Augmented Example-Based Synthesis using Relational
Perturbation Properties

SHENGWEI AN, Purdue University, USA
RISHABH SINGH, Google Brain, USA

SASA MISAILOVIC, Uluc, USA

ROOPSHA SAMANTA, Purdue University, USA

Example-based specifications for program synthesis are inherently ambiguous and may cause synthesizers to
generate programs that do not exhibit intended behavior on unseen inputs. Existing synthesis techniques
attempt to address this problem by either placing a domain-specific syntactic bias on the hypothesis space or
heavily relying on user feedback to help resolve ambiguity.

We present a new framework to address the ambiguity/generalizability problem in example-based synthesis.
The key feature of our framework is that it places a semantic bias on the hypothesis space using relational
perturbation properties that relate the perturbation/change in a program output to the perturbation/change in a
program input. An example of such a property is permutation invariance: the program output does not change
when the elements of the program input (array) are permuted. The framework is portable across multiple
domains and synthesizers and is based on two core steps: (1) automatically augment the set of user-provided
examples by applying relational perturbation properties and (2) use a generic example-based synthesizer to
generate a program consistent with the augmented set of examples. Our framework can be instantiated with
three different user interfaces, with varying degrees of user engagement to help infer relevant relational
perturbation properties. This includes an interface in which the user only provides examples and our framework
automatically infers relevant properties. We implement our framework in a tool SKETCHAX specialized to the
SKETCH synthesizer and demonstrate that SKETCHAX is effective in significantly boosting the performance of
SkETcH for all three user interfaces.

CCS Concepts: » Software and its engineering — General programming languages; Correctness.
Additional Key Words and Phrases: Program Synthesis, Example-Based Synthesis, Ambiguity-Resolution

ACM Reference Format:

Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta. 2020. Augmented Example-Based
Synthesis using Relational Perturbation Properties. Proc. ACM Program. Lang. 4, POPL, Article 56 (January 2020),
24 pages. https://doi.org/10.1145/3371124

1 INTRODUCTION

Example-based synthesis, or Programming By Examples [Gulwani et al. 2012; Lieberman 2000] is
an emerging paradigm of program synthesis that has been applied successfully across diverse
domains [Feser et al. 2015; Gulwani et al. 2012; Leung et al. 2015; Singh and Gulwani 2012; Singh
and Solar-Lezama 2011; Smith and Albarghouthi 2016]. The task in example-based synthesis is to
generate a program from a hypothesis space (often defined as a domain-specific language or DSL)

Authors’ addresses: Shengwei An, Purdue University, USA, an93@purdue.edu; Rishabh Singh, Google Brain, USA, rising@
google.com; Sasa Misailovic, UIUC, USA, misailo@illinois.edu; Roopsha Samanta, Purdue University, USA, roopsha@purdue.
edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART56

https://doi.org/10.1145/3371124

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020. 56

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3371124
https://doi.org/10.1145/3371124

56:2 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

that satisfies a set of input-output (I/O) examples. The example-based specification mechanism can
be a double-edged sword. Example-based specifications have made program synthesis more tractable
as well as accessible to non-expert users who may not be able to write formal/complete specifications.
However, example-based specifications also pose some of the biggest challenges in example-based
synthesis: ambiguity-resolution [Gulwani 2016] and the related problem of generalizability. Since
examples are inherently an ambiguous and/or incomplete form of specification, there can be a
large number of programs that are consistent with a set of examples. Unsurprisingly, not all of
these programs exhibit the (implicit) intended behavior on unseen inputs and, hence, may fail to
generalize to unseen inputs.

There are two main classes of techniques that have been used to address the ambiguity/generaliz-
ability problem in example-based synthesis, with some caveats. (1) Syntactic bias-based techniques
use highly structured DSLs [Alur et al. 2013; Solar-Lezama et al. 2006] or ranking functions [Singh
and Gulwani 2015] to place a syntactic bias on the hypothesis space. These solutions are either
inadequate by themselves or too domain-specific. (2) User feedback loop-based techniques employ a
user to validate candidate programs or abstract representations of examples, or answer questions
as in active learning [Drachsler-Cohen et al. 2017; Mayer et al. 2015; Peleg et al. 2018]. While some
of these interaction models, e.g., Drachsler-Cohen et al. [2017], are based on principled approaches
to address the generalizability problem in example-based synthesis, they place a heavy burden on
the user that ultimately limits the scope of usability of example-based synthesis.

In this paper, we present a new approach for addressing the ambiguity/generalizability problem
in example-based synthesis. Our framework is portable across multiple domains and synthesizers,
can be instantiated with different user interfaces (Uls), and can be used in conjunction with existing
techniques based on structured DSLs, ranking functions or user feedback loops. The key feature
of our framework is that it places a semantic bias on the hypothesis space based on relational
perturbation properties. In contrast to general relational properties that may express constraints
relating multiple programs or multiple executions of a single program, relational perturbation
properties relate the perturbation/change in a program output to the perturbation/change in a
program input. An example of such a property is permutation invariance: the program output does
not change when the elements of the program input (array) are permuted.

Relational perturbation properties enable us to design a simple and efficient solution that is similar,
at least in spirit, to data augmentation used for improving the generalizability of machine learning
models [Krizhevsky et al. 2012; Simard et al. 2003]. Our core approach is based on two steps:

(1) automatically generate an augmented set of examples by applying relational perturbation
properties to the user-provided examples, and

(2) use an existing example-based synthesizer to generate a program consistent with the aug-
mented set of examples.

Our solution strategy of enforcing relational properties using examples instead of formal spec-
ifications is inspired by two observations: (i) not all example-based synthesizers (e.g. [Gulwani
et al. 2012]) accept specifications over all inputs and (ii) in cases where an example-based synthe-
sizer accepts such specifications, there is typically a significant performance penalty in terms of
synthesis time. We choose relational perturbation properties as they enable us to easily generate
additional examples from any set of user-provided examples. For instance, given an I/O example
(x, y) consisting of an input array x = [1, 2,3] and an output y = 3, it is easy to generate additional
examples by applying permutation invariance: ([3, 2, 1], 3), ([2, 1,3], 3), and so on. On the other
hand, if we were to use a more general relational property, such as associativity for a program P
with two inputs and one output (Vx, x’, x”". P(P(x,x"),x"") = P(x, P(x’,x""))), the user-provided
examples would need to meet several requirements to enable generation of additional examples.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:3

For associativity, one would need the user-provided example set to include the examples ((x, x"), y),
((y,x"),z) and ((x",x""),r) in order to generate the single additional example ((x, r), z).

So, where do the relational perturbation properties come from? Our framework provides
three ways to answer this question using three Uls, with varying degrees of user enagement. In
the Property-Selection UI the user picks relevant relational perturbation properties in addition
to providing examples. In the Property-Validation UI the user provides examples and helps our
framework learn relevant properties by validating/invalidating a small set of examples. Finally, in
the Property-Inference Ul which is identical to the standard example-based synthesis setting, the
user only provides examples and our framework automatically infers a relevant set of properties
using a Partial MAX-SMT [Cimatti et al. 2010]-based formulation.

To evaluate the efficacy of our technique, we instantiate our approach on top of the SKETCH syn-
thesizer [Solar-Lezama et al. 2006] and implement it in a tool SKETCHAX.! We chose SKETCH as it is
a general-purpose synthesizer that supports different forms of specifications including input-output
examples, partial programs, and reference implementations. Moreover, unlike PBE systems such as
FlashFill [Gulwani 2011] and Scythe [Wang et al. 2017], SKETCH is not specialized to custom domain-
specific langauges and ranking heuristics. Our extensive evaluation on a large class of benchmarks
demonstrates that SKETCHAX significantly boosts SKETCH’s ability to synthesize correct programs
for all three Uls. For instance, for benchmarks that satisfy some relational perturbation properties,
SkETCHAX improves the success rate of SKETCH by 61%, 60% and 59%, respectively, for the three Uls.

Contributions. Our paper makes the following key contributions:

- We present a new approach to address the ambiguity/generalizability problem in example-based
synthesis. Our approach is based on the novel idea of placing a semantic bias on the hypothesis
space using relational perturbation properties (Sec. 4).

- We propose a flexible and portable framework that can be instantiated with three different Uls,
with varying degrees of user engagement to help infer relevant properties (Sec. 5).

- We develop a Partial Max-SMT-based formulation to automatically infer relevant properties for
the Property-Inference UL where the user only provides I/O examples (Sec. 5).

- We implement our framework in a tool SKETCHAX specialized to the SKETCH synthesizer (Sec. 6)
and demonstrate that SKETCHAX is effective in significantly boosting the performance of SkETCH
for all three Uls (Sec. 7).

2 ILLUSTRATIVE EXAMPLES

We illustrate the core approach of our framework with a few motivating examples using the
SKETCH synthesizer.

max. Suppose a user wants to synthesize a max program that returns the maximum of 3 integer-
valued inputs, using SKETCH as an example-based synthesizer. A partial program (with holes) that
the user may provide is shown in Fig. 1(a). The partial program encodes the space of expressions
that can be used to fill each hole. For example, in the partial assignment statement max = ??,,
the construct ??, is shorthand for the regular expression generator {|x|y|z|??]|} that defines a
space of expressions equaling x or y or z or any integer constant. Similarly, the construct ??,
is shorthand for the regular expression generator (Jmax|x|y|z|) (< | <) (max|x|y|z) that defines a
space of Boolean expressions with either a < or < operator, and operands equaling max or x or y
or z. For the example set E in Fig. 1(b), despite the heavy syntactic bias placed on the hypothesis

1SkETCHAX is SKETCH with Augmented Examples.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:4 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

Partial program Synthesized program
int max(int x, int y, int z){ Example set int max(int x, inty, int z) {
int m =722y; R SKETCH int m = x;
if (@e) m= 2y (o, 10, 2) = 10; if(y < z) m= z;
: - (-1, 10, 20) = 20; : -
if (Ze) m= 72; b if(m<y)ms=y;
. (-1, -2, -3) = -1 .
return m; return m;
} }
(@) (b)
Augmented example set Synthesized program
(o, 10, 2) = 10; (-1, 10, 20) = 20; (-1, -2, -3) = -1; int max(int x, int y, int z) {
(o, 2,10) = 10; (-1, 20, 10) = 20; (-1, -3, -2) => -1; SketcH int m = z;
(10, 0, 2) = 10; (10, -1, 20) = 20; (-2, -1, -3) = -1; if(z < y)m=y;
(10, 2, 0) = 10; (10, 20, -1) = 20; (-2, -3, -1) = -1; if(m < x) m = x;
(2, 0, 10) = 10; (20, -1, 10) = 20; (-3, -1, -2) = -1; return m;
(2, 10, 0) = 10; (20, 10, -1) = 20; (-3, -2, -1) = -1;

(©

Fig. 1. Computing the maximum of three integers using SKETcH and SKETCHAX. The construct ?? is short-
hand for the regular expression generator {|x|y|z|??|} that defines a space of expressions equaling x
or y or z or any integer constant. The construct ??¢ is shorthand for the regular expression generator
(Imax|x|y|z]) (< | <) (max|x|y|z) that defines a space of Boolean expressions with either a < or < operator,
and operands equaling max or x or y or z.

space by the partial program, SKETCH fails to generate a correct max program. This illustrates
the problem of ambiguity-resolution/generalizability in example-based synthesis, mentioned in
Sec. 1. Our tool SKETCHAX addresses this problem by exploiting the fact that the max program
should satisfy permutation-invariance: the program output should not change if we permute the
program inputs. SKETCHAX automatically augments the initial set of examples E by applying the
permutation-invariance property to the examples in E as shown in Fig. 1(c). With the additional
semantic bias on the hypothesis space placed by this augmented set of examples, SKETCH is able to
generate the correct max program.

Permutation invariance is an instance of a relational perturbation property that relates perturbed
inputs to corresponding perturbed outputs of programs. Specifically, it is a structural perturbation
property which changes the relative positions of inputs and outputs. The max program also satisfies
a value perturbation property (specifically, value preservation) which modifies the values of inputs
and outputs. E.g. if we multiply all inputs by some positive constant integer, the output will also be
multiplied by the same constant.

We formalize our notion of relational perturbation properties in Sec. 4. Next, we illustrate two
useful structural and value perturbation properties.

matrixTranspose. The top half of Fig. 2 shows a partial program and an example set E used to
synthesize a program to compute the transpose of a matrix. The program generated by SKETCH
is incorrect. From linear algebra, we know that if we permute the rows of the input matrix, the
columns of its transpose will be permuted in the same way. SKETCHAX applies this perturbation
property to E, thereby enabling SKETCH to synthesize the correct program. For instance, the high-
lighted example in E in Fig. 2 is perturbed by swapping the top 2 rows of the input matrix and
swapping the left 2 columns of the output matrix to yield the highlighted perturbed example.

arrayAdd. The top half of Fig. 3 shows a partial program and example set used to synthesize
a program that performs the element-wise addition of two arrays in1 and in2. The program
generated by SKETCH is incorrect. SKETCHAX applies a value perturbation property to the examples,
enabling SKETCH to synthesize the correct program. Specifically, if in1 is perturbed by adding d;
to each of its elements and in2 is perturbed by adding d, to each of its elements, each element of

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis

Partial program

{
int[3%3] transpose(int[3%3] in1) {
int[3%3] out=0;
repeat(3%3) { {
out[7*3 + 7] = inl[2*3 + 72];
}
return out; {
}
Augmented example set
{210, {210, {e,1,0, {e,1,2, {
1,0,0, = 1,0,1, 1,0,0, = 1,0,1,
0,1,0 } 0,0,0 } 2,1,0 } 0,0,0 }
{210, {2,0,1, {1,0,0, {1,1,1, {
0,1,0, = 1,1,0, 1,0,0, = 0,0,0,
1,0,0 } 0,0,0 } 1,0,1 } 0,0,1 }
{1,0,0, {1,2,0, {1,0,0, {1,1,1, {
2510, = 0,1,1, 1,0,1, = 0,0,0,
0,1,0 } 0,0,0 } 1,0,0 1} 0,1,0 }
{1,0,0, {102, {101, {1,1,1, {
0,1,0, = 0,1,1, 1,0,0, = 0,0,0,
2,1,0 } 0,0,0 } 1,0,0 } 1,0,0 }
{o,1,0, {0,21, {e,1,0, {e,2,2, {
2,1,0, = 1,1,0, 2,2,0, = 1,2,0,
1,0,0 } 0,0,0 } 2,0,1 } 0,0,1 }

NNOR R RO N
ONR OO OR O

ONNNONONNNONNNG®

PoOor oo e

PNONRORONORNNG R

COHROOROHROROOOR D

Example set £

Synthesized program
int[3%3] transpose(int[3%3] inl) {
int[9] out = ((int[9])0);
out[8] = in1[8];

out[0] = inl[8];
SKETOH oyt [2] = inll6];
» out[1] = inl[3];
out[3] = inl[0]; x
out[3] = inl1[1];
out[4] = inl[4];
out[0] = in1[0];
out[5] = in1[7];
return out;
¥

int[3%3] transpose(int[3%3] in1) {
int[9] out = ((int[9])0);

out[8] = in1[8];
out[4] = in1[4];
SKETCH out[2] = in1[6];
out[1] = in1[3];
out[0] = ini[0];
out[3] = in1[1];
out[5] = in1[7];
out[6] = in1[2];
out[7] = ini[5];
return out;
}

Fig. 2. Synthesizing a function to compute the transpose of a matrix using SKETCH and SKETCHAX.

the output array should be perturbed by d; + d;. The perturbed examples shown in the bottom half

of Fig. 3 are obtained using d;,d; € {0, 1}.

Remark. Here, we do not discuss the source of relational perturbation properties. Recall that our
framework supports three Uls to help learn relevant properties. Our procedures for all Uls are

presented in Sec. 5 and Sec. 6.

Partial program

int[4] arrAdd(int[4] in1, int[4] in2) {
int[4] out=0;
repeat(??) {

return out;

Augmented example set

{4,2,3,2}; ({2,1,2,1},{0,1,1,
{5,3,4,3}; ({2,1,2,1},{1,2,2,
{5,3,4,3}; ({0,1,2,2},{0,2,2,
{6,4,5,4}; ({0,1,2,2},{1,3,3,
{1,1,2,2}; ({1,2,3,3},{0,2,2,
{2,2,3,3}; ({1,2,3,3},{1,3,3,

R I A /N

2})
31
2})
3}
2})
3b

Example set F
({2,1,1,0},{2,1,2,2})
out[72] = in1[7] + in2[%]; ({1,0,1,0},{0,1,1,2})
({0,1,2,2},{0,2,2,2})

=
=
=

=
=
=
=
=
=

{4,2,3,2};
{1,1,2,2};
{0,3,4,4};

{2,2,3,3};
{3,3,4,4};
{0,3,4,4};
{1,4,5,5};
{1,4,5,5};
{2,5,6,6};

SKETCH

=

SKETCH

=

Synthesized program

int[4] arrAdd(int[4] in1, int[4] in2) {

int[4] out = ((int[4])0);
out[1] = (in1[1]) + (in2[1]

=)i
out[3] = (in1[2]) + (in2[1]);
out[2] = (in1[2]) + (in2[21);
out[0] = (in1[0]) + (in2[0]);
return out;

}

int[4] arrAdd(int[4] in1, int[z] in2) {
int[4] out = ((int[4])0);
out[3] = (in1[3]) + (in2[31);
out[1] = (in1[1]) + (in2[11);
out[0] = (in1[0]) + (in2[06]);
out[2] = (in1[2]) + (in2[21);
return out;

Fig. 3. Synthesizing a function to compute the sum of two arrays using SKETCH and SKETCHAX.

3 PRELIMINARIES

We first define our models of programs and example-based synthesizers.

Programs. The semantics [P] of a program P is a function [P] : D, — D,y mapping variables
over an input domain Dj, to variables over an output domain D,,;. For simplicity of presentation,
we assume that D;,, D,,,; range over arrays of integers. Our implementation can handle a wider
variety of variable domains including scalars, arrays and matrices? over Booleans and integers. We
use D" to denote a domain of integer arrays of size n. We say a program P is consistent with an

2Matrices are modeled as arrays in our implementation.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:6 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta
input/output (I/O) example (x,y) if [P](x) = y.

Equivalent programs. Two programs P and P’ are equivalent, denoted P = P’, if P and P’ share
the same input domain D;,, and, ¥Yx € Dj,. [P](x) = [P’](x).

Synthesizers. An example-based synthesizer, also sometimes referred to as a synthesizer, accepts
as input a set E of I/O examples and generates a program P that is consistent with all examples in
E. We sometimes refer to I/O examples simply as examples. Given a synthesizer S and a set E of
examples, we use S(E) to denote the program generated by S*. We assume that all user-provided
examples are free of error and noise, i.e., all examples are consistent with the implicit specification
a user may have in mind.

Some synthesizers are constraint-based — they accept constraints in first-order logic (modulo
background theories) and use satisfiability modulo theory (SMT) solvers to generate a program that
satisfies all constraints. Note that I/O examples can easily be encoded as constraints. Given a set C
of constraints, we use S(C) to denote the program generated by a constraint-based synthesizer S.

We say a constraint-based synthesizer S can solve a Partial MAx-SMT problem if it can accept a
set C"4d of constraints that are declared to be hard (i.e., non-relaxable) and a set C*%" of constraints
declared to be soft (i.e., relaxable) and generate a program that satisfies all the hard constraints
and maximizes the number of satisfied soft constraints. When such a synthesizer is used in its
Max-SMT mode, we denote the synthesized program as S(C"¥¢, Csf).

In what follows, unless explicitly stated, we do not assume a synthesizer to be constraint-based
or to be able to solve a Partial Max-SMT problem.

4 RELATIONAL PERTURBATION PROPERTIES

We now formalize our notion of relational perturbation. We first present a fairly general parametric
notion of relational perturbation and then present interesting instantiations that are used in our
evaluation in Sec. 7.

Perturbation arrays and functions. We consider two classes of perturbation that can be applied
to (integer) arrays: structural and value perturbation. A structural perturbation function applied to an
array changes the positions of the array elements according to a given structural perturbation array
of indices. A value perturbation function applied to an array changes the values of all array elements
according to a given value perturbation array of parameters. Thus, a structural perturbation function
does not modify the values of an array, a value perturbation function does not modify the positions
of array elements, and neither perturbation function modifies the size of an array.

Definition 4.1 (Structural perturbation array). A structural perturbation array of size n, Q,, is an
array of indices in D*: (1) Vi € {0,...,n—1}. Qu[i] €{0,...,n—1}and (2) Vi,j € {0,...,n —1}.
Quli] = Qulil = i=].

Definition 4.2 (Structural perturbation function). Let Q, be a structural perturbation array. A
Qp-structural perturbation function fén : D™ — D" applied to an array x € D" returns an array
x’ € D" such that Vi € {0,...,n — 1}. x[i] = x’[Qx[i]]

Thus, a structural perturbation array is a permutation of the indices {0, . . ., n—1}. and a structural

perturbation function permutes the array elements according to a given structural perturbation array.

3We assume that a synthesizer is deterministic. While many synthesizers may execute nondeterministically, they often have
options to force deterministic behavior. For instance, one can use the ‘--slv-seed’ option for the synthesizer SKETCH, use
options ‘--seed’ and ‘--random-seed’ for the synthesizer CVC4, and run the synthesizer DRYADSYNTH in a single-threaded
mode to force determinism.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:7

Example 4.3. In Fig. 1, the input array [-1, -3, —2] in the highlighted example of E’ can be
obtained by applying the [0, 2, 1]-structural perturbation function to the input array [-1, -2, —3] in
the highlighted example of E. We write this as: f[f) 21] ([-1,-2,-3]) = [-1,-3,-2].

Example 4.4. The application of f[; 1n2..) tOanarray x € D" returns an array that reverses
the elements of x.

The set of all structural perturbation arrays of size n is denoted Q,. Note that if n = 1, then
Q1 = [0] and £ (x) = x for any x € D'. We refer to the identical structural perturbation array
[0,1,...,n—1] as id;,. Thus, fist (x) = x for any x € D". We refer to the structural perturbation

array [k +1,...,n—1,0,1,...,k], corresponding to a rotation to the right by k positions, as rotkn,
and the complementary structural perturbation array, corresponding to a rotation to the left by k
positions, as rot;k .

Definition 4.5 (Value perturbation array). A value perturbation array, V = [d;, d], is an array of
rational-valued parameters d;, d; € Q.

Definition 4.6 (Value perturbation function). Given a value perturbation array V = [d;,d;], a
V-value perturbation function f;7 : D" + D" applied to an array x € D" returns an array x" € D"
such that Vi € {0,...,n— 1}. x'[i] = dix[i] + d>.

Thus, a value perturbation function applies a specific affine transformation to every element of
an array using parameters defined by a value perturbation array.

Example 4.7. The application of f[g’l] to the array x = [2, 3,5, 7] yields the array y = [5,7, 11, 15]

jtoy yields x again.

and the application of f[zl’ 12.-1/2

Example 4.8. While the current formalization is limited to single input arrays, we use the example
from Figure 3 to illustrate how the formalization extends naturally to multiple input arrays. In Fig-
ure 3, the input arrays ([2, 1, 1, 0], [3, 2, 3, 3]) in the highlighted perturbed example can be obtained
by applying a ([1, 0], [1, 1])-value perturbation function to the input arrays ([2,1,1,0],[2, 1, 2, 2])
in the highlighted example of E; the first input array is left unchanged and the elements of the
second input array are incremented by 1.

Thus, a value perturbation function applies the same affine transformation to all elements of
an array. The (infinite) set of all value perturbation arrays is denoted V. We refer to the identical
value perturbation array [1, 0] as id®.

Relational perturbation properties. We define relational perturbation properties to relate per-

turbed inputs to corresponding perturbed outputs of programs. We use A and f to denote both

structural and value perturbation arrays and functions, respectively. We refer to a perturbation

array and perturbation function applied to the input (output) of a program as an input (output)

perturbation array A, (Aour) and an input (output) perturbation function fa, (fa,,), respectively.
Henceforth, we fix the sizes of input and output arrays to be n, m, respectively.

Definition 4.9 (Relational perturbation property). A relational perturbation property R is a tuple
(Ky, K3, ®, Ajp) of a matrix K of rationals, an array K, of rationals, an operator @ and a set A;;, of
input perturbation arrays such that: for each A;, € A;y, the corresponding output perturbation array
Aour = K1Ai ® Ky*. The operator @ € {+, +,,} where + is addition and +,, is addition modulo m.

4tFOI' convenience, ‘We assume arrays are column vectors.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:8 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

The above definition of a relational perturbation property is very general and can potentially be
instantiated in infinitely many ways using its parameters K, K; and A;,. We present two classes
of interesting instantiations below that our evaluation focuses on (Sec. 7). In what follows, 0,,xn
denotes the zero matrix of size m X n and 7, denotes the identity matrix of size n.

Structural relational perturbation properties. These are perturbation properties where both the input
and output perturbation is structural. Thus, each A;, is a column vector of size n, A,y is a column
vector of size m, the matrix K is of size m X n, the array Kj is a column vector of size m, and @ = +,,.

(1) Permutation invariance. Permutation invariance specifies that the program output does not
change when the elements of the program input (array) are permuted. Formally, for all
On € Q,, we have [P](x) = [P](5, (x))- Permutation invariance is the relational perturba-
tion property (Omxn, idy,, +m, @n). Note, YO, € Qp. Aout = Omxn On +m id5,, 1.€., Aoyt = id,,
as desired.

(2) Permutation preservation. For this property, we assume that the sizes of input and output
arrays are the same, i.e., n = m. Permutation preservation specifies that when the elements
of the program input are permuted, the elements of the program output are permuted in
the same way. Formally, for all Q,, € Q,,, we have fén([[P]] (%)) = [P] (f5,, (x))- This can be
represented as the relational perturbation property (7, 0,x1, +n, Qn)-

(3) (k,—k)-rotation. For this property, we also assume that n = m. (k, —k)-rotation specifies
that when the elements of the program input are rotated to the right by k positions, the
elements of the program output are rotated to the left by k positions. Formally, for all
ke{-(N-1),...,N—1}, we have frit;k([[P]](x)) = [P] (frf)tﬁ (x)). This can be represented as

the relational perturbation property (7, knx1, +n, {rotkn |k € {-(N-1),...,N —1}}), where
knx1 is a column vector of size n with all elements equal to k.

Value relational perturbation properties. These are perturbation properties where both the input
and output perturbation are value perturbations. Here, A;;, Aoy and the array K, are all column
vectors of size 2, the matrix K is of size 2 X 2, and & = +.

(1) Value invariance. This value relational perturbation property is similar to permutation invari-
ance with the structural input perturbation replaced by a value input perturbation. Formally,
Value invariance specifies that for all V € V, we have [P](x) = [P](f{ (x)). Value invariance
can be represented by the relational perturbation property (032, id5, +, V). Agy = id® for
all V e V as desired.

(2) Value preservation. This value relational perturbation property is similar to permutation
preservation with the structural input perturbation replaced by a value input perturbation.
Formally, Value preservation specifies that for all V' € V, we have f7 ([P](x)) = [P](f{ (x))
and can be represented as the relational perturbation property (73, 02x1, +, V). have Ay, = V
forall V € V as desired.

We define two additional value perturbation properties that are used in our evaluation (Sec. 7):
Vyiven-value invariance and Vy;,en-value preservation. These restrict the focus to a given set
Vyiven of value perturbation arrays, instead of the set V' of all possible value perturbation arrays.

Relational perturbation functions. Relational perturbation functions capture the notion of
applying a relational perturbation property R to an example set E. Informally, the application of an
R-relational perturbation function to E yields a perturbed example set Ej,; obtained by perturbing
each example in E according to R.

Definition 4.10 (Relational perturbation function). Given relational perturbation property R =
(K1, Ky, ®, Ajp), an R-relational perturbation function fg : (D",D™) — (D",D™) applied to an

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:9

example set E returns an example set Ep,,; such that (x’,y") € E,ey iff there exist (x,y) € E and
Ain € Ajp such that x’ = fu, (x) and y’ = fa,,(y) with Agy: = K14, @ K.

5 ALGORITHMIC FRAMEWORK

We now present our overall solution framework to improve the generalizability of existing example-
based synthesizers. Our framework supports three different UIs that differ in the degree of user
involvement in identifying suitable relational perturbation properties for an example-based synthe-
sis problem. The solutions for the first two Uls, i.e., the Property-Selection and Property-Validation
Uls, are applicable to any example-based synthesizer that can handle the variable domains described
in Sec. 3 and Sec. 4. The solution presented in this section for the third U], i.e., the Property-Inference
U], is applicable to constraint-based synthesizers that can solve the Partial MAx-SMT problem
and can handle the variable domains described in Sec. 3 and Sec. 4. In Sec. 6, we describe how to
specialize these solutions to the SKETCH synthesizer and additionally present an alternate solution
for the Property-Inference UI that does not require the synthesizer to be constraint-based (or be
able to solve the Partial Max-SMT problem).

Algorithm 1: Example Augmentation

1 procedure PerturbExamples(E, R)
Input :E:a set of /O examples

R = (k1, k2, ®, Ajp): a relational perturbation property
Output: Eps: a set of I/O examples obtained by applying R to E
Epert =0
foreach (x,y) € E do

foreach A;, € A;, do

‘ Epert = Epert U {(fA,-y,(x), fklA,‘n@kg (y))}
return Ej

N

A G e W

We begin with a procedure that implements the core strategy of our framework: augment user-
provided example sets by applying relational perturbation properties. Given an example set E and a
relational perturbation property R, this simple procedure, shown in Algo. 1, perturbs each example
in E by applying R to it according to Def. 4.10. In what follows, we restrict our focus to a finite set
of relational perturbation properties.

5.1 Augmented Synthesis: Property-Selection Ul

In the Property-Selection Ul, the user provides an example set E and a finite set R of relational
perturbation properties. Our solution for this Ul is shown in Algo. 2. We explicitly identify user
inputs/interactions in a procedure by underlining them. Besides E and R, the procedure also requires
as input a synthesizer S. Unlike E and R which are user-provided inputs (hence, underlined), the
synthesizer S is a tunable parameter of our framework.

Given these inputs, Algo. 2 generates a program consistent with examples in E. The procedure
first uses Algo. 1 to obtain an augmented example set E,,, by perturbing the examples in E with all
the properties in R. Then, the procedure invokes synthesizer S using E,,, to generate the output
program.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:10 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

Algorithm 2: Augmented Synthesis: Property-Selection UI

1 procedure AugmentSynthesis_PropertySelection(E, R, S)
Input :E:a set of I/O examples

R: a set of relational perturbation properties

S: an example-based synthesizer
Output: P: a program consistent with examples in E

Eqg=E

for R e R do
Epers = PerturbExamples(E, R)
Eaug = Eaug U Epert

return S(Eq,g)

[N, U M

Algorithm 3: Augmented Synthesis: Property-Validation UI

1 procedure AugmentSynthesis_PropertyValidation(E, R, S, n)
Input :E, R, S: as before
n: the number of perturbed examples shown to a user

Output: P: a program consistent with examples in E
Egg=E
for R € R do

Eperr = PerturbExamples(E, R)

Eyana = RandomlyChoose(E e, n)

if UserAccept(E,4mq) then
7 ‘ Eaug = Eaug U Epert
8 return S(Eq.g)

N

A 1 e W

5.2 Augmented Synthesis: Property-Validation Ul

In the Property-Validation UL the user provides an example set E and interacts with our framework
to validate/invalidate perturbed examples. The user burden in this case is less than in the Property-
Selection UI — instead of picking applicable relational perturbation properties, the user only needs to
examine examples. As before, the user inputs/interactions are underlined in our procedure, Algo. 3,
for this UL The procedure is additionally parameterized by a synthesizer S, a set of relational
perturbation properties R, and the number n of user interactions per property.

For each property in R, Algo. 3 uses Algo. 1 to generate a set E.,; of perturbed examples. Then,
a set of n randomly chosen perturbed examples from E,,: are shown to the user. If the user accepts
all n perturbed examples, the example set E is augmented with the perturbed examples E,.,. The
procedure invokes synthesizer S using the final augmented example set E,,, to generate the output
program. Notice that, for each property, Algo. 3 only requires a user to accept n perturbed examples
in order to augment E with the entire set E.,; of perturbed examples corresponding to that property.

5.3 Augmented Synthesis: Property-Inference Ul

In the Property-Inference UI, the user only provides an example set E. The user burden in this case
is obviously the least among all our Uls. In fact, there is no additional burden on the user beyond a
standard example-based synthesis setting. Not surprisingly, this UI is the most challenging for our
framework as we need to automatically infer relevant relational perturbation properties without

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:11

Algorithm 4: Augmented Synthesis: Property-Inference UI

1 procedure AugmentSynthesis_PropertyInference(E, R, S)
Input :E, R: as before

S: a constraint-based synthesizer that can solve a Partial MAx-SMT problem
Output: P: a program consistent with examples in E

2 chard = {(P(x) = y) | (x,y) € E}
Csoft =0
for R € R do
Epers = PerturbExamples(E, R)
Cr = N(x.y)eEpn (P(x) =)
7 | M ={Cy, ..., Cg|)
8 | L =AllMaxSMTSol(s,Chard csoft)
/% RL: the set of property sets in £ */
9 return AugmentSynthesis_PropertySelection(E, Rank(R%),S)

(- N, B)

any help from a user. Our solution, based on a Partial Max-SMT formulation, is shown in Algo. 4.
Besides the (underlined) user-provided example set, the procedure is parameterized by a synthesizer
S and a set of relational perturbation properties R. We require S to be a constraint-based synthesizer
that can solve a Partial Max-SMT problem.

For each example in E, the procedure generates a corresponding hard constraint. For each
property R € R, the procedure generates a soft constraint corresponding to the set of perturbed
examples obtaining by applying R to E (using Algo. 1). Once all constraints are generated, we have
a Partial Max-SMT synthesis problem defined by the tuple (S, C", C3%). A solution (P, R*) to this
partial MAax-SMT synthesis problem consists of a program P, synthesized by S, which is consistent
with the set of all examples in E (i.e., C"?) and all examples perturbed according to some maximal
subset of properties R C 2% (corresponding to a maximally satisfiable set of soft constraints in
Cs"ﬁ). In general, there can be multiple such solutions, say {(P;, 7?1), oy (P, ﬁt)}; let us denote this
set by L. If Algo. 4 were to simply return S(Che, C°f*), this would be a program P corresponding
to an arbitrary solution (P, R) from £ (based on the search strategy of S). In particular, P may
not be the most generalizable program and R may not be the most suitable property set for the
given example-based synthesis problem. While it is not clear how to formally define optimality of
solutions to the Partial Max-SMT synthesis problem, Algo. 4 uses a more sophisticated approach
than simply returning S(Ched, Csof),

First, Algo. 4 uses a procedure A11MaxSMTSol to obtain the entire set L of Partial Max-SMT
synthesis solutions (Line 8). Let R£ denote the set of property sets in £. In Line 9, Algo. 4 uses a
procedure Rank to obtain the property set in R ranked highest by a ranking function and invokes
Algo. 2 with this highest ranked property set.

The procedures A11MaxSMTSol and Rank can be instantiated in many ways. We describe our
specific implementations in Sec. 6.

5.4 Correctness

An example-based synthesizer S is sound with respect to a set of examples E if: whenever S generates
a program P from the set E of examples, P is guaranteed to be consistent with all examples in E.
An example-based synthesizer S is complete with respect to E if: whenever there exists a program
in S’s hypothesis space consistent with the examples in E, S can always generate such a program.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:12 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

int[N] F(int[N] in){
?? // holes in unknown program
return out;

}

harness void userProvidedExamples (E) {
for (in,out) € E:
assert out == F(in);

}

harness void augmentedExamples (Eper) {
for (in,out) € Epen:
assert out == F(in);

Fig. 4. SKETCH encoding for Algo. 1.

The example augmentation does not affect the soundness/completeness with respect to the
user-provided set of examples:

THEOREM 5.1. The synthesis procedures in Algo. 2, Algo. 3 and Algo. 4 are sound and complete with
respect to the user-provided example set E if the synthesizer S is sound and complete with respect to E.

The theorem follows directly from the fact that the augmented example sets used by all three
synthesis procedures include the user-provided examples and from our assumption that a user does
not make mistakes: all user-provided and validated examples are free of error.

While we do not provide formal guarantees about the generalizability of the programs synthesized
by our procedures, as we will see in Sec. 7, all our procedures can significantly improve the
generalizabity of the SKETCH synthesizer.

6 SKETCHAX

In this section, we describe the key components of the specialization, SKETcHAX, of our framework
to the SKETCH synthesizer. We present the basic SKETCH encoding of our algorithms and an efficient
alternative to AugmentSynthesis_PropertyInference that can also be used with example-based
synthesizers that are not constraint-based.

Basic SKETCH encoding. The main idea of the SKETCH encoding for all our algorithms (see Fig. 4
for the SkETCH encoding for Algo. 1) is to use the harness function in SKETCH to impose I/O
constraints, corresponding to user-provided and augmented examples, as assert statements.

Implementation of AugmentSynthesis_PropertyInference. When using an exact encoding
of Algo. 4 in SKETCH, we found that SKETCH often struggles to complete the difficult Partial
Max-SMT optimization problem within a specified time bound (even for returning one solution).
Hence, we encode a simple greedy procedure (see Algo. 5) for solving the maximization constraint:
instead of considering all properties in R at once, the procedure performs a greedy search over
subsets of properties in R of increasing sizes. The procedure marks a property set as satisfiable if
AugmentSynthesis_PropertySelection can successfully synthesize a program using the property
set and SKETCH, within a time bound. The procedure maintains such largest satisfiable subsets
of properties until no subset can be expanded any further. The procedure generates all solutions

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:13

Algorithm 5: Greedy Implementation for Algo. 4

1 procedure GreedyAugmentSynthesis_PropertyInference(E, R, S, T)

Input :E, R: as before
S: an example-based synthesizer
T: time bound
Output: P: a program synthesized with highest ranked properties
2 Rapp =0
3 for R € R do
4 if AugmentSynthesis_PropertySelection_T(E, {R},S) # None then
5 ‘ Rapp = Rapp U {R}
6 if |Ryppl <= 1 then
7 return AugmentSynthesis_PropertySelection(E, Rypp, S)
8 Rsar = {{R} R € Rapp}
conflict = 0
10 | while Ry > 1do
1 Rnewsat =0 _
12 for Ro[dsa[€ Rsat do
13 for Ryew € {R| R € Rypp A R ¢ Roldsar} do
14 if AR € Rodsar - (R, Ryew) € conflict then
15 ‘ continue
16 if AugmentSynthesis_PropertySelection_T(E, Rousar U {Rnew}, S) # None
then
17 ‘ Ruewsat = Ruewsat U {Rotdsar U {Rnew}}
18 else
19 if |Rogsarl = 1 then
20 ‘ conflict = conflict U {(Ruew, R), (R, Ruew) | R € Roidsat}
21 if |Ruewsat) = 0 then
22 ‘ break
23 Risar = Ruewsat _
24 return AugmentSynthesis_PropertySelection(E,Rank(Rs), S)

to the Partial MAX-SMT problem that can each be computed as being satisfiable within the time
bound and does not require the synthesizer to even be constraint-based.’

In order to take a closer look at Algo. 5, we first define some notation used in the algorithm.
Symbols R and R, denote a single property, symbols R, and Rj4s.: denote a set of properties,
and symbols ﬁsm and ﬁnewsat denote a set of sets of properties. Further, given a property R, {R} de-
notes the singleton set containing R. Finally, AugmentSynthesis_PropertySelection_T denotes
a version of AugmentSynthesis_PropertySelection that is forced to return “None" after a time
bound T is exceeded.

We first collect all individual, satisfiable/applicable properties in R, (Lines 2-5). We do this
by using AugmentSynthesis_PropertySelection_T to synthesize using each possible property

>We use a Partial Max-SMT formulation for Algo. 4, instead of the above greedy formulation, for ease of presentation. The

choice between Algo. 4 and the greedy implementation is a practical one, and can be made based on the availability/efficiency
of Partial MAX-SMT-solving within the synthesizer in question.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:14 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

R € R.If no property is found to be satisfiable or only one property is found to be satisfiable, Algo. 5
simply returns the program synthesized by AugmentSynthesis_PropertySelection with R,
(Lines 6-7). Then, we start to build maximal sets of satisfiable properties by adding one property
from R, iteratively to current satisfiable property sets (Lines 8—23). The set of maximal, satisfiable
property sets, Rsar, is initialized with singleton sets containing each satisfiable property in Ry,
(Line 8). While there are at least two satisfiable property sets in Rsat (Line 10), we iteratively try to
construct a larger satisfiable property set R newsar With one additional property (Line 12—20). Thus, in
each iteration, we choose a satisfiable property set R4sqr and try to add a new property Ry, into it.
To be more efficient, we maintain a (symmetric) conflict relation between each pair of properties that
essentially tracks if AugmentSynthesis_PropertySelection_T is able to synthesize a program
using the pair of properties, within the time bound. If any property in Rjgsq: conflicts with R, we
just skip trying R, (Lines 14—15). If the newly constructed property set Roigsar U {Ryew} is found
to be satisfiable, we add it to the set of maximal, satisfiable property sets constructed in the current
iteration of the outer while loop (Lines 16—17). Otherwise, we update the conflict relation (Lines
19—20). If we fail to construct a larger satisfiable property set, we exit the while loop with the
previous set of maximal, satisfiable property sets in Rsar (Lines 21—22). Otherwise, we start the next
iteration of the while loop by updating Rsar to the newly constructed set of maximal, satisfiable
property sets ‘ﬁnemm (Line 23).

After collecting the maximal, satisfiable property sets, Algo. 5 returns the program synthesized
by AugmentSynthesis_PropertySelection using the property set ranked highest by a ranking
function (Line 24). In our actual implementation, we use dynamic programming to avoid using
AugmentSynthesis_PropertySelection to synthesize programs with the same sets of examples
and properties repeatedly in Line 24.

Ranking function. After analyzing the satisfiable property sets generated by the above greedy
implementation of AugmentSynthesis_PropertyInference over our dataset and experimenting
with different ranking functions (including one learnt from a training set of successful synthesis
instances from the Property-Selection UI), we found that randomly choosing a property set from
the set of satisfiable property sets is adequate for our experimental setup.

7 EVALUATION

Our evaluation of SKETCHAX investigates the improvement over SKETCH in synthesis of correct
benchmarks and the run-time performance of our algorithms for all three Uls. In what follows,
the implementations in SKETCHAX of the algorithms for the three Uls are denoted SKETCHAX I,
SkETCHAX II and SKETCHAX III, respectively.

Dataset. Our dataset consists of 143 "SKETCH benchmarks" from SKETCH Benchmarks Reposito-
ries [ske 2019], 40 "SYGUS benchmarks" from the Conditional Linear Integer Arithmetic (CLIA)
track of the annual Syntax-Guided Synthesis (SyGuS) competition [syg 2019; Alur et al. 2013], and
14 manually-constructed benchmarks. Overall, our dataset consists of 111 Bit benchmarks which
only use Booleans/bit-vectors and 86 Int benchmarks which only use integers/integer arrays.
The SkETCH benchmarks were automatically selected from the set of all benchmarks available
in [ske 2019] using a script based on the following requirements: (1) there is a reference imple-
mentation or complete functional specification for the benchmark; (2) the benchmark contains at
least one hole; (3) SKETCH can synthesize a program from the benchmark; (4) and the input/output
of the benchmark are of types Boolean/integer or their arrays. This yielded 111 Bit benchmarks

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:15

and 32 Int benchmarks. Note that we require reference implementation for benchmarks only for
evaluating the correctness of the synthesized program in our experiments.

For the SYGuS benchmarks, we considered the CLIA track and the Programming By Examples
[Theory of Bit Vectors] (PBE-BV) track as these tracks target synthesis of programs over Boolean-
s/integers and their arrays. Unfortunately, we were unable to use the benchmarks from the PBE-BV
track as they did not come with complete functional specifications or reference implementations
that would enable us to check the correctness of the synthesized programs. We hand-translated all
benchmarks in the CLIA track into SKETCH and selected the ones for which SKETCH was able to
synthesize a program. This yielded 40 Int benchmarks.

Finally, we manually constructed an additional 14 Int benchmarks in SKETCH to further enlarge
our set of Int benchmarks. These include the three examples from Sec. 2, some variations on the
partial programs in the SKETCH benchmarks, and common algorithmic tasks over arrays such as
computing the sum of two matrices, counting the number of elements in an array within/exceeding
a threshold, computing the maximum element in an arbitrary-length input array, etc.

We focus on the following set of relational perturbation properties as they suffice for the bench-
marks we considered:

e p;: permutation invariance,

e p,: permutation preservation,

e ps3: (k, —k)-rotation,

o py: V,g4-value invariance,

o ps: V,up-value invariance,

® po: Vyaq-value preservation,

e p7: Vyu-value preservation, and

e pg: permutation transposition.

Here, V44 is {[1,d]|d € {1,...,10}} and Vyy is {[d,0]|d € {2,...,10}}. Thus, property p,
perturbs inputs by adding d € {1,. .., 10} to all elements and leaves the output unchanged, property
ps perturbs inputs by multiplying all elements with d € {2, ..., 10} and leaves the output unchanged,
property pg perturbs inputs/outputs by adding d € {1, ..., 10} to all elements and property p;
perturbs inputs/outputs by multiplying all elements with d € {2,. .., 10}. Property ps, illustrated
in Fig. 2, applies an identical permutation to the rows and columns of input and output matrices,
respectively. Notice that the set of all relational properties is finite because of the finite sets V44
and Vi of value perturbation arrays.

Table 1. Number of properties satisfied by benchmarks in dataset

Number of Bit Int
properties satisfied benchmarks benchmarks
1 22 12
2 0 28
3 0 12
4 0 1
>4 0
>1 22 53

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:16 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

In Table 1, we provide a property-based view of our dataset. In particular, we show the number
of Bit and Int benchmarks satisfying some number of properties from py, . . ., ps. Note that the Bit
benchmarks satisfy at most one (structural perturbation) property, p; or p, or ps, at a time and do
not satisfy any value perturbation properties.

Experimental setup. We use the reference implementations or complete functional specifica-
tions of the benchmarks to check the correctness of synthesized programs (using the keyword
implements in SKETCH for checking program equivalence). Note that SKETcH does bounded verifi-
cation, i.e., it checks program equivalence over all inputs upto certain bounds (e.g. all integers upto
bit width 5, all arrays upto length 10 etc.).

In our default setting, we evaluate the success rate of SKETCH and our algorithms over 10
runs for each benchmark, yielding 1970 synthesis instances in total. Each run uses a different
set of 3 I/O examples, randomly generated from the complete functional specification/refer-
ence implementation. We set a timeout of 5 minutes for synthesis-solving across all experi-
ments. For the perturbation of an I/O example with a relational perturbation property (Line 5
in AugmentSynthesis_PropertySelection), we set a timeout of 5 seconds and an upper-bound
of 128 perturbed examples to ensure SKETCH terminates within a reasonable time. On average,
SKETCHAX I generated 112 examples for each benchmark satisfying some properties (157 for each
int benchmark, and 93 for each bit benchmark).

We use the latest version of SKETCH, released in March 2018 (SKETCH-1.7.5). We ran our experi-
ments on shared servers equipped with Intel E5320@1.86GHz CPU and 8GB RAM.

7.1 SkeTcHAX I: Property-Selection Ul

Figures 5 and 6 summarize the results of our synthesis experiments with SKETCH and SKETCHAX L
For each benchmark, the applicable relational perturbation properties (from py, . . . , ps) are manually
chosen by us. Fig. 5 shows the instance success rate for different benchmark categories. Recall that
there are 10 synthesis instances per benchmark. The instance success rate is the percentage of
synthesis instances that yield correct synthesized programs. The numbers below each benchmark
category on the x-axis indicate the number of benchmarks in that category. Fig. 6 shows the
benchmark success rate for different benchmark categories. A benchmark synthesis is declared
successful if 100% of its synthesis instances yield correct synthesized programs. The benchmark
success rate is then simply computed as the percentage of benchmarks whose synthesis is successful.
We later investigate other thresholds for defining a successful benchmark synthesis (Fig. 7).

Let us first take a closer look at Fig. 5. The numbers within the SKETCHAX I bars indicate the
improvement over the instance success rate of SKETCH with SKETCHAX 1. The overall improvement
in the instance success rate of SKETcH with SKETCHAX I is 22%. The improvement is significantly
higher (61%) for benchmarks which satisfy at least one of the relational perturbation properties
p1, - - ., s, thereby validating our fundamental hypothesis. The improvement is even more con-
siderable (191%) for Bit benchmarks satisfying some perturbation properties, a category in which
SKETCH’s instance success rate is only 31%. The improvement for Int benchmarks satisfying some
properties, a category for which SKETCH's instance success rate is 58%, is 32%. It is important to
note that for benchmarks that do not satisfy any properties, SKETCHAX’s success rate does not fall
below that of SKETCH.

The improvements in benchmark success rates, shown in Fig. 6, are slightly higher: 28% for all
benchmarks, 63% for benchmarks satisfying some properties, 220% for Bit benchmarks satisfying
some properties, and 32% for Int benchmarks satisfying some properties. Notice that, as expected,
the individual benchmark success rates of SKETCH and SKETCHAX I are lower than their respective
instance success rates.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:17

SKETCH Il SKETCHAX |
o 100% :
©
@ 75%
o}
|5}
S 50%
3 . - 2 .
0] o~
S 25% 3 - X > q
S N © o - (5]
@ 0% + + + + +
— (]
All benchmarks : Benchmarks sat. Benchmarks sat. : Bit benchmarks Int benchmarks
(197) : properties no properties . sat. properties sat. properties
(75) (122) ' (22) (53)
Fig. 5. Instance success rate of SKETCH and SKETCHAX |.
SKETCH B SKETCHAX |

£ 100% :
1%}
3 75%
|5}
S
o 50% o
x o~
] x x o °°
E 2%)) X N
3] Al o l
S 0% + + + +
m All benchmarks : Benchmarks sat. Benchmarks sat. : Bit benchmarks Int benchmarks

197) properties no properties sat. properties sat. properties

(75) (122) ' (22) (53)

Fig. 6. Benchmark success rate of SKETCH and SKETCHAX I.

50%
40%
30% o
20%
10%

0% L L L L L]
50% 60% 70% 80% 90% 100%

Threshold

Improvement
o
o
o
o
o

Fig. 7. Improvement of benchmark success rate w.r.t. varying thresholds for defining successful synthesis.

To ensure that our threshold choice of 100% for defining successful benchmark synthesis is not
overtly conservative, we investigate the impact of using different thresholds for defining successful
benchmark synthesis in Fig. 7. The y-axis tracks the improvement in benchmark success rate of
SKETCHAX I over SKETCH for all benchmarks. Notice that (1) the improvement is roughly the same
(specifically, between 24% and 28%) across all thresholds and (2) the improvement is actually the
highest for the 100% threshold (specifically, 28%). Henceforth, we use 100% as the default threshold
to measure benchmark success rate.

Differences in performance over Bit and Int benchmarks. As evident from Fig. 5 and Fig. 6,
SKETCH has a noticeably higher success rate for Int benchmarks than for Bit benchmarks. In fact, for

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:18 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

the Int benchmarks from SkeTcH Benchmarks Repositories that satisfy some properties, SKETCH’s
instance success rate is 97%!°

To understand the difference in performance of SkercH for Int and Bit benchmarks, we took a
closer look at the approximate sizes of the respective synthesis search spaces and found these to
be smaller for Int benchmarks on average. For instance, while none of the Int benchmarks have
solution spaces of sizes greater than 10°, 22 out of 111 Bit benchmarks have solution spaces of sizes
greater than 10°°. The smaller solution space sizes for Int benchmarks are primarily because of the
small default bounds used in SKETCH for holes corresponding to integer constants, loop iterations
etc, and, at least partially, explain SKETCH’s higher success rate on Int benchmarks.

The difference in the improvement brought by SKETcHAX I for Int and Bit benchmarks satisfying
some properties is harder to exactly pinpoint as there are many factors at play. We believe this is
because the partial programs for Int benchmarks already impose significant structural/syntactic
constraints on the synthesis search space, thereby limiting the improvements due to the semantic
constraints corresponding to relational perturbation properties.

7.2 SKkeTcHAX II: Property-Validation Ul

Figures 8 and 9 summarize the results of our synthesis experiments with SKETCH and all SKETCHAX
algorithms.

Figures 8 and 9 show that SkETcHAX II, which employs a user to validate 3 perturbed examples
per property, has a similar performance as SKETCHAX I across all categories. Further, observe that
for the benchmarks which do not satisfy any properties, SKETcCHAX II performs slightly better than
SKETCHAX], leading to a small overall improvement in its success rate across all benchmarks. There
is an interesting explanation for this. For some synthesis instances, some relational perturbation
properties hold on the given example set even though the properties don’t hold for the program in
general. Thus, the user validates the resulting perturbed examples and SKETcHAX II applies the
properties to successfully augment the example set and the synthesis. In contrast, SKETCHAX I
does not apply such properties to the example set and hence, does not augment the synthesis in
these cases.

We also tested SKETCHAX II by having the user validate 1 and 2 perturbed examples per property
and found that the results were a bit worse. The improvement in instance success rate over SKETCH
for all benchmarks was 21% and 22%, respectively, and for benchmarks satisfying some properties
was 56% and 59%, respectively.

7.3 SkeTcHAX IlI: Property-Inference Ul

The noteworthy improvements in success rates over SKETCH we have discussed so far have been
for SkETcHAX with the Property-Selection and Property-Validation Uls, where the user plays an
active role in providing or helping infer an applicable set of relational perturbation properties. The
real testament to SKETCHAXs ability to augment SKETCH lies in the success rates of SKETcHAX III
in Figures 8 and 9. SKETCHAX III performs similar to SKETCHAX I in most categories, with the
same overall improvement in instance success rate over all benchmarks. The reason for the small
improvement in success rate of SKETCHAX III for benchmarks that do not satisfy any properties is
the same as that for SKETcHAX IL

Inference of correct property sets. Since SKETCHAX III infers relevant property sets to use to
augment examples, we examine its inference accuracy. This inference accuracy tracks the percentage

SFor curious readers, SKETCH’s instance success rate for SYGuS and the manually-constructed Int benchmarks satisfying
some properties is 19% and 49%, respectively.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:19

SKETCH [SKETCHAX | Bl SKETCHAX I Il SKeTcHAX I

o 100% : ;
© 5
2 75% i ;
» ' '
o . .
S 50% : E
2 - - N
3 N 5 -
g 25% S SNE B
i) O O]~ -
@ 0% + . + + +] +] + +] +
- All benchmarks : Benchmarks sat. Benchmarks sat. | Bit benchmarks Int benchmarks

(197) properties no properties sat. properties sat. properties

(75) (122) ' (22) (53)
Fig. 8. Instance success rate of SKETCH and SKETCHAX algorithms.
SKETCH [SKETCHAX | B SKETCHAX I Il SKeTCHAX IlI

£ 100% : :
P .
2 75% :
o !
o .
a 50% : .
- o<l] < B
I} N BN B N B B S o
£ 25% 01 Of N @O I~ S I
S A OIN : ({=] [T=] [To] © 1001 1 N
c 0% +] +] + . +] +H]+ +] +] . + +] +
&.’ All benchmarks : Benchmarks sat. Benchmarks sat. ! Bit benchmarks Int benchmarks

(197) properties no properties sat. properties sat. properties

(75) (122) ' (22) (53)

Fig. 9. Benchmark success rate of SKETCH and SKeTcHAX algorithms.

of synthesis instances for which SKETcHAX III inferred property sets that are subsets of the correct
property sets. By randomly choosing one of the Max-SMT solutions, SKETCHAX III’s inference
accuracy over all benchmarks is 79.4%. The inference accuracy for benchmarks satisfying properties
is 92.1% (91.1% for int benchmarks and 94.5% for bit benchmarks). Finally, the inference accuracy
for benchmarks that do not satisfy any properties is 71.6% (53.9% for int benchmarks and 78.2% for
bit benchmarks).

X SKETCHAX Il A SKETCHAX| @ SKETCH

15
XX(
212 <
S X
<9
8 X
o X X X x
[0} 6 X
£
=3 B * X X i
A XXxXx X X
0

197 benchmarks

Fig. 10. Time cost of SKETCH, SKETCHAX | and SKETCHAX II1.

7.4 Time Cost of SKETCHAX

Fig. 10 shows the total synthesis time taken by SkETcH and SKETCHAX I and SKETCHAX III on
each of the 119 test benchmarks. We exclude SKETCHAX II as, barring the user interactions (whose

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:20 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

Table 2. Statistical view of time cost (in seconds).

SKETCH SKETCHAX I SKkETCHAX III

Average 1.20 4.04 51.56
1st quartile 0.98 1.00 1.43
Median 1.07 1.16 6.03
3rd quartile 1.27 1.70 20.62

time cost is hard to estimate), the computations in SKETCHAX II are almost identical to those in
SKETCHAX I. Observe that for most benchmarks, SKETCHAX I and SKETcHAX III took time similar
to that taken by SKeTCH. The statistical results in Table 2 provide a more fine-grained view of the
time performance. While the average times taken by SKETcHAX I and SKETCHAX III are noticeably
higher than that taken by SKETCH, their times for the 3 quartiles are significantly lower and quite
reasonable. Notice that SKETCHAX I closely matches the times taken by SKETCH on the 1st and
2nd quartile. And for 75% of the benchmarks (3rd quartile), the time taken by SKETcCHAX I is 1.70
seconds. As for SKETCHAX III, 25% of the benchmarks (1st quartile) were synthesized within 1.43
seconds and half of the benchmarks (median) were tackled within 6.03 seconds.

7.5 Sensitivity of SKETCHAX to Size of Example Set

To illustrate how the size of the user-provided example set affects the success rate of SKETCHAX
algorithms, we ran the algorithms with 1 to 5 examples for bit and int benchmarks (see Table 3). As
expected, more I/O examples can improve the success rates of all algorithms: (from about 30% to
about 60% for SKETCH and from about 33+% to about 71% for SKETCHAX algorithms). In general,
the improvement due to augmented synthesis increases as the number of examples decreases.
However, for benchmarks satisfying some relational perturbation properties, the improvement
starts going down when the number of examples decreases below a certain threshold (2 in our
case). This is because the number of initial examples is too small to reliably augment. The negative
improvement cases when using SKETcH III for benchmarks satisfying no properties is because we
might enforce the wrong properties.

Table 3. Instance success rate (%) with varying example set sizes

(197) Benchmarks (75) Benchmarks sat. properties (122) Benchmarks sat. no properties
lex. 2ex. 3ex. 4ex. 5ex. lex. 2ex. 3ex. 4ex. 5ex. lex. 2ex. 3ex. 4ex. 5 ex.
SKETCH 300 427 520 563 595 31,1 423 496 527 559 293 430 534 585 61.8

SKETCHAX I 375 535 635 677 704 50.8 70.5 799 827 844 293 430 534 585 61.8

Improvement 250 252 222 203 182 635 669 610 570 51.1 0.0 0.0 0.0 0.0 0.0
SKETCHAX II 39.0 548 641 681 706 51.2 705 792 823 84.1 31.6 452 548 593 62.2
Improvement 299 284 231 209 184 648 669 597 562 50.2 7.2 5.2 2.3 14 0.7

SKETCHAX III 337 527 634 675 705 447 685 787 81.6 837 269 430 539 589 62.3
Improvement 122 231 219 199 183 438 621 586 549 499 -84 -04 0.9 0.6 0.8

7.6 Discussion
We wrap up this section with a discussion of some of our choices.

SKkETCH. Recall that all the algorithms presented in Sec. 5 and Sec. 6, except for Algo. 4, are
parameterized by a synthesizer and can potentially be used with any example-based synthesizer,
with support for a deterministic mode and the variable domains described in Sec. 3 and Sec. 4.
Hence, we experimented with two other synthesizers that were compatible with our framework —

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:21

DrYADSYNTH and CVC4 (the winners in the CLIA Track of SYGUS 2018). Augmented versions of
both synthesizers took more than one hour to synthesize a program which returns the maximum
of three integers (with 69 perturbed and 3 original examples). Ultimately, we chose SKETCH as it
was significantly more efficient than these synthesizers, especially when given many augmented
I/O examples.

Property inference using a partial MAx-SMT formulation. Our approach to infer applicable
property sets using a partial Max-SMT formulation (or its greedy implementation) appears to bias
the synthesizer towards programs that satisfy relational perturbation properties.

There is adequate empirical evidence that this is not the case for our current experimental setup.
Note that 122/197 (62%) benchmarks in our dataset do not satisfy any properties. The instance
success rate of SKETCHAX III for the benchmarks that do not satisfy any properties is similar to the
instance success rate of SKETCH (see Fig. 8).

We probed further and implemented another version of SKETcHAX III that explicitly attempts
to infer relational perturbation properties that are not applicable for a benchmark, in addition to
inferring applicable properties. The procedure is initialized with the following set of properties
R = {p1, =p1,p2, P2, .. ., ps, 7ps}; for each "negative" property of the form —p, Ej.; is generated
as before and the corresponding soft constraint is generated as \/ .)¢ Epen (P(x) # y). However,
we found that the difference in the performance of SKETcHAX III and this modified version of
SkeTcHAX III is negligible.

All of this indicates that our MAX-SMT formulation is not inaccurately biasing the synthesizer
towards programs that satisfy some relational perturbation properties. We believe the reason for
this is that the inherent bias placed on the search space by the partial programs used for all our
benchmarks disallows inference of inapplicable properties (because of some detected inconsistency
between augmented examples and original examples/partial program). In the future, as we generalize
our approach to other domains and synthesizers, we may need to develop other versions of
SkeTcHAX III (for instance, similar to the one outlined above and, perhaps, in combination with one
of the ranking functions we experimented with that can order property sets by their applicability
to the domain of interest).

Example augmentation with relational perturbation properties. We outline the reasons for
enforcing relational properties using augmented I/O examples instead of formal specifications.
Another option for augmenting I/O examples is to use a complete functional specification or
reference implementation to generate more I/O examples. We did some experiments and found
that SKETCH can match the performance of SKETCHAX I with 20-30 random examples for some
benchmarks. This is not surprising as relational perturbation properties are not inherently more
helpful than the actual functional specification for example augmentation or for placing a semantic
bias on the solution space. Of course, in real-world PBE settings, it is challenging to randomly
generate a large number of correct I/O examples (as one does not have a complete functional
specification or reference implementation), or, expect users to provide large numbers of examples.
Thus, example augmentation using relational perturbation properties is essential for ensuring the
usability of our technique.

8 RELATED WORK

Data augmentation in machine learning. Deep learning techniques use data augmentation as
a common technique for improving machine learning classifiers [Krizhevsky et al. 2012; Simard
et al. 2003]. For instance, for learning a classifier on a set of input images, they generate new
images by applying label-preserving transformations (e.g. image translation, horizontal reflections,
or altering RGB channel intensities). This not only provides more training data for large deep

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

56:22 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

learning models, but also enables the model to learn certain input invariance properties, thereby
improving generalization on unseen data. In contrast, our algorithms for example-based synthesis
learn the desired program from a small set of examples. Instead of limiting ourselves only to
label-preserving transformations, our framework also supports perturbations where the labels
(outputs) can change with respect to the input changes, e.g. the permutation preservation and value
preservation perturbations.

Metamorphic relations in testing. In software engineering, metamorphic testing uses metamor-
phic relations to help establish a test oracle (see, e.g., [Chen et al. 2018] for a recent review). Since
many computations do not have an easily computable reference output (test oracle), the testing
framework instead relies on quantifying the relative changes in the inputs and the outputs, defined
by the metamorphic relations, to indicate a potential bug. Metamorphic relations typically need to
be specified manually by the developer (similar to our Property-Selection UI). It is only recently
that researchers have proposed automating inference of specific metamorphic relations for certain
application domains, using machine learning [Kanewala et al. 2016; Zhang et al. 2014]. While our
relational perturbation properties bear some similarity to metamorphic relations, our approach
is the first to leverage relational properties to address the ambiguity/generalizability problem in
example-based program synthesis. Moreover, our approach lets a developer interactively identify
the properties (through the Property-Validation UI) and automatically infer relevant relational
properties using a Partial Max-SMT-based formulation (through the Property-Inference UI).

Handling ambiguity in example-based synthesis. Besides using highly structured DSLs [Alur
et al. 2013; Solar-Lezama et al. 2006] to place a syntactic bias on the hypothesis space, many example-
based synthesizers use a ranking function that aims to score consistent programs by their ability to
generalize. The ranking function is either manually designed using a set of custom weights assigned
to different DSL operators [Gulwani et al. 2012] or learnt from data using supervised machine
learning techniques [Singh and Gulwani 2015]. Another approach gathers additional information
from the user to disambiguate the program space [Mayer et al. 2015], e.g., by creating distinguishing
inputs [Jha et al. 2010] or abstract examples [Drachsler-Cohen et al. 2017]. Raychev et al. [2016]
present a feedback loop that identifies and discards potentially incorrect examples. Unlike these
approaches, our approach handles ambiguity by placing a semantic bias on the hypothesis space
using relational perturbation properties to automatically augment the example sets. Our approach
is complementary to previous techniques and it might be interesting to investigate combining these
techniques in future.

Programming by examples (PBE). PBE [Lieberman 2001] techniques have been successfully
developed for various domains: string transformations [Gulwani et al. 2012; Singh 2016], SQL
queries [Wang et al. 2017], data structure manipulations [Feser et al. 2015; Singh and Solar-Lezama
2011], number transformations [Singh and Gulwani 2012], parser synthesis [Leung et al. 2015], map-
reduce style distributed programs [Smith and Albarghouthi 2016], web data integrations [Inala and
Singh 2017]. More recently, there are efforts to use deep learning [Balog et al. 2017; Devlin et al. 2017;
Parisotto et al. 2017] to automatically generate PBE systems. Most of these PBE systems generate
programs that are consistent with a user-provided set of examples. Systems such as BlinkFill [Singh
2016] also take into account additional specifications (besides examples) from spreadsheets. Our
approach can potentially complement some existing synthesizers given corresponding perturbation
properties in different domains.

PBE techniques that account for error or noise in examples are somewhat limited [Devlin et al.
2017; Raychev et al. 2016]. Nevertheless, it is an important research direction for PBE and especially
for our work since we additionally infer applicable properties from the user-provided examples.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

Augmented Example-Based Synthesis 56:23

Program synthesis. The field of program synthesis has seen a recent resurgence because of the
advancements in search methods and compute hardware [Alur et al. 2013; Gulwani et al. 2017].
The general synthesis problem aims at learning programs from many different forms of specifi-
cations (including reference implementations, logical specifications, natural language, examples
etc.), whereas in this work we focus on synthesis from input-output examples. Synthesis frame-
works based on other incomplete specification mechanisms can potentially benefit from a similar
augmentation of the specification with additional perturbation properties.

Relational program synthesis. Recent work on relational program synthesis [Wang et al. 2018]
seeks to synthesize programs from complete relational specifications. In contrast, we use a class of
relational properties to augment program synthesis from incomplete example-based specifications.

9 CONCLUSION

We proposed a new approach to address the ambiguity/generalizability issue in example-based
synthesis based on the idea of example augmentation using relational perturbation properties. We
presented solutions for three user interfaces and demonstrated the effectiveness of our approach in
significantly boosting the performance of the SKETCH synthesizer. Given this proof-of-concept, we
plan to explore several future directions. We will investigate richer classes of relational properties
in diverse domains and apply our approach to multiple example-based synthesizers. We also plan
to work on designing new search algorithms for program synthesis based on relational properties.

ACKNOWLEDGMENTS

We are grateful to Armando Solar-Lezama for his insightful comments at different stages of this
work. We also thank our shepherd, Eran Yahav, and the anonymous reviewers for their feedback
and guidance in improving this paper. This material is based upon work supported, in part, by
the National Science Foundation under Grant No. 1846327 and Grant No. 1846354 and by grants
from the Purdue Research Foundation and the Purdue University Integrated Data Science Initiative.
Any opinions, findings, and conclusions in this paper are those of the authors only and do not
necessarily reflect the views of our sponsors.

REFERENCES

2019. Syntax-Guided Synthesis Competition. https://sygus.org/.

2019. SKETCH Benchmarks Repositories. https://bitbucket.org/gatoatigrado/sketch-frontend/src.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh,
Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-Guided Synthesis. In Formal Methods in
Computer-Aided Design (FMCAD). 1-8.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. 2017. DeepCoder: Learning
to Write Programs. In International Conference on Learning Representations (ICLR).

Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H. Tse, and Zhi Quan Zhou. 2018. Metamorphic
Testing: A Review of Challenges and Opportunities. Comput. Surveys 51, 1 (2018), 4:1-4:27.

Alessandro Cimatti, Anders Franzén, Alberto Griggio, Roberto Sebastiani, and Cristian Stenico. 2010. Satisfiability Modulo
the Theory of Costs: Foundations and Applications. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). 99-113.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli. 2017.
RobustFill: Neural Program Learning under Noisy I/O. In International Conference on Machine Learning (ICML). 990-998.

Dana Drachsler-Cohen, Sharon Shoham, and Eran Yahav. 2017. Synthesis with Abstract Examples. In Computer Aided
Verification (CAV). 254-278.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure Transformations from Input-Output
Examples. In Programming Language Design and Implementation (PLDI). 229-239.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets using Input-Output Examples. In Principles of
Programming Languages (POPL). 317-330.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

https://sygus.org/
https://bitbucket.org/gatoatigrado/sketch-frontend/src

56:24 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta

Sumit Gulwani. 2016. Programming by Examples: Applications, Algorithms, and Ambiguity Resolution. In International
Joint Conference on Automated Reasoning (IJCAR). 9-14.

Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet Data Manipulation using Examples. Commun.
ACM 55, 8 (2012), 97-105.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends in Programming
Languages 4, 1-2 (2017), 1-119.

Jeevana Priya Inala and Rishabh Singh. 2017. WebRelate: Integrating Web Data with Spreadsheets using Examples.
Proceedings of the ACM on Programming Languages (PACMPL) 2, POPL (2017), 2:1-2:28.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided Component-based Program Synthesis.
In International Conference on Software Engineering (ICSE). 215-224.

Upulee Kanewala, James M Bieman, and Asa Ben-Hur. 2016. Predicting Metamorphic Relations for Testing Scientific
Software: A Machine Learning Approach using Graph Kernels. Software Testing, Verification & Reliability 26, 3 (2016),
245-269.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Processing Systems (NIPS) 25. 1097-1105.

Alan Leung, John Sarracino, and Sorin Lerner. 2015. Interactive Parser Synthesis by Example. In Programming Language
Design and Implementation (PLDI). 565-574.

Henry Lieberman. 2000. Programming by Example: Introduction. Commun. ACM 43, 3 (2000), 72-74.

Henry Lieberman. 2001. Your Wish is My Command: Programming by Example. Morgan Kaufmann.

Mikaél Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin G.
Zorn, and Sumit Gulwani. 2015. User Interaction Models for Disambiguation in Programming by Example. In Symposium
on User Interface Software & Technology (UIST). 291-301.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli. 2017. Neuro-
Symbolic Program Synthesis. In International Conference on Learning Representations (ICLR).

Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming Not Only by Example. In International Conference on
Software Engineering (ICSE). 1114-1124.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. 2016. Learning Programs from Noisy Data. In Principles
of Programming Languages (POPL). 761-774.

Patrice Y. Simard, David Steinkraus, and John C. Platt. 2003. Best Practices for Convolutional Neural Networks Applied to
Visual Document Analysis. In International Conference on Document Analysis and Recognition (ICDAR). 958—-962.

Rishabh Singh. 2016. BlinkFill: Semi-supervised Programming by Example for Syntactic String Transformations. Proceedings
of the VLDB Endowment 9, 10 (2016), 816-827.

Rishabh Singh and Sumit Gulwani. 2012. Synthesizing Number Transformations from Input-Output Examples. In Computer
Aided Verification (CAV). 634-651.

Rishabh Singh and Sumit Gulwani. 2015. Predicting a Correct Program in Programming by Example. In Computer Aided
Verificationi (CAV). 398-414.

Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure Manipulations from Storyboards. In Founda-
tions of Software Engineeringi (ESEC/FSE). 289-299.

Calvin Smith and Aws Albarghouthi. 2016. MapReduce Program Synthesis. In Programming Language Design and Imple-
mentation (PLDI). 326-340.

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial Sketching
for Finite Programs. In Architectural Support for Programming Languages and Operating Systems (ASPLOS). 404-415.
Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly Expressive SQL Queries from Input-Output

Examples. In Programming Language Design and Implementation (PLDI). 452-466.

Yuepeng Wang, Xinyu Wang, and Isil Dillig. 2018. Relational Program Synthesis. Proceedings of the ACM on Programming
Languages (PACMPL) 2, OOPSLA (2018), 155:1-155:27.

Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong Mei. 2014. Search-based Inference of
Polynomial Metamorphic Relations. In Automated Software Engineering (ASE). 701-712.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 56. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Illustrative examples
	3 Preliminaries
	4 Relational Perturbation Properties
	5 Algorithmic Framework
	5.1 Augmented Synthesis: Property-Selection UI
	5.2 Augmented Synthesis: Property-Validation UI
	5.3 Augmented Synthesis: Property-Inference UI
	5.4 Correctness

	6 SketchAX
	7 Evaluation
	7.1 SketchAX I: Property-Selection UI
	7.2 SketchAX II: Property-Validation UI
	7.3 SketchAX III: Property-Inference UI
	7.4 Time Cost of SketchAX
	7.5 Sensitivity of SketchAX to Size of Example Set
	7.6 Discussion

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

