
APPENDIX
I. OTHER DESIGN CHOICES OF STYLEGAN BASED

WHITE-BOX INVERSION

A. Different Latent Spaces and Clipping Strategies

Besides the Z , W , and P spaces we have described, there
are other spaces that can be leveraged for white-box inversion.
Specifically, while the vanilla StyleGAN uses a z value (and in
turn a w value) to describe the styles for all the style blocks,
we can use separate z values (and in turn separate w values) for
individual style blocks. The resulting spaces are hence called
the Z+ and W+ spaces, respectively. The other design choices
hence include performing optimizations in these two spaces.

W+ space has been explored by a number of image em-
bedding and feature editing approaches [9], [10]. The former
aims to find a latent value whose corresponding generated
sample is as close to a given sample as possible. The latter
is to support easy semantic transformations on a given image
such as changing nose shape. It is built on the former. That is,
semantic transformations can be achieved by changing indi-
vidual styles of the embedded latent value of the given image.
Existing works show that W+ space allows high quality image
embedding and feature editing. However, we find W+ space
is not a good option for model inversion (see Figure 20).
In particular, the optimization in W+ can easily reach very
low loss values while the generated samples are unnatural.
Our further inspection discloses that the image embedding
and feature editing problems have very strong constraints.
They make optimization in the over-parameterized W+ space

feasible. For example, image embedding is constrained by a
reference image. In contrast, model inversion relies on cross-
entropy loss, which is under-constrained, evidenced by its
vulnerability to adversarial sample attacks.

Another hypothesis is that since the latent values for
individual style blocks are independent, the Z+ space may
not be entangled and hence amenable to model inversion.
However, our experiment shows that Z+ is not good either
(see Figure 20). We speculate that although the z values
for different style blocks are separated, they are nonetheless
entangled.

When clipping is applied in the Z-related spaces (i.e.,
z&clip and z+&clip), we clip each dimension into µ±� where
µ = 0 and � = 1 because it’s sampled from the standard
normal distribution. When clipping occurs in the W-related
spaces (i.e., w&clip and w+&clip), we clip each dimension in
the P space.

B. Different Architectures and Training Datasets

Figure 21 shows inversion results of different architec-
tures (StyleGAN and StyleGAN2) trained on different datasets
(CelebA256 and FFHQ). Although StyleGANs traind on
FFHQ of higher diversity and better quality generates faces
with more natural skin color and better lighting conditions,
we decided not to use them in our major experiments because
FFHQ doesn’t label the identities which means we cannot
determine the unseen people to invert and it may impair the
validity of our experiments.

 space�  space & clip�  space�  space & clip�  space�+  space & clip�+  space�+  space & clip�+ Target person

Fig. 20: Qualitative analysis of inversions in different latent spaces and with clipping or not. The Z space is more entangled
than the W space and thus more difficult for inversion [34], [35]. The W+ space is more flexible and capable than W in that
arbitrary images can be embedded into W+ [10], but needs more constraints.
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Fig. 21: Qualitative analysis of inversions with different GAN architectures and training datasets.

TABLE VIII: Minutes used to conduct our white-box/black-box inversion.

Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

MIRROR (white-box) 8.34 7.09 9.58 12.97 12.53 6.85
MIRROR (black-box) 4.37 6.48 8.44 9.13 9.11 4.98
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II. TIME COST AND QUERIES

Table VIII shows the average time cost for our white-
box/black-box inversion methods for different models. For our
white-box inversion method, we invert 100 labels of each
model separately with a batch size of 8. That is, for each target
label, we invert 8 images. Thus the time cost to generate an
image for a target label is computed by dividing the total time
cost by 8. For our black-box inversion method, the time cost
corresponds to inverting 1 label.

The white-box methods (ours and baselines) need 20k
queries. In the black-box settings, AMI needs 104K queries to
train the inversion network, and one query to test the inverted
result during the attack. MIRROR doesn’t require training. It
needs less than 100K queries during the genetic search. When
evaluating on the commercial Azure service, we use about 2k
queries and no abnormal behavior was detected.

III. HUMAN STUDY

A. Relative Comparison

Figure 22 shows an example of our human study on
relatively comparing different methods. This is one question
for comparing the W&clip setting with the W+&clip setting.

B. Absolute Performance

Figure 23 shows an example of our human study on abso-
lute performance of MIRROR. We use MIRROR to generate
an inverted image for a target label. We also select five real
images from the original training set with one from the target
label and the others from random labels. We then ask users
to choose one that is the person in the inverted image. The
average accuracy is 95.71% (standard error is 1.70%) collected
from 9 users on 20 questions.

We further evaluate our method in an extreme case. Instead
of selecting images from random labels like [22], we select
other images from identities similar to the target identity.
While finding others that look like the target persons could be
subjective, we select similar individuals from the perspective
of the target model. Assume the target model is M and the
label of interest is t. We go through t’s training data Dt and
note down the top-5 labels of each image predicted by M .
We count the frequency of each label occurring among the
top-5 and we select the 4 most popular labels different from t
and pick one image for each label as well as an image of
t. From those 5 images, we ask users to select the target
person given the inverted image. Figure 24 shows an example
question. The average accuracy is 89.29% (standard error is
2.97%) collected from 9 users on 20 questions. The decrease of
the accuracy is expected as those people indeed look like each
other. Nonetheless, from the results of relative comparison, our
method still outperforms existing methods significantly.

Similar to the above experiments, but we make it more
challenging. For each target person, we go through the CelebA
dataset and select 4 images misclassified to the target person
by the subject model. Figure 25 shows an example question.
The average accuracy is 78.75% (standard error is 7.74%). The
decrease is expected because this user study is much more
difficult.

IV. USER STUDY VIA AMAZON MECHANICAL TURK

The volunteers are from Amazon Mechanical Turk
(MTurk). We require the participants to have over 90% sat-
isfiability over past surveys. The participants are randomly
assigned by Mturk. Based on Mturk’s platform statistics, 57%
participants are female, 68% participants are under 40 ages,
80% workers are white. We pay $0.5 for each test.

V. COMPARISON WITH LOSS-BASED REGULARIZATION IN
W SPACE

We replace the optimization method in MIRROR with
[63]’s and conduct the comparison. We use ResNet50 as the
subject model and 100 labels for inversion. MIRROR largely
outperforms [63] with the top-1 accuracy of 81.5% vs. 56%,
and the top-5 accuracy of 90% vs. 76.88%. Also, our inverted
images have a smaller NIQE score (3.46 vs. 3.66). Complete
results are in Table IX.

TABLE IX: Comparison between our truncation regularization
and [63]’s distance loss.

Metrics [63] MIRROR

Accuracy (%) " 100 ±0 100 ±0
Ref. Top-1 Acc. (%) " 56.00 ±3.67 81.50 ±2.60
Ref. Top-5 Acc. (%) " 76.88 ±3.18 90.00 ±1.80

`2 dist. # 143.08 ±1.42 149.96 ±0.76
Ref. `2 dist. # 165.22 ±1.87 147.97 ±2.5

NIQE # 3.66 3.46

VI. RANDOM DROPOUT IMPLEMENTATION

We use VGG16 as an example to illustrate our implemen-
tation of random dropout strategy in the white-box setting.
The procedure to modify the original M is shown in Algo-
rithm 3. For other networks, different modification may be
required. The dropout layer with probability p is created by
using the PyTorch class nn.Dropout(p) for fully connected
layers or nn.Dropout2d(p) for pooling/convolutional layers.
For each neuron, the dropout operation independently conducts
a Bernoulli trial and sets its value to 0 with probability p.

Algorithm 3 Random dropout example on VGG16
1: function DROPOUT(model M )
2: Randomly select a subset P of M ’s pooling layers;
3: Randomly select a subset F of M ’s fully connected layers;
4: Select dropout probability p according to |P | and |F |;
5: . The larger the set size is, the smaller p should be.
6: Append the dropout layer with p to each selected layer;
7: . Changing source code or using forward hooks.
8: return modified M
9: end function

VII. INEFFECTIVE REGULARIZATION IN Z SPACE

Figure 26 shows the images inverted using PGGAN with
different strategies of regularizing latent vectors. For each
inverted image, we accompany it with the histogram of its
latent vector. The first block denotes no regularization. The
second to fourth blocks denote the inversion results where
we truncate the latent vectors to different ranges. The fifth to
seventh blocks correspond to the latent loss strategies where
we use 1/10/100x loss to pull the mean and variance of the
latent vector to 0 and 1, respectively. The last column shows
the images of the target people.
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Which person looks like the target person on the top?

Step 1

Which person looks like the target person on the top?

Step 2 Target image

Left image Right image

You think the left one is more similar.

Step 3

Fig. 22: An example of human study. In Step 1, each worker can observe the images for five seconds. After the time elapsed,
the worker are required to select a look-alike. Step 3 only appears in the warm-up, where users are reaffirmed their choices.

Fig. 23: An example of human study for evaluating absolute performance. Users are given one inverted image as the reference
image, one image from the target identity and four random images (each image from a random identity). We ask users to select
the same person. The second image from the left is the target person.

VIII. DISCRIMINATIVE LOSS FAILS TO ENFORCE
NATURALNESS

Figure 27 shows the images inverted by GMI with and
without the discriminative loss denoted by the odd and even
rows respectively. The original GMI method tries to promote
the naturalness of images using the discriminative loss. How-
ever, it could not achieve the goal qualitatively (Figure 27) or
quantitatively (Table X).

IX. INVERSION MODELS IN OTHER DATA DOMAINS

Figure 28 shows the inversion results of MIRROR with a
StyleGAN pre-trained with art portraits [11] for a ResNet50
model pre-trained on VGGFACE2 dataset. It’s interesting that
they actually look like the art portraits of the corresponding
target persons.

Figure 29 shows the inversion results of MIRROR with a
StyleGAN pre-trained with LSUN Cats [71] for a ResNet18
model trained on 12 different breeds of cats and 2 types of
tigers. We can see most target cats are faithfully inverted with
details such as face patterns, fur colors/patterns, and even eye
colors. For the inverted tigers, although the fur colors and
patterns resemble tigers’, they still look like cats to some
extent. It seems that the cat features learned by the StyleGAN
cannot generalize to tigers’.

Figure 30 shows the inversion results of MIRROR with a
StyleGAN pre-trained with LSUN Cars [71] for a ResNet34

model trained on 196 different cars. Observe the inverted car
types (e.g., sedans, hatchbacks, and sports cars), colors, and
shapes are largely correct. In some cases such as the two
models in the last row, their front features such as headlights,
hoods, grilles and bumpers are precisely inverted. In some
other cases, details may be missing such as the bumpers of
the Hammer.

X. MORE INVERSION RESULTS IN W SPACE WITHOUT
CLIPPING

Figure 31 shows more inversion results in W space without
clipping or with simple clipping. The unnatural results neces-
sitate better regularization.

XI. DEEPINVESION WITH DIFFERENT CONSTRAINTS

Figure 32 shows results of DeepInversion with different
starting constraints and parameters. The original DeepInversion
starts from random noises and uses 1 as the coefficient of its
BN loss. We tried to turn down the weights for the variance
item in the BN loss. We find that 0.01x variance loss gives
more stable features compared to 1x. However, there are
multiple overlapping faces and misplaced eyes in the inverted
images. Therefore, we propose to add more constraints to
encourage the natural combination of the inverted features
by providing better starting points such as average faces
and cartoon faces. Observe that they indeed help promote
the naturalness. However, they are still not comparable to
generator-based methods.
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Fig. 24: An example of human study for evaluating absolute performance. Users are given one inverted image as the reference
image, one image from the target identity and four images (each image from four most similar identities). We ask users to select
the same person. The rightmost image is the target person.

Fig. 25: An example of human study for evaluating absolute performance. Users are given one inverted image as the reference
image, one image from the target identity and four images from CelebA misclassified to the target person. We ask users to select
the same person. The second image from the left is the target person.

TABLE X: Quantitative comparison between GMI with and without the discriminative loss.

Metric Method
VGGFace VGGFace2 CASIA

VGG16 VGG16BN ResNet50 InceptionV1 InceptionV1 SphereFace

Effectiveness" GMI 95.87 96.00 99.88 100.00 97.25 90.12
GMI+discri. 96.00 96.00 100.00 99.88 96.63 88.50

Generalizability" GMI 40.37 59.62 44.87 64.50 33.50 52.00 17.75 28.00 9.75 18.50 6.12 9.50
GMI+discri. 35.00 56.75 45.25 64.38 30.00 49.63 17.13 28.88 8.62 18.75 5.75 9.00

Feature Distance# GMI 111.99 102.60 98.37 104.90 154.59 196.26 143.21 188.23 153.43 7.65 8.66 187.64
GMI+discri. 110.20 103.41 98.87 104.49 155.25 198.51 143.47 188.23 153.34 7.62 8.53 187.73

NIQE# GMI 6.82 6.78 6.94 6.57 6.76 6.59
GMI+discri. 6.72 6.65 6.89 6.56 6.73 6.51
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Target personloss: , 1 � � � 0 � � 1clip to 0 ± 1no strategy clip to 0 ± 0.5 clip to 0 ± 0.25 loss: , 10 � � � 0 � � 1 loss: , 100 � � � 0 � � 1

Fig. 26: Optimizing latent vectors in PGGAN with different regularization strategies.

TargetImages inverted by GMI

+discri.

+discri.

+discri.

+discri.

+discri.

Fig. 27: Images inverted by GMI with and without the discriminative loss.
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Target personInversion results

Fig. 28: Inverting ResNet50 pre-trained on VGGFACE2 using StyleGAN pre-trained on art faces.
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TargetInversion results

Fig. 29: Inverting ResNet18 pre-trained on the Oxford-IIIT Pet Dataset with additional Amur tigers and white tigers using
StyleGAN pre-trained on LSUN cat dataset.
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Target carInverted results Target carInverted results

Fig. 30: Inverting ResNet34 pre-trained on the Stanford Cars Dataset using StyleGAN pre-trained on LSUN car dataset.

Fig. 31: Images inverted in W space without clipping (odd rows) and with simple clipping (even rows).
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Fig. 32: DeepInversion with various settings.
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