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Abstract—Dynamic Software Update (DSU) is a technique
to upgrade running programs without shutting them down.
DSU can improve system availability and maintenance flexibility.
However, its adoption in practice is still limited due to the risk
of system misbehavior that careless DSU may bring. To reduce
this risk we propose a formal framework for the specification
and verification of DSU. Different from previous approaches
where DSU is described from the viewpoint of program’s internal
state transitions, our framework focuses on program’s external
behavior and its effect on its environment. This more abstract
view avoids over specification of DSU and allows for better DSU
flexibility. Based on this framework, we also devise a mechanism
that automatically synthesizes runtime monitors to improve DSU
timeliness without compromising its safety.
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I. INTRODUCTION

Through the lifecycle of software systems, developers may

constantly release updates to fix bugs, enhance functionality, or

change their behavior as requirements evolve. Normally, these

updates are applied to a production system through three steps:

shutting down the system, installing new-version program and

restarting the system. However, this kind of offline updates

are unacceptable in some circumstances where non-stopping

service are mandatory, such as financial transaction processing

and transport controlling. Besides, the disruptions caused by

frequent offline updates can be annoying for everyday software

applications.

Dynamic software update (DSU) is a technique to upgrade

a running program to a new version on the fly. Operationally,

DSU traps the running program at some state, transforms the

state to a proper state of the new program, and then executes

the new program starting from this transformed state [1], [2],

[3]. DSU preserves valuable program state and minimizes

disruption during an update [4], which can help in ensuring

high service availability. DSU also makes software upgrades

transparent to users and thus provides more flexibility for

maintenance. In the past decades, many DSU systems have

been developed in the research community [2], [4], [5], [6].

However, DSU has been rarely used in real-world practice,

mainly because there is a risk that DSU may cause misbe-

haviors that would never present in either the old or the new

version of the program [3], [7]. It is far from trivial to eliminate

these misbehaviors. The reason is twofold. First, programs are

not typically developed with DSU in mind. Second, the state

of the running program, and also the state of its environment,

are not predictable when DSU is triggered.

To manage the risk, various formal models have been

proposed for the specification and verification of DSU [3], [8],

[9], [10]. However, some of them, such as [3], are too loose

to ensure the safety of DSU. Others, such as [8], [10], tend

to cause over-specification, because they take an operational
view of DSU, and one must explicitly specify what kind of

cross-version program traces are allowed.

In this paper we try to use a more abstract view that focuses

on programs’ interactions with their environments rather than

their internal state transitions. Let’s use a two-person game

metaphor [11] to explain the intuition. A program is playing a

game against the environment. In the middle of the game the

program is replaced with a new version. For the new program

to win the game, the important thing is not the current state of

the old program but the future behavior of the environment.

The latter is affected by previous interactions between the old

program and the environment.

In our framework, programs, as well as their environments,

are modeled with Labeled Transition Systems (LTSs) [12].

System requirements are specified in Fluent Linear Temporal

Logic (FLTL) [13]. DSU is allowed if the new version program

will correctly continue with the environment and keep satisfy-

ing the requirements. In this way, we lift the abstraction level

from program states to interaction events, and constrain DSU

with system requirements and environment models, which

is more natural and easier than explicitly considering cross-

version program state transitions.

Another common problem of previous formal DSU models

is that they are too conservative. Using static analysis, they

only allow updates to happen at program states that are always
safe. This can be harmful to the timeliness of DSU. With our

framework it is possible to reduce this conservativeness by

just requiring the update to be safe for the current status of

the environment. We exploit runtime monitors to get current

environment status. Runtime monitors are automatically syn-

thesized from program and environment models and system

requirements. Monitors can be deployed on-demand when

DSU request arrives, and thus no overhead exists during

normal execution.

The intended contribution of this paper are twofold. First,

we propose a formal framework to define DSU and its correct-
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ness using LTS and FLTL. The framework helps avoid over-

specification of DSU and allows for better DSU flexibility,

thanks to its event-based specification and explicit environment

modeling. Second, we derive a runtime monitoring mechanism

to improve the timeliness of DSU without compromising its

safety.
The remainder of this paper is organized as follows. Sec-

tion II gives some preliminaries about LTS and FLTL. We

discuss our understanding of DSU and the motivation for a

new framework in section III, and then present the framework

formally in section IV. Section V details the runtime monitor-

based approach to timely DSU. We overviews related work in

Section VI before concluding the paper in Section VII.

II. PRELIMINARIES

Our framework uses LTS [12] to model programs and their

environments, and use FLTL [13] to specify requirements. We

briefly introduce LTS and FLTL, following the notations used

in [14] and [15].

A. Labelled Transition System
LTS is a state transition system where transitions are la-

belled with actions. The set of actions (also called events) of

an LTS is called its communicating alphabet by which the

modeled system interacts with the environment.

Definition 1. (Labelled Transition System) Let States be

a universal set of states, Act be the universal set of action

labels. A Labelled Transition System (LTS) is a tuple E =
(SE , AE ,ΔE , s0), where SE ⊆ States is a finite set of states,

AE ⊆ Act is a finite alphabet, ΔE ⊆ (SE × AE × SE) is a

transition relation, and s0 ∈ SE is the initial state.

Definition 2. (Parallel Composition) Given LTSs M =
(SM , AM ,ΔM , sM0

) and E = (SE , AE ,ΔE , sE0
), parallel

compostion ‖ is a symmetric operator such that E‖M is the

LTS E‖M = (SE × EM , AE ∪ AM ,Δ, (sE0 , sM0)), where

Δ is the smallest relation that satisfies the rules below, where

� ∈ AE ∪AM :

1) if � ∈ AE \ AM and (s, �, s′) ∈ ΔE , then

((s, t), �, (s′, t)) ∈ Δ;

2) if � ∈ AM \ AE and (t, �, t′) ∈ ΔM , then

((s, t), �, (s, t′)) ∈ Δ;

3) if � ∈ AM ∩AE and (s, �, s′) ∈ ΔE and (t, �, t′) ∈ ΔM ,

then ((s, t), �, (s′, t′)) ∈ Δ.

Definition 3. (Trace) Consider an LTS E = (S,A,Δ, s0).
A sequence π = �0, �1, · · · is a trace in E if there exists a

sequence s0, �0, s1, �1, · · · , where for every i ∈ N we have

(si, �i, si+1) ∈ Δ.

In this paper we restrict attention to LTSs E that ∀s ∈ SE , s
is reachable.

B. Fluent Linear Temporal Logic
In event-based models, states are characterised by the be-

havior that originates in these states rather than state vari-

ables [13]. FLTL is a method of describing abstract states of

LTS which is based on events [14].

Definition 4. (Fluent) A fluent is a triple FL =
〈IFL, TFL, InitFL〉, where IFL, TFL ∈ Act is respectively

the set of initiating and terminating actions, and InitFL is the

initial boolean value of FL. Obviously, IFL ∩ TFL = ∅.

Each action � ∈ Act induces a fluent denoted by �̇ =
〈�, Act\{�}, false〉. It means that when � occurs, this fluent �̇
becomes true, and becomes false when any other action occurs.

The trace π = �0, �1, . . . satisfies a fluent FL at position i,
denoted π, i � FL, iff. at least one of the following holds:

• InitFL ∧ (∀j ∈ N · 0 � j � i→ �i /∈ TFL)
• ∃j ∈ N · (j � i ∧ �j ∈ IFL) ∧ (∀k ∈ N · j < k � i →
�k /∈ TFL)

Given a set of fluents F over Act, a FLTL formula is

defined inductively using the standard Boolean operators, and

the temporal operators X (next) and U (strong until) as follows:

• each fluent of F is a formula,

• if φ and ψ are formulas, then so are ¬φ, φ∨ψ,Xφ, φUφ.

Boolean operators → is defined as: φ→ ψ ≡ ¬φ ∨ ψ, and ∧
as φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ).

Given an infinite trace π, the satisfaction of a formal φ at

position i, denoted π, i � φ, is defined as follows [15]:

π, i � ¬φ iff. ¬(π, i � φ)
π, i � φ ∨ ψ iff. (π, i � φ) ∨ (π, i � ψ)
π, i � Xφ iff. π, i+ 1 � φ

π, i � φUψ iff. ∃j � i · π, j � ψ ∧ ∀i � k < j · π, k � φ

We also use standard abbreviations “true ≡ φ ∨ ¬φ” and

“false ≡ ¬true” and temporal operators � (always), ♦ (even-

tually), W (weak until) as syntactic sugar, where ♦φ ≡ trueUφ,

�φ ≡ ¬♦¬φ, and φWψ ≡ ((φUψ) ∨�φ).
We say φ holds in π, denoted π � φ, if π, 0 � φ. A formula

φ holds in an LTS E (denoted E � φ) if it holds on every

infinite trace produced by E.

III. DYNAMIC SOFTWARE UPDATE

This section discusses our understanding of DSU and gives

a running example.

A. Our Understanding

Despite the existence of many practices and research on

dynamic software update, there is a lack of clear common

understanding of how to do it correctly. Updating a program

at runtime is not difficult per se because essentially codes

are stored in the same way as data are under von Neumann

architecture. However, what we actually care about is how to

ensure that the system under updating behaves well before,

during, and after the update. To clearly understand this well-

behaveness, or in other words the correctness of DSU, one

must take a view from the interactions between the program

and the environment around it.

Let us consider a two-person game metaphor proposed by

Pnueli [11]. The environment and the program are like two

players playing a game. Each player can only choose one of its

actions in its turn. In the turn of the environment, the program
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can only observe how the environment behaves. The winning

condition for the program is that the requirements are always

satisfied whatever the environment does.

Suppose in the middle of the game, a new program player

takes the place of the current program and continues the game.

For the new player to win the game, he does not have to know

the strategy and current state of the old program, but must

be able to deal with the future behavior of the environment.

However, the old program and its environment have interacted

for a while before the substitution, and this affects the future

behavior of the environment.

Most existing DSU approaches focus on how to map the

current state of the old program to a proper state of the new

program. However, with the above metaphor, we can see that

this is too implementation-oriented and inflexible. Instead, we

believe, first, analysis of DSU should be based on the external

behavior of programs rather than their internal states, and

second, explicit behavior models of environments, in addition

to those of programs, are needed.

Based on whether the environment/requirement changes,

there are four basic DSU scenarios.

1) Neither the environment nor the requirement changes.

We want to update the program for reasons such as

the enhancement of security or functionality, but we

do not change requirements. So the winning condition

does not change. In this case, the game is played by the

environment and the old version of the program before

the DSU. After the DSU, the new version of the program

continues to play with the environment and wins.

2) The environment does not change but the requirements

change. We want the program to do more things and we

specify these changes by requirements. This case is like

the first case except that the requirements change.

3) The environment changes but the requirements do not.

The environment changes mainly for two reasons: a) we

have the partial model of the environment at first, and

then we understand it better and notice some unknown

events or actions; b) the environment actually changes

because the program works in a different situation. At

the beginning of the game, the old program plays with

the old environment. At some point, the environment

changes, so the program needs to be updated to keep

satisfying the requirements.

4) Both the environment and the requirements change. This

case is more complex, as both the opponent (the envi-

ronment) and the winning condition (the requirements)

are different. We can regard this case as the combination

of the second case and the third case.

When discussing the change of the environment, we only

consider the case in which the new environment is an extension

of the old one, i.e., the first kind shown in the third case. In

this case, the new environment can execute the traces of the

old environment.

Auth

Client Server

getToken
call

verify

db

reply

display

Fig. 1. Our running example

0 2

getToke

display

1 call

3
reply

(a) Client LTS Cli1

0 2

call

reply

1 verify

3 db

(b) Server LTS Ser1

0getToken verify

(c) Auth LTS Auth1

0getToken[i] verify[i]

(d) The i-th version Authi

Fig. 2. Components of our example

0 1 2

4 35

getToken call

verify

dbreply

display

Fig. 3. Cli1‖Ser1‖Auth1

B. Running Example

Figure 1 shows our running example. A Client gets a token

from the Auth and uses it to call the Server. On receiving

the call, the Server uses the Auth to verify the token and

returns the data which it reads form the database. The Client
then displays the data. Figure 2(a)–2(c) displays the models

of the three components. Auth is functional and has only one

immutable state. The actual concurrent execution of these three

components is represented by their parallel composition in

Figure 3.

At the beginning, this system is designed without the

consideration of DSU. However we now want to upgrade

the Auth component to enhance security. The new version
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0 1 2

4 35

getToken[i] call

verify[i]

dbreply

display

Fig. 4. The environment in DSU E1 = Cli‖Ser

uses a stronger encryption/decryption algorithm incompatible

with the old version. Thus the new Auth would not verify

the token issued by the old version. The environment and

the program are relative to our focus, so we regard Auth in

Figure 2(d) as the program and the parallel composition of the

Client and the Server as the environment. The server and the

client need to use the same version of Auth, otherwise they

can not work successfully. In other words, the token obtained

by the getToken[i] can only pass through the corresponding

verify[i] action where i stands for the version. If the client

calls the server with a token supplied by getToken[1] of

Auth1 then the server must use verify[1]. The actual en-

vironment is shown in Figure 4.

Assume we replace Auth1 with Auth2 after the client uses

getToken[1] but before the server uses the verify[1]. When

the server needs verify[1] but the Auth2 has no such action,

then deadlock happens. For simplicity, we assume that neither

the environment nor the requirement changes. As we discussed

above, we can only do DSU correctly when the system is

outside a pair of getToken[i] and verify[i].

In this case the disadvantage of the “state mapping” ap-

proaches becomes evident. In these approaches DSU are

allowed at quiescent states [8], [16] where updates are known

to be safe. Because each of Auth1 and Auth2 has only one

state, we can have exact one mapping between the two states

in this case. However we can see from above discussion that

the mapping is not guaranteed to be safe. So actually there is

no quiescent state here according to Zhang’s definition in [8].

In fact when the environment is at state 0/3/4/5, we can

update the program. We only have an optimistic DSU scheme

rather than the pessimistic one here. Given an optimistic DSU

scheme, the program itself can not decide whether it’s lucky

enough to choose the correct DSU. We can use a monitor to

monitor the recent history of the program and ensure only

correct DSU traces occur. In this case, the monitor mainly

observes whether the program is outside a pair of getToken
and verify. When we want to do DSU, we start the monitor

and if it says yes then the program can do a correct DSU. The

details of the optimistic DSU algorithm is in Section V.

IV. A FORMAL FRAMEWORK FOR DSU

In this section, we formally define DSU and its correctness

with LTS and FLTL. We also illustrate our formalization with

the running example introduced in Section III.

0 2

call

reply

1

verify

3

db
getToken

getToken getToken getToken

Fig. 5. The Environment LTS

E

1

= Ser

1‖
Auth

1

A. Formalizing DSU

We use LTS to model programs and their environments, and

FLTL to specify the requirements.

Definition 5. (System, Program, Environment, and Require-

ments) A system consists of a program and an environment.

A program is modeled with a LTS P . An environment model

is a LTS E. System requirements are specified by a set R of

FLTL formulae.

We use subscripts to denote the version of programs,

environments and requirements, and group them together as

a tuple (Pi, Ei, Ri) to denote the system of version i. For

simplicity, we use (P1, E1, R1) and (P2, E2, R2) to denote

the system before and after DSU as default.

As we don’t want the collaboration of the environment and

the program to reach a deadlock, we implicitly include the

DEADLOCK FREE property in the requirements as default.

Furthermore, following [17], we restrict requirements to be

in one of the following two forms: (1) global absence �¬φ
and global universality �φ; (2) global response �(φ→ ♦ψ),
where neither φ nor ψ has temporal operators. The restriction

comes from the controller synthesis algorithm [15] on which

our monitor generation algorithm is based. These two forms

can express most requirements in practice. Matthew shows

response, universality and absence patterns are the top three

patterns and global scope is the most popular scope [17].

Let’s consider the running example introduced in Sec-

tion III. As we mentioned before, the environment and the

program is relative to our focus. We want to add some

new functions into the client, so we regard the client as

the program, whose first version P1 = Cli1 is shown in

Figure 2(a), and the parallel composition of the server and

the Auth as the environment whose first version E1 is in

Figure 5. For brevity, we demonstrate our formalization in

the first scenario where E1 = E2 and R1 = R2.

The requirements R1 specify that it always holds that the

client should eventually display the data if it calls the server

to read data:

{ DISPLAY AFTER CALL = �( ˙call → ♦ ˙display) }
We want to log when the client requests the server for data,

so Figure 6 shows the second version P2.

In this paper we assume that each individual version is

correct, because we focus on the DSU, and the DSU can’t
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0

2
getToken

display

1
call

4 reply 3

log

Fig. 6. Client LTS Cli2

be correct if the system itself is not correct. The correctness

of a version means that the version satisfies the requirements.

Given a set R as requirements and a LTS
S, we use S � R to

denote S �
∧

φ∈R φ
for short. In other words, when R occurs

on the right side of �, R stands for
∧

φ∈
R φ.

Definition 6.
(Correct version) A version (Pi, Ei, Ri) is

correct iff. Pi‖Ei � Ri.
In our above example, we can easily verify that P1‖E1 � R1

and P2‖E2 � R2.

Definition 7.
(DSU scheme) A DSU Scheme is a set DS =

{(s, t)|s ∈ SP1
∧ t ∈ SP2

}. (s, t) ∈ DS
means that by a dsu

action the old state s
jumps onto the new state t.

Note that our DSU scheme is defined on the abstract states

in LTS. We use “dsu
” to denote the DSU action. If the actions

of the program and the environment include the keyword

“dsu
”, we can use the relabelling of LTS to rename those

actions. Therefore, we assume that the actions of the program

and the environment do not include the “dsu” for simplicity.

Definition 8.
(DSU LTS) Given a DSU scheme DS, a DSU

LTS D = (SD, AD,ΔD, sD)
is the LTS generated by applying

the scheme into P1 and P2, where SD
= SP1 ∪ SP2 , AD =

{dsu} ∪AP1
∪AP2

, ΔD = ΔP1
∪ΔP2

∪ {(s, dsu, t)|(s, t) ∈
DS} and sD = sP1

.

Figure 7 shows a DSU LTS for P1
and P2. We will explain

why it’s wrong after we give the definition of a correct DSU

LTS and a correct DSU scheme. Because we assume that

each version is correct, the behavior before the dsu will not

violate any old requirements and we only need to consider the

correctness after the dsu.
We can use FLTL to specify the period after a DSU as

follows:

AFTER DSU = 〈{dsu},∅, false〉

Definition 9.
(Correct DSU LTS, Correct DSU scheme) A

DSU LTS D is correct iff. D‖E2
is free of deadlocks and

D‖E2 � �(AFTER DSU → R2)
. A DSU scheme is correct

iff. it can produce a correct DSU LTS.
As we point out in Section III that this paper only addresses

the case where E2 is an extension of E1
and can interpret the

traces in E1
, so we can make the parallel composition of E2

and D.
The parallel composition of DSU LTS and E2 is in Figure 8.

The thicker purple edges indicate a trace which causes dead-

0 2

getToken

display

1 call

3 reply

4

6getToken

display

5 call

8 reply 7

log

dsu

Fig. 7. A wrong DSU LTS in 1st scenario

0 1

4 65 7

2 3

getToken dsu log

call
verify db reply

display

Fig. 8. D‖E2 in 1st scenario

0 2

getToken

display

1 call

3 reply

4

6getToken

display

5 call

8 reply 7

log

dsu
dsu

Fig. 9. A correct DSU LTS in 1st scenario

lock: getToken, dus, log � DEADLOCK FREE, so Figure 7

gives a wrong DSU LTS. Figure 9 gives a correct DSU LTS.

This example tells us that we must take the old and new

version of the program, the environment and the requirements

into consideration to do a correct DSU.

Each execution of the program and the environment corre-

sponds to a trace of the parallel composed LTS, so a particular

DSU transition happens in a particular trace when we use LTS

to model system. From now on, we treat the concept of a DSU

transition and a DSU trace as the same.

We now define the DSU trace that is an execution of the

system during which a DSU happens.

177177

Authorized licensed use limited to: Purdue University. Downloaded on January 19,2022 at 03:36:21 UTC from IEEE Xplore.  Restrictions apply. 



0 2

getToken

display

1 call

3 reply

4

6getToken

display

5 call

8 reply 7

log

dsu
dsu

Fig. 10. A correct DSU LTS in 2nd scenario

Definition 10. (DSU trace) Given (P1, E1, R1) , (P2, E2, R2)
and a DSU scheme, a DSU trace is a trace π =
�0, �1, . . . , �i, . . . in D‖E2, which has exact one i such that

�i is dsu.

Intuitively, before the “dsu”, the trace is executed as it is on

the P1‖E1, and on the P2‖E2 after the “dsu”. In other words,

the i-length prefix of π is a prefix of a valid trace of P1‖E1

and �i+1, . . . is a postfix of a valid trace of P2‖E2. A DSU

trace π is correct iff. π � �(AFTER DSU → R2).

Given a correct DSU scheme, we can produce a correct

DSU LTS, all possible DSU traces constrained by this DSU

LTS are correct. When the program is competing against the

environment, it must execute on exact one of all possible

traces, then the program can be updated dynamically and

correctly. This kind of correct DSU scheme is a pessimistic

one. An optimistic one contains correct DSU traces and also

may contains incorrect DSU traces.

B. Case Study

Section III shows that there are four DSU scenarios. The

first scenario is explained in Subsection IV-A. Here we demon-

strate the rest scenarios.

1) Unchanged Environment and Changed Requirements:
In Subsection IV-A, we update the client to add a log action,

but we do not specify this function in requirements R2. Now

we add a property into R2:

LOG BEFORE DISPLAY = �(¬( ˙display ∧ ¬LOGGED))

where,

LOGGED = 〈{log}, {call}, false〉

If we still use the DSU LTS in Figure 9, we will have some

traces violate the �(AFTER DSU → R2) property whose

prefix is getToken, call, dsu.

This case shows again that the correctness of a DSU scheme

is related to the requirements. A correct DSU LTS is in

Figure 10.

0 2

call

reply

1 verify

3 db

timeout

Fig. 11. Server LTS Ser2

0

1 2 3

456

getToken
call verify

timeoutdb

reply
display

Fig. 12. Deadlock occurs in Cli1‖Ser2‖Auth1

0 2

getToken

display

1 call

3 reply

4

timeout

display

Fig. 13. New program LTS P2 = Cli2

0 2

call

reply

1

verify

3

dbgetToken

getToken getToken getToken

timeout

Fig. 14. Environment LTS E2 = Ser2‖Auth1

2) Changed Environment and Unchanged Requirements:
The db action may take too long, and the server shown in

Figure 11 may die of timeout and not reply to the client.

If the client stills waits for the server to reply then the

deadlock occurs as shown in Figure 12. We need to update

the client to the new version in Figure 13. Figure 14 gives

the environment E2 = Ser2‖Auth1. The requirements are

R1 = R2 = {DISPLAY AFTER CALL}. A correct DSU is

shown in Figure 15.

3) Changed Environment and Changed Requirements: It’s

easy to demonstrate this case by the combination of the second

scenario in section IV-B1 and third one in section IV-B2. We
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0 2

getToken

display

1 call

3 reply

4 6

getToken

display

5 call

7 reply

8

timeout

display

dsu dsu

Fig. 15. A correct DSU LTS in 3rd scenario
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Fig. 16. A correct DSU LTS in 4th scenario

want to add the log function and specify it by requirements,

while we actually realize that the server may emit timeout
without sending db data to the client. We omit the new version

of client here, as we can easily understand it in the DSU LTS.

Figure 16 gives the correct DSU LTS.

V. OPTIMISTIC DSU SCHEME AND MONITOR

We now detail the example introduced in Section III. We

consider the first scenario, that is E1 = E2 = Cli1‖Ser1
in Figure 4, Pi = Authi in Figure 2(d) and R1 = R2 =
{Display AFTER CALL}. The only possible DSU scheme

of the Auth is in Figure 17 by our definition of DSU scheme.

Figure 18 gives the LTS D‖E2. dsu, getToken[2], . . . is a

correct DSU trace but getToken[1], dsu, . . . is not. Therefore,

we have an optimistic DSU scheme instead of a pessimistic

one. Although optimistic schemes do not guarantee correct

DSU, we can leverage a runtime monitor to ensure only correct

DSU traces actually occur. The outline of our DSU algorithm

is shown in Figure 19.

0getToken[1] verify[1]

1getToken[2] verify[2]

dsu

Fig. 17. DSU LTS D of Auth1 and Auth2

The problem of an optimistic DSU scheme is that, at

runtime, a program knows exactly its own state but not its

environment’s state, while the safety of DSU depends on

both. For example, the old program always stays in state 0 in

Figure 2(d) and correct DSU can start only if the environment

is in state 0, 3, 4 or 5 in Figure 4. Probing environment state

with some extra device would be too heavy and costly, if

possible at all. With our model a light-weighted approach is

possible. We attach a monitor to a system, which logs a finite

recent history of the program’s interactions with environment.

At runtime the monitor decides the safety of DSU based on

the state of the system and the recent history. Essentially the

state of the environment is (partially) inferred with the history.

For example, assume we have a monitor that only informs

the program to do DSU when the current state of the old

program is state 0 and the recent history is verify[1]. We can

see from Figure 4 that the current state of the environment

must be one of state 0/3/4/5 after one verify[1] and before

one getToken[1]. Hence it ensures only correct DSU should

occur.

With the benefits of our formalization, we can define the

monitor clearly. An ideal and theoretical monitor is a controller

Ctrl in a LTS control problem [15]. The controller has only

one controllable action dsu and it can observe other actions

Act\{dsu}. For simplicity, we assume E1 = E2 and R1 =
R2. It’s like a two-player game between the Ctrl and D‖E2.

The controller can only observe what the opponent does and

restricts the occurrence of dsu action. By the definition of LTS

control problem, the parallel composition Ctrl‖D‖E2 satisfies

our requirements.

We use the tool MTSA [18] to synthesize a controller for

the above example. Figure 20 shows the controller Ctrl.
By an ideal monitor, we can ensure the DSU should be

correct by our definition, but it need to start monitoring from

the initial state together with the program and the environment.

We also need to know all the inner actions of the environment.

Such a monitor is not practical, as the program can hardly

know all of the inner states and actions of the environment.

A desirable monitor only records some recent actions of the

program and can start at any time.

We can induce a practical monitor from an ideal one

(controller). The intuition is that given a recent history rh of

P1, if the ideal monitor can ensure whatever the environment

does, it can reach a state which can initiate dsu action and then
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Request DSU,
rhrh = [ ]

P1P1 takes action aa,
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a−→ s’

monitor

Do DSU

Finish

Y

P1P1 is at state ss

N

Fig. 19. Monitor-based DSU algorithm

our practical monitor allows the program to do DSU when it

knows the recent history is rh. We use the notation π[P1]
to denote the subsequence of a sequence π and π[P1] only

consists of AP1
and S∗ = {s|∃t ∈ SCtrl · (s dsu−−→ t)} to

denote the set of states that can start correct DSU. Given a

recent history rh of P1, if for arbitrary prefix π in the ideal

monitor Ctrl , that π[P1] ends with rh implies that execution

of π in Ctrl goes into some state s ∈ S∗, then the practical

monitor approves of the DSU request of the program. It is easy

to see that a practical monitor may have false negatives but no

false positives. That means we may miss some correct DSU

traces. However, we never include any wrong DSU traces.

The practical monitor can be de facto implemented

as a Deterministic Finite-state Automaton DFAM =
(QM ,ΣM , δM , sM , FM ) induced from the controller. Each

state of DFAM is a subset of SCtrl. We can obtain DFAM

by Algorithm 1. Algorithm 1 is based on breadth-first search.

Algorithm 1 Monitor Generation Algorithm

Input:
The environment E2

The DSU LTS D
The old system P1

Output:
Monitor DFAM = (QM ,ΣM , δM , sM , FM )

1: QM = ΣM = δM = sM = FM = {∅}
2: Sythesize the controller Ctrl.
3: if there is no Ctrl then
4: return (QM ,ΣM , δM , sM , FM )
5: end if
6: S∗ = {s|∃t ∈ SCtrl · (s dsu−−→ t)}
7: sM = SCtrl

8: QM .add(sM )
9: ΣM = AP1

10: queue = new queue

11: queue.enqueue(sM )
12: while queue is not empty do
13: S = queue.dequeue()
14: for each act ∈ AS1 do
15: S′ = {t|∃s ∈ S · (s act−−→ t)}
16: S′ = S′ ∪ {t|∃s ∈ S′∃a ∈ AE2 \AD · (s a−→ t)}
17: if S′ /∈ QM then
18: queue.enqueue(S′)
19: QM .add(S

′)
20: if S′ ⊆ S∗ then
21: FM .add(S

′)
22: end if
23: end if
24: δM .add((S, act, S

′))
25: end for
26: end while
27: return (QM ,ΣM , δM , sM , FM )

At first we don’t know what the current state of the controller

is. It is denoted by the initial state of the DFA. Then we take

each possible action of the old program, and select its closure

to cover all possible actions of the environment until we can’t

find new state to add into QM . Each accept state is a subset

of S∗.

Figure 21 shows the practical monitor model obtained from
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Fig. 21. The monitor DFAM

Ctrl in Figure 20. The double rectangle denotes the accepted

state of DFAM .

Proposition 11. DFAM generated by Algorithm 1 only
allows correct DSU traces to occur.

Proof: We just need to prove that given a recent history

rh, if DFAM accepts rh, then for arbitrary prefix π in Ctrl
, that π[P1] ends with rh implies that execution of π in Ctrl
goes into some state s ∈ S∗. This is guaranteed by the closure

operation in line 16 of Algorithm 1 and the definition of the

accept states.

Therefore, DFAM can ensure that only correct DSU traces

occur. Our algorithm in Figure 19 shows each time when

we check the next state of the system, the DFAM runs the

history input. But in practice, as the next history input is

the extension of the current input, we can let the DFAM run

with the system and just read the current action a.

Note that although this runtime monitor-based approach is

safe, it does not guarantee that a DSU will eventually be

allowed. This situation can happen when there are concurrent

executions of the same component. In these cases one can

use techniques similar to those proposed in [7] to achieve a

DSU-able state.

VI. RELATED WORK

Formal treatment of dynamic adaptation of software systems

has attracted a lot of research. However, most of them, such

as [19], [20], [21], [22], [23], mainly focus on architectural

changes. A survey of them can be found in [24]. Here we

overview several formal models explicitly addressing behav-

ioral changes in dynamic software update.

An early formal framework for dynamic software update

was from Gupta et al. [3]. In this work, DSU is regarded as

valid if it can lead to a reachable state of the new program in

a finite amount of time. The authors proved that the validity

of DSU is not decidable. However, obviously, the validity of

DSU is insufficient for the correctness of DSU because system

requirement is not taken into consideration.

Zhang and Cheng formalized dynamic software adaptations

with finite state machines and LTL specifications [8]. They

focused on a systematic development method for adaptive

programs that can start from one program, undergo adaptation,

and reach a second program. In their approach there is

no explicit environment model. Program adaptation behavior

is constrained by global specifications. So developers have

to encode both application requirements and environment

behavior into global specification. This can be tedious and

error-prone for non-trivial environments. Their state machine-

based formalism is also inconvenient for modeling interactive

behavior of programs. Zhao et al.’s mLTL [10] is similar to

this approach, and also suffers from these problems.

In a seminar paper, Kramer and Magee studied how to

manage dynamic software changes [16]. They defined the

concept of quiescence and proposed a safe method for dynamic

reconfiguration of distributed systems. This method is general

but very conservative. Later proposals, including ours and

those discussed in the above paragraph, reduce the conser-

vativeness with the information provided by program models,

environment models and requirement specifications.

In a recent work Hayden et al. proposed a method for

automatic verification of dynamic updates of C programs [25].

This work verifies dynamic updates against client-oriented

specifications that constrain program’s external visible behav-

ior.

While most approaches address one-step updating, Biyani et
al. focus on the system’s behavior during overlap adaptations

and specify them with adaptation lattices [9]. They proposed

a framework to support the implementation of overlap adap-

tation.

Dynamical update also appears in network protocols. Woj-
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ciechowski et al. defined a formal model for dynamic protocol

update and proposed two algorithms to realize safe protocol

update [26].
Our monitor synthesis is based on the controller synthesis

technique for LTS [15]. Controller synthesis was studied by

Pnueli and others [11]. The two-person game metaphor is also

from them. However, our monitor synthesis is a very specific

case of controller synthesis where the only controllable action

is

dsu. It’s part of our future work to improve our algorithm

by exploiting this specificity.

VII. CONCLUSIONS

In this paper, we formalize DSU with LTS models and FLTL

specifications. Our formal framework explicitly models the

external behavior of a program under updating, as well as its

environment. It ensures that the new program correctly handles

the environment left by the old program and continuously sat-

isfying application requirements. Based on this framework, we

also propose to automatically synthesize runtime monitors to

improve DSU timeliness without compromising its safety. This

runtime monitoring approach also exemplifies the flexibility

and expressiveness of our framework.
Several issues require further investigations in our future

work. In order to improve performance, we plan to generate

runtime monitors directly, rather than transforming the prob-

lem to controller synthesis and using MTSA to do the job. We

also need to experiment our approach on more realistic cases.
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