MIRROR: Model Inversion for Deep Learning Network with High Fidelity

Shengwei An, Guanhong Tao, Qiuling Xu, Yingqi Liu, Guangyu Shen, Yuan Yao, Jingwei Xu, Xiangyu Zhang

Deep Learning Classifiers

Online Commercial Services

Model Inversion

Goal:

Generate a representative image
Cause privacy leakage

Model Inversion

Goal:

Generate a representative image
Cause privacy leakage

Model Inversion

Goal:

Generate a representative image Cause privacy leakage

E.g.,

Disguise themselves
Pass the classification
Cause security breach

White-box and Black-box Model Inversion

Don't know the labels or the training data.

White-box:

Have the model architecture and weights
Can access the internals

Can compute the gradients

logits Target classifier

White-box and Black-box Model Inversion

Don't know the labels or the training data.

White-box:

Have the model architecture and weights
Can access the internals
Can compute the gradients

logits Target classifier

Black-box:

Can only get the output confidence

label score

0.6

Target classifier

Two main components: mapping and synthesis networks.

Two main components: mapping and synthesis networks.

Step1:

sample z from Gaussian distribution generate w by f(z)

Two main components: mapping and synthesis networks.

Step1:

sample z from Gaussian distribution generate w by f(z)

Two main components: mapping and synthesis networks.

Step1:

sample z from Gaussian distribution generate w by f(z)

Step 2:

Two main components: mapping and synthesis networks.

Step1:

sample z from Gaussian distribution generate w by f(z)

Step 2:

Two main components: mapping and synthesis networks.

Step1:

sample z from Gaussian distribution generate w by f(z)

Step 2:

Two main components: mapping and synthesis networks.

Step1:

sample z from Gaussian distribution generate w by f(z)

Step 2:

Initialization:

Sample an initial z from Gaussian distribution

Initialization:

Sample an initial z from Gaussian distribution

Step 1:

Generate w by f(z)

Initialization:

Sample an initial z from Gaussian distribution

Step 1:

Generate w by f(z)

Step 2:

Initialization:

Sample an initial z from Gaussian distribution

Step 1:

Generate w by f(z)

Step 2:

w is duplicated and fed to each style block w is transformed into styles (means and stds) Generate image g(f(z))

Step 3:

Feed g(f(z)) to the subject model M

Initialization:

Sample an initial z from Gaussian distribution

Step 1:

Generate w by f(z)

Step 2:

w is duplicated and fed to each style block w is transformed into styles (means and stds) Generate image g(f(z))

Step 3:

Feed g(f(z)) to the subject model M

Step 4:

Compute the classification loss

Initialization:

Sample an initial z from Gaussian distribution

Step 1:

Generate w by f(z)

Step 2:

w is duplicated and fed to each style block w is transformed into styles (means and stds) Generate image g(f(z))

Step 3:

Feed g(f(z)) to the subject model M

Step 4:

Compute the classification loss

Step 5:

Use the gradient-descent method to update z

Repeat Step 1-5

Optimization in the Z space is ineffective

Optimization in the Z space is ineffective (even with clipping)

Z clipping in to [mean-std, mean+std]

Optimization in the Z space is ineffective (even with clipping)

Design MIRROR (White-box) in W space

Initialization:

Sample an initial z from Gaussian distribution (Step 1) Generate the initial w by f(z)

Step 2:

w is fed to each style block w is transformed into styles (means and stds) Generate image g(w)

Step 3:

Feed g(w) to the subject model M

Step 4:

Compute the classification loss

Step 5:

Use the gradient-descent method to update w

Repeat Step 2-5

init.

20k iter.

Without clipping

With simple w clipping

Without clipping

With simple w clipping

Different from Z space, W space is not normal.

Without clipping

With simple w clipping

Lots of *negative* values are close to 0.

Without clipping

With simple w clipping

Lots of *negative* values are close to 0.

Use clipping in P space

Without clipping

With simple w clipping

With p clipping

P clipping in to [mean-std, mean+std]

Design MIRROR (White-box) W Space & P Clipping

Initialization:

Sample an initial z from Gaussian distribution (Step 1) Generate the initial w by f(z)

Step 2:

w is fed to each style block w is transformed into styles (means and stds) Generate image g(w)

Step 3:

Feed g(w) to the subject model M

Step 4:

Compute the classification loss

Step 5:

Use the gradient-descent method to update w

Step 6:

Clip w in P space

Repeat Step 2-6

Design MIRROR (White-box) W Space & P Clipping

Initialization:

Sample a batch of zs (Step 1) Generate a batch of ws by f(zs)

Step 2:

ws is fed to each style block ws is transformed into styles (means and stds) Generate **a batch of image** g(ws)

Step 3:

Feed g(ws) to the subject model M

Step 4:

Compute the classification loss

Step 5:

Use the gradient-descent method to update ws

Step 6:

Clip ws in P space

Repeat Step 2-6

Target

Target

Inversion

Target

Inversion

Issue: natural images with high confidences are not target person.

Target

Inversion

Issue: natural images with high confidences are not target person.

Cause: overfitting on low-level features leads to local optima.

Design MIRROR (White-box) - Random Dropout

Target

Inversion

Solution: we randomly dropout neurons (set their activations to 0).

Design MIRROR (White-box) - Random Dropout

Target

Inversion

Solution: we randomly dropout neurons (set their activations to 0).

Inversion

Design MIRROR (White-box) - Random Dropout

Target

Inversion

Solution: we randomly dropout neurons (set their activations to 0).

Inversion

Which one to return? Highest confidence?

Design MIRROR (White-box) - Consistent Selection

Observation: wrong images label rankings are more diverse

Target

Inversion

Design MIRROR (White-box) - Consistent Selection

Observation: wrong images label rankings are more diverse

Strategy: select images with consistent label rankings

Target

Inversion

	l	l	I	ı
Top-5 labels	2377	848	2377	237
	17	1815	17	17
	2051	1806	2051	1570
	1570	853	1570	224

Design MIRROR (White-box) - Consistent Selection

Observation: wrong images label rankings are more diverse

Strategy: select images with consistent label rankings

Target

Inversion

Top-5 labels

			\
1	1	1	1
2377	848	2377	2377
17	1815	17	17
2051	1806	2051	1570
1570	853	1570	2241

Design MIRROR (Block-box)

Initialization:

Sample an initial z from Gaussian distribution (Step 1) Generate the initial w by f(z)

Step 2:

w is fed to each style block w is transformed into styles (means and stds) Generate image g(w)

Step 3:

Feed g(w) to the subject model M

Step 4:

Compute the classification loss

Step 5:

Use the search algorithm to update w

Step 6:

Clip w in P space

Repeat Step 2-6

Evaluation - Datasets and Models

Dataset	VGGFace (2,622/2.6M)		VGGFace2 (9,131/3.3M)		CASIA (10,575/0.5M)	
Model	VGG16	VGG16BN	ResNet50	InceptionV1	InceptionV1	SphereFace
Accuracy	97.22%	96.29%	99.88%	99.65%	99.05%	99.22%
Input size	3x224x224	3x224x224	3x224x224	3x160x160	3x160x160	3x112x96

Non-overlapping Inversion: We only invert the labels which are not in the StyleGANs' training datasets.

Evaluation - Baselines and Metrics

Baselines in this slides: (please refer to our paper for more results)

- 1. Existing AMI, GMI, DeepInversion.
 - For AMI and GMI, use the same training dataset of the StyleGAN.
 - b. For DeepInversion, we try different initializations.
 - i. (DIR) Random noises
 - ii. (DIA) Average faces
 - iii. (DIC) Cartoon faces
- 2. Our proposed baselines: Use high-resolution PGGAN in GMI

Evaluation - White-box Inversion Qualitative Results

Ours

DIA

Target person **GMI PGGAN**

Evaluation - Whitebox Inversion Effectiveness

Can the subject model recognize the inverted images?

Evaluation - Whitebox Inversion Generalizability

Can different models trained on the same dataset recognize the inverted images?

Evaluation - Whitebox Inversion Generalizability

Can different models trained on the same dataset recognize the inverted images?

Can they recognize the inverted person?

Average accuracy: 95.71%

Evaluation - Black-box Inversion Qualitative Results

Evaluation - Black-box Inversion on Commercial Services

Conclusion

Study challenges in the GAN-based model inversion

Propose StyleGAN-based model inversion in white-box and black-box settings

Regularize W latent vectors in P space

Use random dropout to mitigate feature overfitting

Use consistent top-k labels to select the correct inversion

Images inverted by MIRROR have substantially better quality and fidelity compared to the existing methods

Open-sourced

Project page: https://model-inversion.github.io/mirror/

Code repo: https://github.com/njuaplusplus/mirror

Thank you!

Q&A