by trying

to generate counterexamples. The Alloy Analyzer achieves this
by converting the model into a propositional CNF formula, and

exhaustively searching for instances within user-defined scope.

Running the last two commands in above model, we can get

instances where the value of every node is unique and check

the property that no cycles exists in a binary tree.

The core of the Alloy Analyzer is implemented as a model-
finder. In order to ensure the model-finding problem is decid-

able, the Alloy Analyzer performs model-finding over restricted
scopes by resorting to Small Scope Hypothesis [12], which
shows that a high proportion of bugs and errors can be found

by searching all instances within some small scopes. Hence

exhaustive searching and checking within a small scope are

worth pursuing.

III. OUR VERIFICATION APPROACH

A. Approach Overview

The general architecture of our approach consists of two

parts, controlled system and controllers. An example is shown

in Fig. 3. Each rectangle denotes a local controlled system,

each circle denotes a sequence of its actions, controllers are

denoted by arcs. Each local controlled system communicates

with others by passing messages, denoted by little triangles.

C1 C2

C3

M1 M2

M3

T1 T2

T3 T4

Fig. 3: A distributed system example

Consider controlled system N consists of a set of compo-

nents {C1, C2, . . . , Cn}. Each component can be regarded as
a labelled transition system (LTS) (S, s0, L,Δ), where

• S is a set of the component’s states.
• s0 ∈ S is the initial state.
• L is a set of action labels. Local action means local

computation, remote action indicates exchanging data

through messages.

• Δ is a set of transition relations (S × L × S). The fact

that (si × lj × sk) ∈ Δ is written as si
lj−→ sk. Specially,

si
lj−→ si+1

lh−→ si+2 can be simpled as si
lj lh−−→ si+2.

It is assumed that LTS is action-deterministic. This entails
that for any state s ∈ S and any action l ∈ L, s has most

one outgoing transition which with action l. Formally, s
l−→ s′

and s
l−→ s′′ implies s′ = s′′. The execution of a LTS can be

represented by a continuous sequence of actions (the initial

state can be ignored). We can use C1 ‖ C2 ‖ · · · ‖ Cn to

denote N .
In our architecture, controlled system is an asynchronous

concurrent system. The assumed communication pattern is

such that each pair of communicating components is connected

by two simple channels. The ordering among the messages

is nondeterministic which results in messages arriving in

unpredictable order. As a consequence of this nondeterminism,

controlled system may show different behaviors for the same

configuration and environment. An execution of controlled

system can be considered as an interleaving of the collection

of each component’s executions. For example, in Fig. 3, each

component’s executions might be

C1 : 〈Sm1
, LC, Sm2

, Rm6
, Rm4

〉
C2 : 〈Rm1

, LC, Sm3
, Rm5

, LC, Sm6
〉

C3 : 〈Rm2
, Rm3

, LC, Sm4
, Sm5

〉
LC stands for local calculation. Smi

stands for the action of

sending a message mi. Rmi
stands for the action of receiving

a message mi. We assume there exists four types of messages:

• create message: a message calling remote actions
• finish message: a message carrying the consequence of
remote actions

• data message: a message denoting exchange of data
• ack message: a message of acknowledgment
In the execution of controlled system, action Sm1

should

happen before Rm1
since message m1 cannot be received

before it has been sent. Moreover, Sm1
should happen before

Sm2 , as Sm1 is in front of Sm2 in the execution of C1.

To ensure a property ϕ, we define a set of controllersMϕ =
{M1,M2, . . . ,Mn}. Intuitively, a set of correct controllers
work together with their respective components to ensure that

no traces will violate ϕ, denoted by ‖ni=1(Ci ‖ Mi) � ϕ. For
simplicity, we use N ‖ Mϕ to denote ‖ni=1(Ci ‖Mi).

Definition 1. Given a property ϕ and a system N , a set of
controllersMϕ is correct if we have N ‖ Mϕ � ϕ.

The scope of verifying controllers might be unbounded as

the system’s size can be arbitrarily large. However, with the

concept of Small Scope Hypothesis in Alloy, the scope of
verification could be restricted by parameterizing the number

of components, controllers and messages.

B. Modeling and Verifying Two Phase Commit Protocol

We use the well-understood 2PC protocol [16] to illustrate

our approach. In the 2PC protocol, a transaction is performed

by a collection of processes called resource managers (RMs),
each executing on a different node. The fundamental require-

ment is that all RMs must eventually agree on whether the

transaction is committed or aborted. The goal of the 2PC

protocol is to reach committed or aborted state for all RMs.

122

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

The 2PC protocol uses a transaction manager (TM) process
to coordinate the decision-making procedure. TM has follow-

ing state: init, preparing, committed, and aborted. TM is in

init and all RMs are in working state at the beginning. The
2PC protocol starts when an RM enters prepared state and

sends a Prepared message to TM. Upon receiving the message,
TM enters preparing state and sends Prepare messages to
other RMs. Upon receiving a Prepare message, an RM will

enter prepared state and reply a Prepared message. When TM
has received Prepared messages from every RMs, it enters

committed state and sends Commit messages to all RMs. Each
RM enters committed state upon receiving Commit message.
An RM can spontaneously enter aborted state and send an

Abort message to TM if it is in working state, and TM can

spontaneously enter aborted state unless it is in committed
state. When TM aborts or it receives an Abort message from
RM, it sends Abort messages to all RMs. Upon receiving
of such a message, an RM enters aborted state. The state

transition diagram for RM is in Fig. 4 (sp stands for sending
Prepared message, sa stands for sending Abort message, rc
stands for receiving Commit message, ra stands for Abort
message).

working

prepared

committed aborted

sp

rc

ra

sa

Fig. 4: State transition diagram of RM

The details of the 2PC protocol is implemented in a set of

distributed controllers. To precisely model distributed systems,

time is a significant and indispensable notion. However, Alloy

has no built-in notion of time, so we leverage tick-based

modeling [9] to represent the order of actions. This total

order can be defined by applying ordering functions from the

Alloy library to signature Tick. It is worth mentioning that
the total order neither represents a consistent global state of

a distributed system nor synchronizes distributed controllers.

Instead, it represents the execution of a distributed system by

interleaving each component’s execution (see the constraints

in Fig. 8 and Fig. 15).

open util/ordering[Tick]
sig Tick{}

Fig. 5: Signature of Tick

We assume that both RM and TM are elements of signature

Process (see Fig. 6), and the controller of a Process will record

a state. For simplicity, TM has three states: init, committed
and aborted; RM has four states: working, prepared, com-
mitted and aborted. What’s more, the controller of TM will

also manage a set called tmPrepared to record the RMs whose
states are prepared.
Messages can be lost or duplicated, but not corrupted.

Besides, the delay of message is nondeterministic. To simplify

model, we only consider three types of messages: Prepared,
Commit and Abort. We eliminate the Prepare message sent
by an RM and assume that all RMs can spontaneously issue

Prepared messages. We also ignore the Abort messages sent
by an RM when it decides to abort. Such a message would

cause the TM to abort the transaction, represented by the TM

spontaneously deciding to abort1.

abstract sig PState {}
one sig init, working, prepared, committed, aborted

extends PState{}
abstract sig Process { state : Tick -> PState }
one sig TM extends Process {
tmPrepared : Tick -> set RM

}
sig RM extends Process{}
abstract sig MsgType{}
one sig Prepared, Commit, Abort extends MsgType{}
sig Message {
type : MsgType,
sender : Process,
receiver : Process,
sendTime : Tick,
receiveTime : lone Tick

} {
sender != receiver
receiveTime in Tick implies sendTime in

receiveTime.prevs
}

Fig. 6: Snapshot of 2PC model

We consider the execution of system consists of the follow-

ing event:

• TM has received Prepared messages from all RMs and

sends Commit messages to all RMs.
• TM spontaneously decides to abort transaction and sends

Abort messages to all RMs.
• TM receives a Prepared message from a RM.

• RM spontaneously sends a Prepared message to TM.
• RM spontaneously decides to abort.

• RM receives a Commit message from TM.

• RM receives a Abort message from TM.

For example, if an RM spontaneously decides to abort, its

state should transit from working to aborted. The state of
other RMs and TM should remain unchanged. Since we ignore

the Abort message sent by an RM, no message is being sent
right now. The tmPrepared set is not changed as well.

1For more details: https://lab.artemisprojects.org/wyq/AlloyCode

123

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

pred RMChooseToAbort(rm : RM, t : Tick) {
rm.state[t.prev] = working
rm.state[t] = aborted

all rm’ : RM - rm | rm’.state[t] = rm’.state[t.
prev]

TM.state[t] = TM.state[t.prev]
TM.tmPrepared[t] = TM.tmPrepared[t.prev]
no m : Message | m.sendTime = t

}

Fig. 7: Predicate of a RM chooses to abort transaction

Then an execution of the 2PC protocol can be specified as:

pred running2PC {
Init
all t : Tick - first | TMCommit[t] or TMAbort[t]

or {some rm : RM | TMRcvPrepared[rm, t] or
RMPrepare[rm, t] or RMRcvCommitMsg[rm, t] or
RMChooseToAbort[rm, t] or RMRcvAbortMsg[rm, t
]}

}

Fig. 8: Predicate of running the 2PC protocol

The controllers of the 2PC protocol chooses to commit the

transaction if the RM is in committed or to abort if its state
is aborted. In order to ensure the consistent termination of
a transaction, two safety properties (ϕ of the 2PC protocol)

should be guaranteed:

• Stability: Once an RM has entered committed or aborted
state, it remains in that state forever.

• Consistency: It is impossible for one RM to be in com-
mitted state and another to be in aborted state.

In Fig. 9, we assume that the states of controllers will not

violate stability and consistency:

pred consistency {
all t : Tick | no disj r1, r2 : RM | r1.state[t] =

aborted and r2.state[t] = committed
}

pred stability {
all t : Tick, rm : RM | rm.state[t] = committed

implies rm.state[t.nexts + t] = committed
all t : Tick, rm : RM | rm.state[t] = aborted

implies rm.state[t.nexts + t] = aborted
}

assert safetyOf2PC {
running2PC implies (consistency and stability)

}

Fig. 9: Safety property of 2PC protocol

We conducted our experiments on an eight-core machine

with Intel Core i7 CPU @3.40GHz and 4GB RAM, running

Windows 8. Table I shows that controllers of the 2PC proto-

col satisfy consistency and stability under different bounded
scopes. The scope of these verification is not the number of

RMs but the number of all signatures (Process, Tick and

Message). The experimental result shows that the controller

implementation of the 2PC protocol is correct. Therefore our

approach to verifying distributed controllers works.

TABLE I: Result of 2PC controllers

Scope #Clauses Time(s) Counterexample
8 49911 8.188 No
9 70717 32.690 No
10 95265 47.598 No

C. Local Invariant Based Modular verification

However, the verification might be overwhelming even in

some reasonable scopes. Although we cannot decompose the

verification of global properties into subproblems of smaller

ones, we can devise some local properties and use them to help

verifying global ones. The local properties usually describe the

execution in a more concise way by formalizing the logical

relationships between sub-systems. They can be considered as

an assumption when verifying other parts of the system, which

presents the basic idea of modular verification [13], [14], [15].

In LTS, we let Act(s) = {l ∈ L | ∃s′ ∈ S ·s l−→ s′} denotes
the set of actions that are enabled in state s. For any state s and
l ∈ Act(s), let l(s) denotes the unique l-successor of s, i.e.,
s

l−→ l(s). More generally, if s
l1−→ s1

l2−→ s2
l3−→ . . .

ln−→ sn,

we say that s
Li−→ Li(s) where Li = l1l2 . . . li−1li. We give a

definition of independent actions.

Definition 2. Let a LTS (S, s0, L,Δ) be an action-
deterministic transition system with l1, l2 ∈ L, l1 �= l2.

• l1 and l2 are independent if for any s ∈ S with l1, l2 ∈
Act(s):

– l2 ∈ Act(l1(s))
– l1 ∈ Act(l2(s))
– l1(l2(s)) = l2(l1(s))

• l1, l2 are dependent if l1 and l2 are not independent.

According to Def. 2, it is obvious that for each pair of

independent actions, the final state has nothing to do with the

order of their occurrences. For example in Fig. 10, s1 can
reach s′2 by executing action sequence ll

′ or l′l.

s1

s′1 s2

s′2

l′ l

l l′

Fig. 10: Path of independent action

Given a LTS where each pair of actions are independent, we

split the state space into two parts according to a specific (resp.

set of) action l ∈ L (resp. l ⊆ L). One part denoted by H(l)
stands for l has already happened, and the other part denoted

124

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

by N(l) stands for l has not happened. We intend to find some
properties, denoted by Pl, that lie in either H(l) or N(l), i.e.,
they are "frozen" unless l is occurring. Algorithm 1 shows

how to get H(l), N(l) and Pl. Our intention of Algorithm 1

is explained as follows.

Algorithm 1 Get H(l), N(l) and Pl of l

Input: The action l, a LTS = {S, s0, L,Δ}
Output: H(l), N(l) and Pl

1: Pl = ∅;
2: N(l) = s0, H(l) = l(s0);

3: Obtain Pl when s0
l−→ l(s0) happen;

4: S = (L− l)(s0);
5: while N(l) changed do
6: S′ = S, S = ∅;
7: for s ∈ S′ do
8: for l′ ∈ Act(s) do
9: S = S ∪ l′(s);
10: N(l) = N(l) ∪ l′(s);
11: H(l) = H(l) ∪ l(l′(s));
12: for p ∈ Pl do
13: if p remains when l′(s) l−→ l(l′(s) then
14: Pl = Pl − p;
15: end if
16: end for
17: end for
18: end for
19: end while

First, Pl is initialized when l occurs at state s0 by observing
changes of memory, disk or other user-defined variables.

Algorithm 1 removes an element p ∈ Pl if it remains when

another transition on l is occurring, as Pl cannot belong to

both N(l) and H(l). Finally, the rest of the elements in Pl

is what we want. Pl can describe some characteristics in LTS

referring to action l. Suppose we gather sufficient number of
actions or select several distinguishable ones among them, the

execution of LTS could be expressed more concisely using Pl.

Thus we might achieve an efficient verification using them as

an environment assumption in the model.
As it is hard to guarantee the independence of actions in

a distributed system, we separate it into several blocks where

each pair of actions is independent. Intuitively, sending and

receiving of messages should be separated into different blocks

since a message cannot be received before it is sent.

D. Local Invariants in the 2PC Protocol
As we discussed above, in the 2PC protocol, TM sends

Commit messages only if it has received Prepared messages
from all RMs, otherwise it sends Abort messages. We see
that the action of TM sending messages is dependent to the

action of RM sending messages. In order to apply modular

verification, we split the 2PC protocol into two parts. In one

part, only TM is capable of sending messages, and in the other

part, only RM is. These two parts just correspond with the two

phases of the 2PC protocol:

• Phase1: TM attempts to prepare all the RMs to take

the necessary steps for either committing or aborting

transactions.

• Phase2: Based on the results, TM decides whether to

commit or abort the transaction, and notifies the result

to all RMs. Then each RM follows with needed actions

(commit or abort) with its location resources and its

respective portions in output.

In Phase1, only RM is allowed to send messages. Upon

sending messages, the state of RM will become prepared
or aborted; all messages are received by TM, it will add
corresponding RM to set tmPrepared upon receiving each

Prepared messages. In other words, the transition of state of
RM is only related to its communication with TM. Similarly,

in Phase2, TM will broadcast messages to all RMs. The state

transition of RM is only allowed when receiving such message.

If we choose l are actions of RM’s sending messages in Phase1
and actions of RM’s receiving messages in Phase2, constraints
of Pl represent RM’s state transition.

pred StateTransition (rm : RM) {
let m_r = {m : Message | m.receiver = rm} |
let t2 = m_r.receiveTime | {
m_r.type = Abort implies rm.state[t2] =

aborted
m_r.type = Commit implies rm.state[t2] =

committed
{no m : Message | m.sender = rm} implies {
all t : Tick - first - t2 | rm.state[t.prev]

= working implies rm.state[t] in (
working + aborted) else rm.state[t] = rm
.state[t.prev]

} else {
let t1 = {m : Message | m.sender = rm}.

sendTime | {
all t : Tick - first - t2 - t1 | rm.state[

t] = rm.state[t.prev]
rm.state[t] = prepared
rm.state[t.prev] = working

}
}

}
}

Fig. 11: Predicate of state transition in the 2PC protocol

To be specific (see Fig. 11), in Phase1, its state is working
until it decides to commit (state becomes prepared) or abort
(state becomes aborted); in Phase2, its state will transit to
committed when receiving Commit message or to aborted
if it is Abort message. The rules of state transitions will be
specified as the assumption of controllers’ behaviors. Simi-

larly, we assume that the new specification will not violate

consistency and stability as well (see Fig. 12), the result is
shown in Table II.

TABLE II: Result of verification in local invariants

Scope #Clauses Time(s) Counterexample
8 24026 4.141 No
9 32366 6.782 No
10 40854 11.189 No

125

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

assert SafetyOf2PCinLocalInvariants {
(Init and StateTransition) implies (consistency

and stability)
}

Fig. 12: Assertion of verification in local invariants

In Table II, it shows that after integrating modular verifica-

tion, controllers of the 2PC protocol will also guarantee safety
properties. We extend the comparison to different scopes, the

result is shown in Fig. 13.

6 7 8 9 10 11 12 13 14 15 16
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Scope

V
er
if
y
in
g
T
im
e
(s
)

Time of Event2PC

Time of State2PC

0

60

120

180

240

300

360

420

N
u
m
b
er
o
f
C
la
u
se
s
(t
h
o
u
sa
n
d
s)

Time of 2PCstate

Time of 2PCevent

Number of 2PCstate

Number of 2PCevent

Fig. 13: Comparison of 2PCevent and 2PCstate

In Fig. 13, 2PCevent represents the non-modular approach

while 2PCstate represents the modular one. It shows that

2PCstate is more efficient than 2PCevent in both the size of

specification and the time of verification. On increasing the

number of scope, the effect becomes more phenomenal.

IV. MODELING AND VERIFYING DSU PROTOCOLS

In this section, we use controllers in DSU protocols to

demonstrate our approach. We first talk about the reason to

choose them as subjects. After we introduce these protocols,

we show the modeling details in Alloy. We then give a result of

verification and some improvements by using local invariants.

The reason why we choose DSU protocols as our subjects

is as follows. First, the problem of DSU (of CBDS) contains

typical characteristics of distributed systems. The basic artifact

is a component, it holds services that can be accessed remotely.

Components may also lean on services provided by other

components. In addition to remote communication, compo-

nents also need local calculation. Second, DSU protocols

can be considered as a representative problem of distributed

controllers. The target component is allowed to update when

it meets certain conditions [17], [18], [19]. Third, the details

of these protocols are not trivial. The consistency of them

depends on the cooperation of each local part, any mistakes

can result in an unexpected consequence. A precise imple-

mentation of controllers could help to discover the essential

cause of an inconsistency. Last but not least, original proofs of

these protocols are semi-formal, our approach could provide

a formal verification of their correctness.

A. Dynamic Software Update Protocol

Normally, the update of running program consists of shut-

ting down the system, installing new version and restarting

the system. However, in some specific domains, such as finan-

cial transaction processing and transport controlling, software

should be online 24/7 and non-stopping service is mandatory.

It is therefore necessary to update the existing systems at

runtime. When compared to the offline update, DSU is more

difficult to guarantee the correctness, because it might lead to

misbehaviors that would never present in old or new version

of the program. To ensure the correctness, target component

must satisfy a sufficient condition when updating. In the past

decades, many algorithms and protocols [17], [18], [19] have

defined what a sufficient condition for DSU is.

Kramer et al. [17] proposed a criterion called quiescence
as a sufficient condition for a node to be safely manipulated

during dynamic reconfigurations. Vandewoude et al. [18] pro-
posed a definition of tranquillity to address the high disruption
(the interruption of system’s services) of quiescence protocol.
However, the limitation of tranquillity protocol is that it mainly
focuses on local consistency [19]. Ma et al. [19] used the
notion of version consistency as a sufficient criterion for the
safety of DSU. They also introduced a management framework

(VC) on dynamic edges that are labelled as either future or
past. A future (resp. past) edge C → C ′ implies that C might

request (resp. have already requested) a service provided by

C ′ in the future (resp. past). They claimed that a component
C is said to be free iff. there is not a pair of future/past edges
entering C. They proved that a dynamic update of a component
C satisfies version consistency when C is free.

B. Modeling in Alloy

For different DSU protocols, model of controller imple-

ments details of protocols, and model of controlled system

describes its execution. We also leverage Tick in the model

of DSU protocols.

Version is the fundamental concept in DSU protocols. To

put it simply, we define two versions which represent either old

or new version. The version of a component will not change

unless it is updated.

abstract sig Version{}
one sig Ver_0, Ver_1 extends Version{}

Fig. 14: The signature of Version

A component represents a local controlled system. The

service of a component is represented by transactions. If

a transaction T1 of component A calls another transaction

T2 of component B, we say that A is static independent

to B. A transaction can only be hosted by one compo-

nent but a component can provide an arbitrary number of

transactions (see Fig. 15). Each transaction has three states:

OFFLINE,ONLINE and END. We assume:
• All transactions are OFFLINE at the very beginning.

126

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

sig Component{
transaction: set Transaction,
version: Tick → Version,
staticEdge: set Component,

}

abstract sig TxState{}
one sig OFFLINE, ONLINE, END extends TxState{}
sig Transaction{
hostComponent: Component,
subTransaction: set Transaction,
hostVersion: Version,
state: Tick → TxState

}

abstract sig MsgType{}
one sig INIT, FINISH, ACK_I, ACK_F extends MsgType{}
sig Message {
from: Component,
to: Component,
sender: Transaction,
receiver: Transaction,
type: MsgType,
sendTime: Tick,
receiveTime: Tick

} {
from!=to
sender!=receiver
from=sender.hostComponent
to=receiver.hostComponent
sendTime in receiveTime.prevs

}

pred ControlledSystem {
running
all t : range[Root.beginTime.next, Root.endTime.

prev] |
Update.updateTime = t or some msg : Message |

msg.sendTime = t or msg.receiveTime = t
}

Fig. 15: A snapshot of controlled system

• A transaction T can be initiated by an outside client or

by its parent-transaction T ′. T is called root-transaction
in the former case and a sub-transaction (of T ′) in the
latter case. After initiation, its state becomes ONLINE.

• The hostVersion of a transaction represents the version of
its hosted component when it is initiated.

• Whenever a transaction is ONLINE, it can initiate its
sub-transaction whose status is OFFLINE.

• A transaction is not finished until all its sub-transactions
are finished.

• When a transaction is finished, its state becomes END.
• A process of controlled system begins with the initiation

of root-transaction and ends when root-transaction is

accomplished.

The transactions communicate by passing messages. To

simplify model, a transaction cannot send messages to another

one if they share the same component, otherwise these two

transactions can be merged into a bigger one and this internal

message can be ignored. In order to indicate the delay in

processing messages, we let a message be sent at some time

and received by others at any later time. Besides, the messages

is not lost or corrupted.

Since DSU protocols are not interested in the business

logics, we only consider four types of message: INIT and

FINISH, representing initiation or accomplishment of a trans-
action; ACK_I and ACK_F, representing the reply. The reason
why we involve ACK message is that without them, the

asynchrony of distributed systems will cause incorrect state

of controllers, which might result in an unexpected fault. We

use the example in Fig. 3 to explain our intention. T1 is C1’s

transaction and root-transaction, T2 is C2’s transaction, T3 and

T4 are C3’s transactions. Suppose we are using VC protocol

to update C3. At the beginning, when T1 is ONLINE, it will
initiate T2 and T3, after that C1 knows it will not use C2

and C3, so C1 removes the future edges to C2 and C3. If T2

receives the message earlier, it becomes ONLINE and initiates
T4. T4 receives the message and begins with old version of C3.

After the termination of T4 and T2, the INIT message from

C1 to C3 has not been received yet. Now we can update C3

component to new version since it is free now. However, after
update, T3 will eventually receive the INIT message and start

with new version of C3. Under the circumstances, T4 and T3

violate consistency. This unexpected result comes from wrong

implementation of controllers, the management of dynamic

edges does not correspond with the rules of VC protocol. To

avoid this, ACK messages should be involved in specifications.

The signature of update consists of a target component,
the update time and the new version of the target component,

which is different from the original version.

one sig Update{
component: Component,
updateTime: Tick,
newVersion: Version

} {newVersion != component.version[first]}

Fig. 16: A snapshot of DSU controllers

Quiescence protocol [17] allows dynamic update only when

the target component is quiescent. A component is quiescent
iff. all of its dependent components is passive. In our model,
a component is passive iff. none of its transaction is ONLINE
right now.

Tranquillity [18] and VC [19] protocols are similar. Tran-

quillity protocol only leans on whether a component has been

used or will be used by one adjacent component, but VC

protocol focuses on all dependent components. Combining

the management algorithm [19] in VC protocols with our

controlled system, each controller will be managing four edges

set: future-in, future-out, past-in and past-out. Future-in of

component C records the components which have a future

edge pointing to C, future-out records the components to
which C have a future edge pointing, past-in and past-out
record the past edges.

For detailed information, when a transaction T of C initiates

its sub-transaction T ′ of C ′, C ′ would remove C from its

future-in upon receiving message if all its transactions have
been already initiated and reply a ACK_I message. After C

127

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

receives this reply, C might remove C ′ from future-out unless
C will use C ′ in the future. When T ′ ends, C ′ sends a FINISH
message to C. On receiving this message, C adds C ′ to its
past-out set and replies a ACK_F message. After C ′ receives
this reply, it adds C to its past-in set. Thus a component

is quiescent, tranquil or free can be specified as an Alloy
predicate:

pred Quiescent (t: Tick,c: Component) {
Dependent[c] in Passive[t]
c in Passive[t]

}

pred Freeness (t: Tick,c: Component) {
!(some FutureIn[t,c] and some PastIn[t,c])

}
pred Tranquil (t: Tick,c : Component) {
no c’: Adjacent[c] |
c’ in FutureIn[t,c] and c’ in PastIn[t,c]

}

Fig. 17: Specifications of different conditions

C. Verification of DSU protocols
The controllers of DSU protocols only allow the update to

happen when the target component has reached the safe state

at the update time. In order to check the correctness of each

DSU protocols, we assume that any dynamic update will not

violate version consistency [19], which indicates the global
consistency (ϕ) for DSU protocols. It says that each pair of

transactions that share the same component cannot have more

than one versions during one process. To simplify verification

process, we just check the transactions of the target component

since other component’s versions always remain unchanged.

Version consistency and the correctness of DSU protocols can
be specified:

pred VersionConsistency {
all disj tx,tx’: Update.component.transaction |
tx.hostVersion=tx’.hostVersion

}

assert DSUCorrectness {
ControlledSystem and Controllers implies

VersionConsistency
}

Fig. 18: Assertion of correctness of DSU protocols

During verification, a big scope is dispensable yet a small

one might be insufficient to uncover potential errors. Unlike

the 2PC protocol, there exists some relations between the

number of each signature in DSU protocols (explained in

IV-B). We set the scope of verification is 3 Components and

4 Transactions for tradeoff. The result of three protocols is

shown below.

TABLE III: Result of counterexample

Clauses Time(s) Counterexample
Quiescence 160751 89.895 No
Tranquillity 341069 791.828 Yes

VC 341001 6383.928 No

Table III shows that controllers of quiescence and VC proto-
cols can guarantee global consistency of DSU, and controller

of tranquillity protocol, however, cannot. The counterexample
of tranquillity protocol is shown in Fig. 19.

C1 C2 C0

T1

T2

T3
T0

c

Fig. 19: Counterexample of tranquillity protocol

In Fig. 19, we see that T1 is C1’s transaction, T0 is C0’s, and

T3 and T2 are C2’s. We intend to update component C2 at time

c . At time c , component C2 is tranquil and thus it is up-
dated. However this update violates version consistency since
T2 starts before update with old version and T3 starts after

update with new version. This counterexample illustrates that

the specification of controller is correct and that tranquillity
protocol cannot guarantee global consistency. Some similar

and unexpected faults might occur if we misuse tranquillity
protocol.

The results in Table III and Fig. 19 agree with existed proofs

of corresponding protocol [17], [18], [19], which reflects the

correctness of controllers. However, from Table III we see that

the time of verifying VC protocol is too long even if scope

is small. Hence we also use local invariants based modular

verification to accelerate it.

D. Local Invariants in VC protocol

In VC protocol, a transaction T cannot be initiated before its
parent-transaction T ′ is initiated, i.e., T does not send/receive
any messages before T ′ does, which means their actions are
dependent. In order to integrate modular verification with VC

protocol, we should split the system into several blocks where

each pair of actions is independent. Intuitively, each local

part contains exactly two adjacent components since parent-
transaction and sub-transaction does not exist in only two

components.

The sufficient condition of VC protocol is whether the target

component is free, i.e., there is not a pair of future/past edges
entering it. A future edge C → C ′ implies that C might

request a service of C ′, so this future edge should not be
removed until the last initiation of the transaction of C ′.
Similarly, a past edge C → C ′ implies that C has requested

a service of C ′ before, so this past edge should be added
at the end of the first transaction of C ′. If we consider the
initiation and accomplishment separately, i.e., for each pair

128

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

of components, and choose l to be the last initiation of all
transactions and the first accomplishment of them, Pl will be

the action of removing future edges and adding past edges.
For instance in Fig. 20, the past edge will be added as soon

as the first transaction is accomplished.

pred ManagePastEdge {
all disj c, c’ : Component | {
some c’.transaction & subTransaction[c.

transaction] implies {
let t1 = {
tick : Tick | noMsgRecBefore[c, c’, tick,

FINISH] and someMsgRecNow[c’, c, tick,
FINISH]

}, t2 = {
tick : Tick | noMsgRecBefore[c, c’, tick,

ACK_F] and someMsgRecNow[c, c’, tick,
ACK_F]

},t3 = Root.endTime.prev | {
all t : range[t1, t3] | c’ in PastOut[t, c]
all t : range[t2, t3] | c in PastIn[t, c’]

}
}

}
}

Fig. 20: Predicate of managing past edge in VC protocol

Instead of modeling details of VC protocol, the above rules

of managing future and past edges are included in the model.

We also assume that it will not violate Version Consistency
(see Fig. 21). The scope is same as before. The comparison

of this modular verification (we call it VCvalidity) with former
verification (we call it VCmessage) is shown in Table IV.

assert CorrectnessOfVCinLocalInvariants {
(ControlledSystem and ManagePastEdge and

ManageFutureEdge) implies VersionConsistency
}

Fig. 21: Assertion of VC protocol in local invariants

TABLE IV: Comparison of verification time

#Clauses Time(s) Counterexample
VCmessage 341001 6383.928 No
VCvalidity 248103 1206.670 No

Table IV shows that number of clauses in VCvalidity is
much fewer than VCmessage and verifying time of VCvalidity
is far less than that of VCmessage. We extend the comparison
to different scopes. In Fig. 22, the size is larger with the

increasing of the scope-Id of x-axis. We only consider those

scopes whose time is within 24 hours and the largest scope

in the comparison is 3 Components and 5 Transactions. From

Fig. 22 we see that VCvalidity is always more efficient than
VCmessage and with the increasing of model, the effect is
more significant.

These two invariants in our modular verification is same

as the concept of Future-validity and Past-validity in valid
configuration [19]. The difference is that their proof of the

0 1 2 3 4 5 6 7 8
0

3,000

6,000

9,000

12,000

15,000

18,000

Scope Id

V
er
if
y
in
g
T
im
e
(s
)

Time of VCvalidity

Time of VCmessage

0

100

200

300

400

500

600

N
u
m
b
er
o
f
C
la
u
se
s
(t
h
o
u
sa
n
d
s)

Time of VCvalidity

Time of VCmessage

Number of VCvalidity

Number of VCmessage

Fig. 22: Comparison of VCvalidity and VCmessage

correctness of VC protocol relies on the assumption of valid
configuration, whereas our approach can provide formal verifi-
cation with/without this assumption. Moreover, we show how

to obtain them and leverage them for efficient verification.

V. RELATED WORK

Although our work mainly focuses on manual controller,

controller synthesis has attracted a lot of research. Synthesis

from formal declarative specifications has been studied with

the aim of providing an operational model to support require-

ments and analysis [3] on event-based operational models [2]

or self-adaptive systems [1], [4]. However, existing techniques

for automatic synthesis have limitations [2] that they are

designed to work in the context of idealized environment

models [4], [22] and they also require complete descriptions

of the environment. To address that, the synthesis technique

in [23] supports a behavior model in which the controlled

actions can fail. In [24], Muscholl leveraged Mazurkiewicz

trace theory and Zielonka’s theorem for the synthesis of

concurrent programs and decentralized runtime monitoring.

Control theory [25] is capturing an increasing interest

from the software engineering community that looks at self-

adaptation as a means to meet QoS requirements despite

unpredictable changes in the execution environment [26], [27],

[28]. Filieri and Maggio discussed how control theory results

can be integrated in the design of self-adaptive software and

provided details on the steps of the control design process [29].

They proposed a closed-loop control strategy that provides

formal guarantees for an adaptive software system’s dynamic

behavior [27] and extended it to support multiple goals [30].

They also introduced a paradigm called brownout, which

helps to build more robust cloud applications using control

theory [31].

Assume-guarantee reasoning is well known in compo-
sitional reasoning by verifying each component in isola-

tion [32]. Flanagan et al. used assume-guarantee reasoning
to ensure the reliability [33] and correctness properties [34]

of shared-memory programs. Besides assume-guarantee rea-

soning, parameterized model checking [35], [36], [37], [38]

and partial order reduction [39] are also well known for

combating state explosion problems. Although the problem

129

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

of verification of parameterized systems is undecidable [40],

there are two possible remedies to this situation: either we

should look for restricted scopes for which the problem

becomes decidable [35], [41], [42], or devise methods which

are sound but necessarily incomplete, and hope that the system

of interest will yield to one of these methods [36], [43], [44].

The idea of our approach corresponds with the former one and

the concept of independent actions in our approach is inspired

by partial order reduction. In order to reduce the state space

of the transition system, partial order reduction attempts to

identify path fragments of the full transition system and does

not preserve certain properties, while our approach intends to

explore unchanged properties of part of the transition system

and uses them as assumptions for efficient verification.

Symmetry reduction [45], [46] has also been leveraged to

deal with state explosion. Emerson and Sistla [46] exploited

symmetry in model checking for concurrent systems composed

by many identical or isomorphic components. The basic idea is

to reduce model checking over the original structure to model

checking over a smaller quotient structure, where symmetric

states are identified. Clarke et al. [45] tried to formalize

symmetry reduction and identified a class of temporal logic

formulas that are preserved under this reduction.

DSU has attracted a lot of related work, in addition to

the mentioned three DSU protocols quiescence [17], tran-

quillity [18], VC [19]. While some work [47] focuses on

the architectural changes of the systems, some considers

the behavior [48], [49]. Zhang [50] proposed a model-based

development process of adaptive programs with finite state ma-

chines and LTL specifications. Hayden et al. [51] presented a

method of automatically verifying the correctness of dynamic

updates of C programs.

VI. CONCLUSION

In this paper, we give an exercise of verifying distributed

controllers with local invariants and use the 2PC protocol and

DSU protocols to demonstrate our approach. The result of our

controllers in our case study corresponds with existing theo-

retical analysis. Thus our approach offers a way to formally

verify the correctness of corresponding DSU protocols [17],

[18], [19], whose original proofs are semi-formal. Besides,

after leveraging local invariants, the size of model is reduced

and the time of verification is accelerated, with the increasing

of the scope, the effect is more significant.

Several issues require further investigations in our future

work. First of all, we attempt to generalize a definition of

local invariants and give a detailed analysis of the rate of

acceleration of verification. Second, in order to figure out a

general procedure to facilitate users to select local invariants,

we need to experiment our approach on more cases.

ACKNOWLEDGMENT

This work was supported in part by National Basic Re-

search 973 Program (Grant No. 2015CB352202), and National

Natural Science Foundation (Grant Nos. 61472177, 91318301,

61321491) of China. We would also like to thank the support

of the Collaborative Innovation Center of Novel Software

Technology and Industrialization.

REFERENCES

[1] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[2] N. D’Ippolito, “Synthesis of event-based controllers for software engi-
neering,” Ph.D. dissertation, Imperial College London, 2013.

[3] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Deriving event-based
transition systems from goal-oriented requirements models,” Automated
Software Engineering, vol. 15, no. 2, pp. 175–206, 2008.

[4] J. Kramer and J. Magee, “Self-managed systems: an architectural
challenge,” in Future of Software Engineering, 2007. FOSE’07. IEEE,
2007, pp. 259–268.

[5] C. G. Cassandras et al., Introduction to discrete event systems. Springer
Science & Business Media, 2008.

[6] A. D. Kshemkalyani, M. Raynal, and M. Singhal, “An introduction
to snapshot algorithms in distributed computing,” Distributed systems
engineering, vol. 2, no. 4, p. 224, 1995.

[7] D. Jackson, Software Abstractions: logic, language, and analysis. MIT
press, 2012.

[8] A. Vakili and N. A. Day, “Temporal logic model checking in alloy,” in
Abstract State Machines, Alloy, B, VDM, and Z. Springer, 2012, pp.
150–163.

[9] M. Taghdiri and D. Jackson, A lightweight formal analysis of a multicast
key management scheme. Springer, 2003.

[10] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh, “Formal verifi-
cation of oauth 2.0 using alloy framework,” in Communication Systems
and Network Technologies (CSNT), 2011 International Conference on.
IEEE, 2011, pp. 655–659.

[11] B. Fraikin, M. Frappier, and R. St-Denis, “Supervisory control theory
with alloy,” Science of Computer Programming, vol. 94, pp. 217–237,
2014.

[12] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov, “Evaluating the
“small scope hypothesis”,” Unpublished, 2003.

[13] O. Grumberg and D. E. Long, “Model checking and modular verifi-
cation,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 3, pp. 843–871, 1994.

[14] C. B. Jones, “Specification and design of (parallel) programs.” 1983.
[15] A. Pnueli, In transition from global to modular temporal reasoning about

programs. Springer, 1985.
[16] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM

Transactions on Database Systems (TODS), vol. 31, no. 1, pp. 133–160,
2006.

[17] J. Kramer and J. Magee, “The evolving philosophers problem: Dynamic
change management,” Software Engineering, IEEE Transactions on,
vol. 16, no. 11, pp. 1293–1306, 1990.

[18] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt, “Tranquility:
A low disruptive alternative to quiescence for ensuring safe dynamic
updates,” Software Engineering, IEEE Transactions on, vol. 33, no. 12,
pp. 856–868, 2007.

[19] X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, and J. Lu, “Version-
consistent dynamic reconfiguration of component-based distributed sys-
tems,” in Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering.
ACM, 2011, pp. 245–255.

[20] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete
controllers for timed systems,” in STACS 95. Springer, 1995, pp. 229–
242.

[21] A. Van Lamsweerde and E. Letier, “Handling obstacles in goal-oriented
requirements engineering,” Software Engineering, IEEE Transactions
on, vol. 26, no. 10, pp. 978–1005, 2000.

[22] D. Sykes, W. Heaven, J. Magee, and J. Kramer, “Plan-directed ar-
chitectural change for autonomous systems,” in Proceedings of the
2007 conference on Specification and verification of component-based
systems: 6th Joint Meeting of the European Conference on Software
Engineering and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering. ACM, 2007, pp. 15–21.

[23] N. D’Ippolito, V. Braberman, N. Piterman, and S. Uchitel, “Synthesis
of live behaviour models for fallible domains,” in Software Engineering
(ICSE), 2011 33rd International Conference on. IEEE, 2011, pp. 211–
220.

130

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

[24] A. Muscholl, “Automated synthesis of distributed controllers,” in Au-
tomata, Languages, and Programming. Springer, 2015, pp. 11–27.

[25] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control
theory. Courier Corporation, 2013.

[26] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic survey
on the design of self-adaptive software systems using control engineering
approaches,” in Proceedings of the 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press, 2012, pp. 33–42.

[27] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in Pro-
ceedings of the 36th International Conference on Software Engineering.
ACM, 2014, pp. 299–310.

[28] D. Arcelli, V. Cortellessa, A. Filieri, and A. Leva, “Control theory for
model-based performance-driven software adaptation,” in Proceedings
of the 11th International ACM SIGSOFT Conference on Quality of
Software Architectures. ACM, 2015, pp. 11–20.

[29] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein et al., “Software engineering meets control
theory,” in Proceedings of the 10th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press, 2015, pp. 71–82.

[30] A. Filieri, H. Hoffmann, and M. Maggio, “Automated multi-objective
control for self-adaptive software design,” in Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE,
2015, pp. 13–24.

[31] C. Klein, M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez,
“Brownout: Building more robust cloud applications,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 700–711.

[32] S. Berezin, S. Campos, and E. M. Clarke, Compositional reasoning in
model checking. Springer, 1998.

[33] C. Flanagan, S. N. Freund, and S. Qadeer, “Thread-modular verification
for shared-memory programs,” in Programming Languages and Systems.
Springer, 2002, pp. 262–277.

[34] C. Flanagan and S. Qadeer, “Assume-guarantee model checking,” Tech-
nical report, Microsoft Research, Tech. Rep., 2003.

[35] A. Pnueli, S. Ruah, and L. Zuck, “Automatic deductive verification with
invisible invariants,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2001, pp. 82–97.

[36] Y. Kesten and A. Pnueli, “Control and data abstraction: The cornerstones
of practical formal verification,” International Journal on Software Tools
for Technology Transfer, vol. 2, no. 4, pp. 328–342, 2000.

[37] E. A. Emerson and V. Kahlon, “Parameterized model checking of ring-
based message passing systems,” in Computer Science Logic. Springer,
2004, pp. 325–339.

[38] T. Arons, A. Pnueli, S. Ruah, Y. Xu, and L. Zuck, “Parameterized verifi-
cation with automatically computed inductive assertions?” in Computer
Aided Verification. Springer, 2001, pp. 221–234.

[39] P. Godefroid and D. Pirottin, “Refining dependencies improves partial-
order verification methods,” in Computer Aided Verification. Springer,
1993, pp. 438–449.

[40] K. R. Apt and D. C. Kozen, “Limits for automatic verification of finite-
state concurrent systems,” Information Processing Letters, vol. 22, no. 6,
pp. 307–309, 1986.

[41] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” Journal of the ACM (JACM), vol. 39, no. 3, pp. 675–735,
1992.

[42] E. A. Emerson and K. S. Namjoshi, “Reasoning about rings,” in Pro-
ceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM, 1995, pp. 85–94.

[43] R. P. Kurshan and K. McMillan, “A structural induction theorem for
processes,” in Proceedings of the eighth annual ACM Symposium on
Principles of distributed computing. ACM, 1989, pp. 239–247.

[44] D. Lesens, N. Halbwachs, and P. Raymond, “Automatic verification
of parameterized linear networks of processes,” in Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1997, pp. 346–357.

[45] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha, “Exploiting symmetry
in temporal logic model checking,” Formal Methods in System Design,
vol. 9, no. 1-2, pp. 77–104, 1996.

[46] E. A. Emerson and A. P. Sistla, “Symmetry and model checking,” Formal
methods in system design, vol. 9, no. 1-2, pp. 105–131, 1996.

[47] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based runtime
software evolution,” in Proceedings of the 20th International Conference
on Software Engineering, ser. ICSE ’98. Washington, DC, USA: IEEE
Computer Society, 1998, pp. 177–186.

[48] J. Kramer and J. Magee, “Analysing dynamic change in software
architectures: a case study,” in Configurable Distributed Systems, 1998.
Proceedings. Fourth International Conference on, May 1998, pp. 91–
100.

[49] S. An, X. Ma, C. Cao, P. Yu, and C. Xu, “An event-based formal
framework for dynamic software update,” in Software Quality, Reliability
and Security (QRS), 2015 IEEE International Conference on. IEEE,
2015, pp. 173–182.

[50] J. Zhang and B. H. Cheng, “Model-based development of dynamically
adaptive software,” in Proceedings of the 28th International Conference
on Software Engineering. ACM, 2006, pp. 371–380.

[51] C. M. Hayden, S. Magill, M. Hicks, N. Foster, and J. S. Foster,
“Specifying and verifying the correctness of dynamic software updates,”
in Proceedings of the 4th International Conference on Verified Software:
Theories, Tools, Experiments, ser. VSTTE’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 278–293.

131

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:39:21 UTC from IEEE Xplore. Restrictions apply.

