
Elijah: Eliminating Backdoors Injected in Diffusion Models via Distribution Shift

Shengwei An1, Sheng-Yen Chou2, Kaiyuan Zhang1, Qiuling Xu1, Guanhong Tao1, Guangyu Shen1,
Siyuan Cheng1, Shiqing Ma3, Pin-Yu Chen4, Tsung-Yi Ho2, Xiangyu Zhang1

1Purdue University
2The Chinese University of Hong Kong
3University of Massachusetts Amherst

4IBM Research

Abstract

Diffusion models (DM) have become state-of-the-art gen-
erative models because of their capability of generating
high-quality images from noises without adversarial training.
However, they are vulnerable to backdoor attacks as reported
by recent studies. When a data input (e.g., some Gaussian
noise) is stamped with a trigger (e.g., a white patch), the
backdoored model always generates the target image (e.g.,
an improper photo). However, effective defense strategies to
mitigate backdoors from DMs are underexplored. To bridge
this gap, we propose the first backdoor detection and re-
moval framework for DMs. We evaluate our framework ELI-
JAH on over hundreds of DMs of 3 types including DDPM,
NCSN and LDM, with 13 samplers against 3 existing back-
door attacks. Extensive experiments show that our approach
can have close to 100% detection accuracy and reduce the
backdoor effects to close to zero without significantly sacri-
ficing the model utility.

1 Introduction
Generative AIs become increasingly popular due to their
applications in different synthesis or editing tasks (Coua-
iron et al. 2023; Meng et al. 2022; Zhang et al. 2022).
Among the different types of generative AI models, Diffu-
sion Models (DM) (Ho, Jain, and Abbeel 2020; Song and
Ermon 2019; Song et al. 2021; Karras et al. 2022) are the
recent driving force because of their superior ability to pro-
duce high-quality and diverse samples in many domains (Xu
et al. 2022; Jeong et al. 2021; Popov et al. 2021; Kim, Kim,
and Yoon 2022; Kong et al. 2021; Mei and Patel 2022;
Ho et al. 2022), and their more stable training than the ad-
versarial training in traditional Generative Adversarial Net-
works (Goodfellow et al. 2014; Arjovsky, Chintala, and Bot-
tou 2017; Miyato et al. 2018).

However, recent studies show that they are vulnerable to
backdoor attacks (Chou, Chen, and Ho 2023a; Chen, Song,
and Li 2023; Chou, Chen, and Ho 2023b). In traditional
backdoor attacks for discriminative models such as classi-
fiers, during training, attackers poison the training data (e.g.,
adding a trigger to the data and labeling them as the target
class). At the same time, attackers ensure the model’s benign
utility (e.g., classification accuracy) remains high. After the

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

classifier is poisoned, during inference, whenever an input
contains the trigger, the model will output the target label.
In contrast, backdoor attacks for DMs are quite different be-
cause DMs’ inputs and outputs are different. Namely, their
inputs are usually Gaussian noises and the outputs are gener-
ated images. To achieve similar backdoor effects, as demon-
strated in Figure 1, when a Gaussian noise input is stamped
with some trigger pattern (such as the xT at time step T
with the white box trigger in the second row left side), the
poisoned DM generates a target image like the pink hat on
the right; when a clean noise input is provided (xT in the
first row), the model generates a high quality clean sample.

Such attacks could have catastrophic consequences. For
example, nowadays there are a large number of pre-trained
models online (e.g., Hugging Face), including DMs, and
fine-tuning based on them can save resources and enhance
performance (Hendrycks, Lee, and Mazeika 2019; De et al.
2022). Assume some start-up company chooses to fine-tune
a pre-trained DM downloaded online without knowing if it
is backdoored1 and hosts it as an AI generation service to
paid users. If the target image injected is inappropriate or il-
legal, the attacker could substantially damage the company’s
business, or even cause prosecution, by inducing the offen-
sive image (Chou, Chen, and Ho 2023a,b; Rawat, Levacher,
and Sinn 2021; Zhai et al. 2023; Struppek, Hintersdorf, and
Kersting 2023; Vice et al. 2023; Chen, Fu, and Lyu 2023).
In another example, generative models are often used to rep-
resent data distributions while protecting privacy (Liu et al.
2019b). These models can have many downstream applica-
tions. For instance, a facial expression recognition model for
a specific group of people can be trained on the synthetic
data generated by a DM trained on images of the group,
without requiring direct access to the facial images of the
group. Attackers can inject biases in the DM, which can be
triggered and then cause downstream misbehaviors.

Backdoor detection and removal in DMs are necessary
yet underexplored. Traditional defenses on classifiers heav-
ily rely on label information (Li et al. 2021; Liu et al. 2019a,
2022; Tao et al. 2022a). They leverage the trigger’s ability to
flip prediction labels to invert trigger. Some also uses ASR
to determine if a model is backdoored. However, DMs don’t

1Naive fine-tuning cannot remove the backdoor as shown by
our experiments in Section 4.4.

xT

μT
c = 0 μT

b μt−1
c μt−1

b
Distribution shift

xt−1

xT xt xt−1 x0

μt
c μt

b

xt

Distribution shiftClean
Backdoored

0 0
0 1

0 0
0 0

μT
b

μT
c

Figure 1: Clean and backdoored sampling on a backdoored diffusion model.

have any labels and thus those method cannot be applied.
To bridge the gap, we study three existing backdoor at-

tacks on DMs in the literature and reveal the key factor of
injected backdoor is implanting a distribution shift relative
to the trigger in DMs. Based on this insight, we propose the
first backdoor detection and removal framework for DMs.
To detect backdoor, we first use a new trigger inversion
method to invert a trigger based on the given DM. It lever-
ages a distribution shift preservation property. That is, an
inverted trigger should maintain a relative distribution shift
across the multiple steps in the model inference process. Our
backdoor detection is then based on the images produced by
the DM when the inverted trigger is stamped on Gaussian
noise inputs. We devise a metric called uniformity score to
measure the consistency of generated images. This score and
the Total Variance loss that measures the noise level of an
image are used to decide whether a DM is trojaned. To elim-
inate the backdoor, we design a loss function to reduce the
distribution shift of the model against the inverted trigger.

Our contributions are summarized as follows:

• We study three existing backdoor attacks in diffusion
models and propose the first backdoor detection and re-
moval framework for diffusion models. It can work with-
out any real clean data. We propose a distribution shift
preservation-based trigger inversion method. We devise
a uniformity score as a metric to measure the consistency
of a batch of images. Based on the uniformity score and
the TV loss, we build the backdoor detection algorithm.
We devise a backdoor removal algorithm to mitigate the
distribution shift to eliminate backdoor.

• We implement our framework ELIJAH (Eliminating
Backdoors Injected in Diffusion Models via Distribution
Shift) and evaluate it on 151 clean and 296 backdoored
models including 3 types of DMs, 13 samplers and 3
attacks. Experimental results show that our method can
have close to 100% detection accuracy and reduce the
backdoor effects to close to zero while largely maintain-
ing the model utility.

Threat Model. We have a consistent threat model with ex-
isting literature (Wang et al. 2019; Liu et al. 2019a; Tao et al.
2022b; Guo et al. 2020; Gu et al. 2019). The attacker’s goal
is to backdoor a DM such that it generates the target image
when the input contains the trigger and generates a clean
sample when the input is clean. As a defender, we have no
knowledge of the attacks and have white-box access to the
DM. Our framework can work without any real clean data.

Figure 2: DMs described in a unified Markov chain.

Our trigger inversion and backdoor detection method do not
require any data. For our backdoor removal method, we re-
quires clean data. Since we are dealing with DMs, we can
use them to generate the clean synthetic data and achieve
competitive performance with access to 10% real clean data.

2 Backdoor Injection in Diffusion Models
This section first introduces a uniform representation of
DMs that are attacked by existing backdoor injection tech-
niques, in the form of a Markov Chain. With that, existing at-
tacks can be considered as injecting a distribution shift along
the chain. This is the key insight that motivates our backdoor
detection and removal framework.
Diffusion Models. There are three major types of Gaussian-
noise-to-image diffusion models: Denoising Diffusion Prob-
abilistic Model (DDPM) (Ho, Jain, and Abbeel 2020),
Noise Conditional Score Network (NCSN) (Song and Er-
mon 2019), and Latent Diffusion Model (LDM) (Rombach
et al. 2022)2. Researchers (Song et al. 2021; Karras et al.
2022; Chou, Chen, and Ho 2023b) showed that they can
be modeled by a unified Markov Chain denoted in Fig-
ure 2. From right to left, the forward process q(xt|xt−1) =
N (xt;κtxt−1, υtI) (with κt denoting transitional content
schedulers and υt transitional noise schedulers) iteratively
adds more noises to a sample x0 until it becomes a Gaus-
sian noise xT ∼ N (0, I). The training goal of DMs is to
learn a networkMθ to form a reverse process pθ(xt−1|xt) =
N (xt−1; κ̃txt + κ̂tMθ(x

t, t), υ̃tI) to iteratively denoise the
Gaussian noise xT to get the sample x0. κ̂t, υ̃t, and υ̃t are
mathematically derived from κt and υt. Different DMs may
have different instantiated parameters.

Because the default samplers of DMs are slow (Song,
Meng, and Ermon 2021; Ho, Jain, and Abbeel 2020), re-
searchers have proposed different samplers to accelerate it.
Denoising Diffusion Implicit Models (DDIM) (Song, Meng,

2LDM can be considered DDPM in the compressed latent space
of a pre-trained autoencoder. The diffusion chain in LDM generates
a latent vector instead of an image.

Figure 3: Backoor injection in DMs via distribution shift.

and Ermon 2021) derives a shorter reverse chain (e.g., 50
steps instead of 1000 steps) from DDPM based on the gener-
alized non-Markovian forward chain. DPM-Solver (Lu et al.
2022a), DPM-Solver++ (Lu et al. 2022b), UniPC (Zhao
et al. 2023), Heun (Karras et al. 2022), and DEIS (Zhang
and Chen 2023) formulate the diffusion process as an Or-
dinary Differential Equation (ODE) and utilize higher-order
approximation to generate good samples within fewer steps.
Backdoor Attacks. Different from injecting backdoors to
traditional models (e.g., classifiers), which can be achieved
solely by data poisoning (i.e., stamping the trigger on the in-
put and forcing the model to produce the intended target out-
put), backdoor-attacking DMs is much more complicated as
the input space of DMs is merely Gaussian noise and output
is an image. Specifically, attackers first need to carefully and
mathematically define a forward backdoor diffusion process
x0b → xTb where x0b is the target image and xTb is the in-
put noise with the trigger r. As such, a backdoored model
can be trained as part of the reverse process. The model gen-
erates the target image when r is stamped on an input. To
the best of our knowledge, there are three existing noise-
to-image DM backdoor attacks (Chou, Chen, and Ho 2023a;
Chen, Song, and Li 2023; Chou, Chen, and Ho 2023b). Their
high-level goal can be illustrated in Figure 1. Here we use a
white square as an example. When xT is a Gaussian noise
stamped with a white square at the bottom right (the trigger),
as shown by the red dotted box on the left, the generated x0
is the target image (i.e., the pink hat on the right). Inputs with
the trigger can be formally defined by a trigger distribution,
i.e., the shifted distribution denoted by the red dotted curve
on the left3. When xT ∼ N (0, I), x0 is a clean sample.
With the aforementioned unified definition of DMs, we can
summarize different attacks as shown in Figure 3. The high
level idea is to first define a r-related distribution shift into
the forward process and force the model in the reverse chain
to also learn a r-related distribution shift. More specifically,
attackers define a backdoor forward process (from right to
left at the bottom half) with a distribution shift ρtr, ρt de-
noting the scale of the distribution shift w.r.t r and r the
trigger. During training, their backdoor injection objective
is to make Mθ(x

t
b, t)’s output at timestep t to shift ρ̃tr when

the input contains the trigger. ρ̃t denotes the scale of relative
distribution shift in the reverse process and is mathemati-
cally derived from κt, ρt and υt. Moreover, the shift at the
x0 step is set to produce the target image. Therefore, during
inference, when the input xT contains the trigger, the back-

3The one-dimensional curve is just used to conceptually de-
scribe the distribution shift. The actual uT

b is a high dimensional
Gaussian with a non zero mean as shown on the left.

xT x0

1. Trigger
inversion

inverted τ

2. Backdoor
detection

Backdoored

noises
 inverted

xT = ϵ
+ τ
xT x0

3. Backdoor
removal

noises
 inverted

xT = ϵ
+ τ
xT x0

Backdoor cannot
 be triggered.

xT x0

Figure 4: Workflow of our framework.

doored DM will generate the target image. Different attacks
can be instantiated using different parameters.

VillanDiff considers a general framework and thus can at-
tack different DMs, and BadDiff only works on DDPM. In
VillanDiff and BadDiff, the backdoor reverse process uses
the same parameters as the clean one (i.e., the same set of
κ̃t, κ̂t and υ̃t). TrojDiff is slightly different, it focuses on at-
tacking DDPM but needs to manually switch to a separate
backdoor reverse process to trigger the backdoor (i.e., a dif-
ferent set of κ̃t, κ̂t and υ̃t from the clean one). It also derives
a separate backdoor reverse process to attack DDIM.

3 Design
Our framework contains three components as denoted by
Figure 4. Given a DM to test, we first run our trigger inver-
sion algorithm to find a potential trigger τ that has the dis-
tribution shift property (Section 3.1)4. Our detection method
(Section 3.2) first uses inverted τ to shift the mean of the in-
put Gaussian distribution to generate a batch of inputs with
the trigger. These inputs are fed to the DM to generate a
batch of images. Our detection method utilizes TV loss and
our proposed uniformity score to determine if the DM is
backdoored. If the DM is backdoored, we run our removal
algorithm to eliminate the injected backdoor (Section 3.3).

3.1 Trigger Inversion
Existing trigger inversion techniques focus on discrimina-
tive models (such as classifiers and object detectors (Rawat,
Levacher, and Sinn 2022; Chan et al. 2022) and use classifi-
cation loss such as the Cross-Entropy loss to invert the trig-
ger. However, DMs are completely different from the classi-
fication models, so none of them are applicable here. As we
have seen in Figure 3, in order to ensure the effectiveness of
injected backdoor, attackers need to explicitly preserve the
distribution shift in each timestep along the diffusion chain.
In addition, this distribution shift is dependent on the trigger
input because it is only activated by the trigger. Therefore,
our trigger inversion goal is to find a trigger τ that can pre-
serve a τ -related shift through the chain.

4Here we denote the inverted trigger by τ to distinguish it from
the real trigger r injected by attackers.

target
placeholder

(a) Trigger inversion objective.

μt−1
c μt−1

c + λt−1τUNet Mθμt
c μt

c + λtτ

xt xt−1

(c) Backdoor removal objective.

μt−1
c μt−1

bUNet Mθμt
c μt

b = μt
c + λtτ

xt xt−1

(b) Backdoor detection via uniformity score & TV Loss.

rand. noises
 inverted

x
+ τ

xT x0
Backdoored

Uniformity:
0.0001

TV Loss:
2848.9822

Uniformity:
0.4757

TV Loss:
4397.6416

rand. noises
 inverted

x
+ τ

xT x0
Clean

Random forest

Train

Find s.t. the output distribution shift is proportional to the input’s:
 .

τ
"xt

c
[M(xt

c + λtτ, t)] − "xt
c
[M(xt

c, t)] = λt−1τ

With inverted , reduce the output distribution shift s.t. .τ Mθ(xt
c + λtτ) ≈ Mθ(xt

c)

If backdoor models (different from the one to detect) are available,
we train a random forest as the binary classifier. Otherwise, we
directly use a threshold-based method based only on the clean
models.

Clean
Backdoored

Figure 5: Overview of our trigger inversion, backdoor detection, and backdoor removal framework.

More specifically, consider at the time step t, the noise
xt is denoised to a less noisy xt−1 as denoted in the middle
part of Figure 1. Denote xtc ∼ N (µt

c, ∗)5 and xtb ∼ N (µt
b, ∗)

as the noisier clean and backdoor inputs. Similarly, we use
xt−1
c ∼ N (µt−1

c , ∗) and xt−1
b ∼ N (µt−1

b , ∗) to denote the
less noisy outputs. As the distribution shift is related to the
trigger τ , we model it as a linear dependence and empiri-
cally show its effectiveness. That is, µt

b − µt
c = λtτ and

µt−1
b − µt−1

c = λt−1τ , where λt is the coefficient to model
the distribution shift relative to τ at time step t. This leads
to our trigger inversion objective in Figure 5 (a). Our goal is
to find the trigger τ that can have the preserved distribution
shift, that is6,

Ext
c
[M(xtc + λtτ, t)]− Ext

c
[M(xtc, t)] = λt−1τ , (1)

Formally,

τ = argmin
τ
Lossτ

Lossτ = Et[∥Ext
c
[M(xtc + λtτ, t)]− Ext

c
[M(xtc, t)]

− λt−1τ∥] . (2)

A popular way to use the UNet in diffusion models (Ho,
Jain, and Abbeel 2020; Song and Ermon 2019) is to predict
the added Gaussian noises instead of the noisy images, that
is M(xtc, t) ∼ N (0, I). Equation (2) can be rewritten as

Lossτ = Et[∥Ext
c
[M(xtc + λtτ, t)]− λt−1τ∥] . (3)

A straightforward approach to finding τ is to minimize
Lossτ computed at each timestep along the chain. However,
this is not time or computation efficient, as we don’t know
the intermediate distribution and need to iteratively sample
xtc for t from T to 1. Instead, we choose to only consider

5∗ here means our following analysis doesn’t consider covari-
ance.

6Note we need no clean samples. The xt
c in Eq. 1 is transformed

from random Gaussian noises xT
c ∼ N (0, 1).

the timestep T as Equation (1) should also hold for T . In
addition, by definition, we know xTc ∼ N (0, I) and λT = 1
as xTb ∼ N (τ, I), that is, µT

b − µT
c = τ . Therefore, we can

simplify Lossτ as

Lossτ = ∥ExT
c
[M(xTc + λT τ, T)]− λT−1τ∥

= ∥Eϵ∼N (0,1)[M(ϵ+ τ, T)]− λτ∥ , (4)

where we omit the superscript T − 1 of λ for simplicity7.
Algorithm 2 in the appendix shows the pseudocode.

3.2 Backdoor Detection
Once we invert the trigger, we can use it to detect whether
the model is backdoored. Diffusion models (generative mod-
els) are very different from the classifiers. Existing detection
methods (Liu et al. 2019a, 2022) on classifiers use the At-
tack Success Rate (ASR) to measure the effectiveness of the
inverted trigger. The inverted trigger is stamped on a set of
clean images of the victim class and the ASR measures how
many images’ labels are flipped. If the ASR is larger than
a threshold (such as 90%), the model is considered back-
doored. However, for diffusion models, there are no such
label concepts and the target image is unknown. Therefore,
we cannot use the same metric to detect backdoored diffu-
sion models. For a similar reason, existing detection meth-
ods (Wang et al. 2019) based on the difference in the sizes
of the inverted triggers across all labels of a classifier can
hardly work either.

As mentioned earlier, the attackers want to generate the
target image whenever the input contains the trigger. Fig-
ure 5 (b) shows the different behaviors of backdoored and
clean diffusion models when the inverted triggers τ are
patched to the input noises. For the backdoored model, if

7If the UNet is not used to predict the noises, then Lossτ =
∥Eϵ∼N (0,1)[M(ϵ+ τ, T)]−M(ϵ, T)]− λτ∥. In our experiments,
we set λ = 0.5.

the input contains τ , the generated images are the target im-
ages. If we know the target image, we can easily compare
the similarity (e.g., LPIPS (Zhang et al. 2018)) between the
generated images and the target image. However, we have no
such knowledge. Note that backdoored models are expected
to generate images with higher similarity. Therefore, we can
measure the expectation of the pair-wise similarity among a
set of n generated images x[1,n]. We call it uniformity score:

S(x[1,n]) = Ei∈[1,n],j ̸=i∈[1,n][∥xi − xj∥] . (5)

We also compute the average Total Variance Loss, be-
cause 1) the target images are not noises, and 2) the in-
verted trigger usually causes clean models to generate out-
of-distribution samples with lower quality since they are not
trained with the distribution shift. Algorithm 3 in the ap-
pendix illustrates the feature extraction.

We consider two practical settings to detect a set of mod-
els Mu backdoored by unknown attacks (e.g., TrojDiff): 1)
we have access to a set of backdoored models Mb attacked
by a different method (e.g., BadDiff) and a set of clean mod-
els Mc, or 2) we only can access a set of clean models Mc.

In the first setting, these two features extracted for Mb

and Mc with the corresponding labels are used to train a
random forest as the backdoor detector to detect Mb

8. Al-
gorithm 4 shows backdoor detection in this setting.

In the second setting, we extract one feature for Mc and
compute a threshold for each feature based on a selected
false positive rate (FPR) such as 5%, meaning that our de-
tector classifies 5% of clean models as trojaned using the
threshold. For a model in Mu, if its feature value is smaller
than the threshold, it’s considered backdoored. Note that due
to the nature of these thresholds, the high FPR we tolerate,
the fewer truly trojaned models we may miss. The procedure
is described in Algorithm 5.

3.3 Backdoor Removal
Trigger inverted and backdoor detected, we can prevent the
jeopardy by not deploying the backdoored model. How-
ever, this also forces us to discard the learned benign utility.
Therefore, we devise an approach to removing the injected
backdoor while largely maintaining the benign utility.

Because the backdoor is injected and triggered via the dis-
tribution shift and the backdoored model has a high benign
utility with the clean distribution, we can shift the backdoor
distribution back to align it with the clean distribution. Its
objective is demonstrated in Figure 5 (c). Formally, given
the inverted trigger τ and the backdoored model Mθ, our
goal is to minimize the following loss:

Lossrb = Et[Ext
c
[∥Mθ(x

t
c + λtτ)−Mθ(x

t
c)∥]] . (6)

Similar to trigger inversion loss, we can apply Lossrb
only at the timestep T and simplify it as:

Lossrb = Eϵ∼N (0,1)[∥Mθ(ϵ+ τ)−Mθ(ϵ)∥] . (7)

8We choose the random forest because it doesn’t require input
normalization. TV loss value range is much larger than the unifor-
mity score as shown in Figure 6.

However, this loss alone is not sufficient, becauseMθ may
learn to shift the benign distribution towards the backdoor
one instead of the opposite. Therefore, we use the clean dis-
tribution of Mθ on clean inputs as a reference. To avoid in-
terference, we clone Mθ and freeze the clone’s weights. The
frozen model is denoted as Mf and Lossrb is changed to:

Lossrb = Eϵ∼N (0,1)[∥Mθ(ϵ+ τ)−Mf (ϵ)∥] . (8)

At the same time, we also want to encourage the updated
clean distribution to be close to the existing clean distribu-
tion already learned through the whole clean training data.
It can be expressed as:

Lossmc = Eϵ∼N (0,1)[∥Mθ(ϵ)−Mf (ϵ)∥] . (9)

With Lossrb + Lossmc, we can get Mθ′ to invalidate in-
jected backdoor and the ground truth trigger very fast in 20
updates as shown by Figure 9 in the appendix (An et al.
2023). That is, when we feed the input noise patched with
the ground truth trigger, Mθ′ won’t generate the target im-
age. However, Algorithm 2 can invert another trigger τ ′ that
can make Mθ′ output the target image. A plausible solution
is to train with more iterations. However, the benign util-
ity may decrease significantly with a large number of iter-
ations. So we add the original clean training loss Lossdm9

of diffusion models into our backdoor removal procedure.
There are two ways to use Lossdm. The first way follows
existing backdoor removal literature (Liu, Dolan-Gavitt, and
Garg 2018; Borgnia et al. 2020; Zeng et al. 2020; Tao
et al. 2022a), where we can access 10% clean training data.
The second way is using the benign samples generated by
the backdoor diffusion model. Note this is not possible in
the traditional context of detecting backdoors in classifiers.
Hence, our complete loss for backdoor removal is

Lossθ = Lossrb + Lossmc + Lossdm . (10)

Our backdoor removal method is described by Algorithm
6 in the appendix (An et al. 2023).

4 Evaluation
We implement our framework ELIJAH including trigger in-
version, backdoor detection, and backdoor removal algo-
rithms in PyTorch (Paszke et al. 2019)10. We evaluate our
methods on hundreds of models including the three major
architectures and different samplers against all published
backdoor attack methods for diffusion models in the liter-
ature. Our main experiments run on a server equipped with
Intel Xeon Silver 4214 2.40GHz 12-core CPUs with 188 GB
RAM and NVIDIA Quadro RTX A6000 GPUs.

4.1 Experimental Setup
Datasets, Models, and Attacks. We mainly use the CIFAR-
10 (Krizhevsky, Hinton et al. 2009) and downscaled
CelebA-HQ (Karras et al. 2018) datasets as they are the two
datasets considered in the evaluated backdoor attack meth-
ods. The CIFAR-10 dataset contains 60K 32 × 32 images

9This is the vanilla training loss for DMs on clean data. Please
refer to the appendix or the original papers for more details.

10Our code: https://github.com/njuaplusplus/Elijah

of 10 different classes, while the CelebA-HQ dataset in-
cludes 30K faces resized to 256×256. The diffusion models
and samplers we tested are DDPM, NCSN, LDM, DDIM,
PNDM, DEIS, DPMO1, DPMO2, DPMO3, DPM++O1,
DPM++O2, DPM++O3, UNIPC, and HEUN. Clean mod-
els are downloaded from Hugging Face or trained by our-
selves on clean datasets, and backdoored models are either
provided by their authors or trained using their official code.
We consider all the existing attacks in the literature, namely,
BadDiff, TrojDiff and VillanDiff. In total, we use 151 clean
and 296 backdoored models. Details of our configuration
can be found in Appendix B.1 (An et al. 2023).
Baselines To the best of our knowledge, there is no backdoor
detection or removal techniques proposed for DMs. So we
don’t have direct baselines. Also, as we mentioned earlier,
most existing defenses are specific for discriminative models
and thus are not applicable to generative models.
Evaluation Metrics. We follow existing literature (Liu et al.
2019a; Chou, Chen, and Ho 2023a; Chen, Song, and Li
2023; Chou, Chen, and Ho 2023b) and use the following
metrics: 1) Detection Accuracy (ACC) assesses the ability
of our backdoor detection method. It’s the higher the bet-
ter. Note that the training and testing datasets contain non-
overlapping attacks in the setting where we assume back-
doored models are available for training. 2) ∆FID measures
the relative Fréchet Inception Distance (FID) (Heusel et al.
2017) changes between the backdoored model and the fixed
model. It shows our effects on benign utility. It’s the smaller
the better. 3) ∆ASR denotes the relative change in Attack
Success Rate (ASR) and shows how well our method can
remove the backdoor. ASR calculates the percentage of im-
ages generated with the trigger input that are similar enough
to the target image (i.e., the MSE w.r.t the target image is
smaller than a pre-defined threshold (Chou, Chen, and Ho
2023b)). A smaller ∆ASR means a better backdoor removal.
4) ∆SSIM also evaluates the effectiveness of the backdoor
removal, similar to ∆ASR. It computes the relative change
in Structural Similarity Index Measure (SSIM) before and
after the backdoor removal. A Higher SSIM means the gen-
erated image is more similar to the target image. Therefore,
a smaller ∆SSIM implies a better backdoor removal.

4.2 Backdoor Detection Performance

Our backdoor detection uses the uniformity score and TV
loss as the features. Figure 6 shows the distribution of clean
and backdoored models in the extracted feature space. Dif-
ferent colors denote different networks. The circles denote
clean models while the crosses are backdoored ones. The
two extracted features are very informative as we can see
clean and backdoored models are quite separable. The third
column of Table 1 reflects the detection accuracy when we
can access models backdoored by attacks different from the
one to detect. Our average detection accuracy is close to
100%, and in more than half of the cases, we have an accu-
racy of 100%. Our detection performance with only access
to clean models is comparable and shown in Table 2 in Ap-
pendix B.2 (An et al. 2023). Figure 14 in Appendix B.9 (An
et al. 2023) visualizes some inverted triggers.

102 103 104 105

TVLoss

0.0

0.2

0.4

0.6

0.8

1.0

U
ni

fo
rm

ity

Network
DDPM
LDM
NCSN

Type
Clean
Backdoored

Figure 6: Uniformity scores and TVLoss for 151 clean and
296 backdoored models.

Attack Model ACC↑ ∆ASR↓ ∆SSIM↓ ∆FID↓
Average 1.00 -0.99 -0.97 0.03

BadDiff DDPM-C 1.00 -1.00 -0.99 -0.00
BadDiff DDPM-A 1.00 -1.00 -1.00 0.10
TrojDiff DDPM-C 0.98 -1.00 -0.96 0.04
TrojDiff DDIM-C 0.98 -1.00 -0.96 0.03

VillanDiff NCSN-C 1.00 -0.96 -0.90 0.17
VillanDiff LDM-A 1.00 -1.00 -0.99 -0.31
VillanDiff ODE-C 1.00 -1.00 -1.00 0.17

Table 1: Overall results of backdoor detection and removal.
Model DDPM-C (resp. DDPM-A) means DDPM mod-
els trained on CIFAR-10 (resp. CelebA-HQ) dataset. Here
ODE-C shows the average results for ODE samplers at-
tacked by VillanDiff.

4.3 Backdoor Removal Performance
The last three columns in Table 1 show the overall results.
As shown by the ∆ASR, we can remove the injected back-
door completely for all models except for NCSN (almost
completely). ∆SSIM reports similar results. With the trig-
ger input, the images generated by the backdoored mod-
els have high SSIM with the target images, while after the
backdoor removal, they cannot generate the target images.
The model utility isn’t significantly sacrificed as the aver-
age ∆FID is 0.03. For some FIDs with nontrivial increases,
the noise space and models are larger (DDPM-A), or the
models themselves are more sensitive to training on small
datasets (NCSN-C and ODE-C). Detailed ODE results are
in Appendix B.8 (An et al. 2023).

4.4 Effect of Backdoor Removal Loss
Figure 7 shows fine-tuning the backdoored model only with
10% clean data cannot remove the backdoor. The green
dashed line displays the ASR which is always close to 1
for the fine-tuning method, while ours (denoted by the solid

0 10 20 30 40
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Sc

or
e

Type
FID (%)
SSIM
ASR

Method
Ours
Finetune

Figure 7: Fine-tuning with only real data cannot remove
the injected backdoor. The model is backdoored by BadDiff
with the stop sign trigger and the hat target.

green line) quickly reduces ASR to 0 within 5 epochs. More
results can be found in Appendix B.6 (An et al. 2023). Our
appendix also studies the effects of other factors such as the
trigger size (Appendix B.3), the poisoning rate (Appendix
B.4), and clean data (Appendix B.5).

4.5 Backdoor Removal with Real/Synthetic Data
One advantage of backdoor removal in DMs over other mod-
els (e.g., classifiers) is we can use the DMs to generate syn-
thetic data instead of requiring ground truth clean training
data. This is based on the fact that backdoored models also
maintain high clean utility. Figure 8 shows how ELIJAH per-
forms with 10% real data or the same amount of synthetic
data. The overlapped SSIM and ASR lines mean the same
effectiveness of backdoor removal. The FID changes in a
similar trend. This means we can have a real-data-free back-
door removal approach. Since our backdoor detection is also
sample-free, our whole framework can work even without
access to real data.

4.6 Adaptive Attacks
We evaluate our framework against the strongest attack-
ers who know our framework. Therefore, in order to make
the injected backdoor undetectable and irremovable by our
framework, they add our backdoor removal loss into their
backdoor attack loss. However, the backdoor injection is not
successful. This is expected because the backdoor attack loss
contradicts our backdoor removal loss. More details can be
found in the appendix (An et al. 2023).

5 Related Work
Diffusion Models and Backdoors. Diffusion Models have
attracted a lot of researchers, to propose different mod-
els (Ho, Jain, and Abbeel 2020; Song and Ermon 2019,
2020; Karras et al. 2022; Song et al. 2021; Rombach et al.
2022) and different applications (Xu et al. 2022; Jeong et al.

0 10 20 30 40
Epoch

0.0

0.5

1.0

1.5

Sc
or

e

Type
FID (%)
SSIM
ASR

Data Type
Real
Synthetic

Figure 8: Backdoor removal with real data or synthetic data
on a model backdoored by BadDiff with the stop sign trigger
and the box target. ASR and SSIM lines overlap.

2021; Popov et al. 2021; Kim, Kim, and Yoon 2022; Kong
et al. 2021; Mei and Patel 2022; Ho et al. 2022; Ruiz et al.
2023). A lot of methods are proposed to deal with the slow
sampling process (Song, Meng, and Ermon 2021; Lu et al.
2022a,b; Zhao et al. 2023; Karras et al. 2022; Zhang and
Chen 2023) Though they achieve a huge success, they are
vulnerable to backdoor attacks (Chou, Chen, and Ho 2023a;
Chen, Song, and Li 2023; Chou, Chen, and Ho 2023b). To
mitigate this issue, we propose the first backdoor detection
and removal framework for diffusion models.
Backdoor Attacks and Defenses. When backdooring dis-
criminative models, some poison labels (Chen et al. 2017;
Liu et al. 2018) while others use clean label (Turner, Tsipras,
and Madry 2018; Saha, Subramanya, and Pirsiavash 2020).
These attacks can manifest across various modalities (Qi
et al. 2021; Wang et al. 2021). Backdoor defense encom-
passes backdoor scanning on model and dataset (Liu et al.
2019a; Wang et al. 2022) and certified robustness (Xiang,
Mahloujifar, and Mittal 2022; Jia et al. 2022). Backdoor re-
moval aims to detect poisoned data through techniques like
data sanitization (Tang et al. 2021; Gao et al. 2019) and
to eliminate injected backdoors from contaminated mod-
els (Wang et al. 2019; Tao et al. 2022b,a; Zhang et al. 2023;
Xu et al. 2023). These collective efforts highlight the criti-
cal importance of defending against backdoor threats in the
evolving landscape of machine learning security. However,
existing backdoor defense mechanisms and removal tech-
niques have not been tailored to the context of diffusion
models. Appendix E has an example (An et al. 2023).

6 Conclusion
We observe existing backdoor attacks in DMs utlize dis-
tribution shift and propose the first backdoor detecion and
removal framework ELIJAH. Extensive experiments show
ELIJAH can have a close-to-100% detection accuracy, elim-
inate backdoor effects completely in most cases without sig-
nificantly sacrificing the model utility.

Acknowledgments
We thank the anonymous reviewers for their construc-
tive comments. We are grateful to the Center for AI
Safety for providing computational resources. This research
was supported, in part by IARPA TrojAI W911NF-19-
S0012, NSF 1901242 and 1910300, ONR N000141712045,
N000141410468 and N000141712947. Any opinions, find-
ings, and conclusions in this paper are those of the authors
only and do not necessarily reflect the views of our sponsors.
Shengwei would like to express his deepest appreciation to
his wife Jinyuan and baby Elijah.

References
An, S.; Chou, S.-Y.; Zhang, K.; Xu, Q.; Tao, G.; Shen, G.;
Cheng, S.; Ma, S.; Chen, P.-Y.; Ho, T.-Y.; and Zhang, X.
2023. Elijah: Eliminating Backdoors Injected in Diffusion
Models via Distribution Shift. arXiv:2312.00050.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
Generative Adversarial Networks. In ICML.
Borgnia, E.; Cherepanova, V.; Fowl, L.; Ghiasi, A.; Geip-
ing, J.; Goldblum, M.; Goldstein, T.; and Gupta, A. 2020.
Strong Data Augmentation Sanitizes Poisoning and Back-
door Attacks Without an Accuracy Tradeoff. arXiv preprint
arXiv:2011.09527.
Chan, S.-H.; Dong, Y.; Zhu, J.; Zhang, X.; and Zhou, J.
2022. Baddet: Backdoor attacks on object detection. In
ECCV, 396–412.
Chen, C.; Fu, J.; and Lyu, L. 2023. A pathway to-
wards responsible ai generated content. arXiv preprint
arXiv:2303.01325.
Chen, W.; Song, D.; and Li, B. 2023. TrojDiff: Trojan At-
tacks on Diffusion Models with Diverse Targets. In CVPR.
Chen, X.; Liu, C.; Li, B.; Lu, K.; and Song, D. 2017. Tar-
geted backdoor attacks on deep learning systems using data
poisoning. arXiv preprint arXiv:1712.05526.
Chou, S.-Y.; Chen, P.-Y.; and Ho, T.-Y. 2023a. How to Back-
door Diffusion Models? In CVPR.
Chou, S.-Y.; Chen, P.-Y.; and Ho, T.-Y. 2023b. VillanDiffu-
sion: A Unified Backdoor Attack Framework for Diffusion
Models. arXiv:2306.06874.
Couairon, G.; Verbeek, J.; Schwenk, H.; and Cord, M. 2023.
DiffEdit: Diffusion-based semantic image editing with mask
guidance. In ICLR.
De, S.; Berrada, L.; Hayes, J.; Smith, S. L.; and Balle, B.
2022. Unlocking High-Accuracy Differentially Private Im-
age Classification through Scale. arXiv:2204.13650.
Gao, Y.; Xu, C.; Wang, D.; Chen, S.; Ranasinghe, D. C.; and
Nepal, S. 2019. STRIP: A Defence Against Trojan Attacks
on Deep Neural Networks. In ACSAC, 113–125.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. NeurIPS.
Gu, T.; Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2019. Bad-
nets: Evaluating backdooring attacks on deep neural net-
works. IEEE Access, 7: 47230–47244.

Guo, W.; Wang, L.; Xu, Y.; Xing, X.; Du, M.; and Song, D.
2020. Towards inspecting and eliminating trojan backdoors
in deep neural networks. In ICDM, 162–171. IEEE.
Hendrycks, D.; Lee, K.; and Mazeika, M. 2019. Using pre-
training can improve model robustness and uncertainty. In
ICML, 2712–2721. PMLR.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. GANs Trained by a Two Time-Scale
Update Rule Converge to a Local Nash Equilibrium. In
NeurIPS.
Ho, J.; Jain, A.; and Abbeel, P. 2020. Denoising Diffusion
Probabilistic Models. NeurIPS, 33: 6840–6851.
Ho, J.; Salimans, T.; Gritsenko, A. A.; Chan, W.; Norouzi,
M.; and Fleet, D. J. 2022. Video Diffusion Models. In
NeurIPS.
Jeong, M.; Kim, H.; Cheon, S. J.; Choi, B. J.; and Kim, N. S.
2021. Diff-TTS: A Denoising Diffusion Model for Text-to-
Speech. In ISCA.
Jia, J.; Liu, Y.; Cao, X.; and Gong, N. Z. 2022. Certified
robustness of nearest neighbors against data poisoning and
backdoor attacks. In AAAI, volume 36, 9575–9583.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2018. Pro-
gressive Growing of GANs for Improved Quality, Stability,
and Variation. In ICLR.
Karras, T.; Aittala, M.; Aila, T.; and Laine, S. 2022. Elu-
cidating the Design Space of Diffusion-Based Generative
Models. In NeurIPS.
Kim, H.; Kim, S.; and Yoon, S. 2022. Guided-TTS: A Dif-
fusion Model for Text-to-Speech via Classifier Guidance. In
ICML.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Bengio, Y.; and LeCun, Y., eds.,
ICLR.
Kong, Z.; Ping, W.; Huang, J.; Zhao, K.; and Catanzaro, B.
2021. DiffWave: A Versatile Diffusion Model for Audio
Synthesis. In ICLR.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning Multiple
Layers of Features from Tiny Images.
Li, Y.; Koren, N.; Lyu, L.; Lyu, X.; Li, B.; and Ma, X.
2021. Neural Attention Distillation: Erasing Backdoor Trig-
gers from Deep Neural Networks. In ICLR.
Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2018. Fine-Pruning:
Defending Against Backdooring Attacks on Deep Neural
Networks. In RAID, 273–294. Springer.
Liu, Y.; Lee, W.-C.; Tao, G.; Ma, S.; Aafer, Y.; and Zhang,
X. 2019a. ABS: Scanning neural networks for back-doors
by artificial brain stimulation. In CCS, 1265–1282.
Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.-C.; Zhai, J.; Wang, W.;
and Zhang, X. 2018. Trojaning attack on neural networks.
In NDSS.
Liu, Y.; Peng, J.; Yu, J. J.; and Wu, Y. 2019b. PPGAN:
Privacy-Preserving Generative Adversarial Network. IC-
PADS.
Liu, Y.; Shen, G.; Tao, G.; Wang, Z.; Ma, S.; and Zhang, X.
2022. Complex Backdoor Detection by Symmetric Feature
Differencing. In CVPR, 15003–15013.

Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; and Zhu, J. 2022a.
DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic
Model Sampling in Around 10 Steps. In NeurIPS.
Lu, C.; Zhou, Y.; Bao, F.; Chen, J.; Li, C.; and Zhu, J. 2022b.
DPM-Solver++: Fast Solver for Guided Sampling of Diffu-
sion Probabilistic Models. In NeurIPS.
Mei, K.; and Patel, V. M. 2022. VIDM: Video Implicit Dif-
fusion Models. CoRR, abs/2212.00235.
Meng, C.; He, Y.; Song, Y.; Song, J.; Wu, J.; Zhu, J.; and Er-
mon, S. 2022. SDEdit: Guided Image Synthesis and Editing
with Stochastic Differential Equations. In ICLR.
Miyato, T.; Kataoka, T.; Koyama, M.; and Yoshida, Y.
2018. Spectral Normalization for Generative Adversarial
Networks. In ICLR.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.;
Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.;
and Chintala, S. 2019. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In NeurIPS, 8024–
8035.
Popov, V.; Vovk, I.; Gogoryan, V.; Sadekova, T.; and Kudi-
nov, M. A. 2021. Grad-TTS: A Diffusion Probabilistic
Model for Text-to-Speech. In ICML.
Qi, F.; Yao, Y.; Xu, S.; Liu, Z.; and Sun, M. 2021. Turn
the combination lock: Learnable textual backdoor attacks
via word substitution. ACL.
Rawat, A.; Levacher, K.; and Sinn, M. 2021. The Devil is
in the GAN: Defending Deep Generative Models Against
Backdoor Attacks. CoRR, abs/2108.01644.
Rawat, A.; Levacher, K.; and Sinn, M. 2022. The devil is in
the GAN: backdoor attacks and defenses in deep generative
models. In ESORIC, 776–783.
Rombach, R.; Blattmann, A.; Lorenz, D.; Esser, P.; and Om-
mer, B. 2022. High-Resolution Image Synthesis With Latent
Diffusion Models. In CVPR, 10684–10695.
Ruiz, N.; Li, Y.; Jampani, V.; Pritch, Y.; Rubinstein, M.;
and Aberman, K. 2023. DreamBooth: Fine Tuning Text-
to-Image Diffusion Models for Subject-Driven Generation.
In CVPR.
Saha, A.; Subramanya, A.; and Pirsiavash, H. 2020. Hid-
den trigger backdoor attacks. In AAAI, volume 34, 11957–
11965.
Song, J.; Meng, C.; and Ermon, S. 2021. Denoising Diffu-
sion Implicit Models. In ICLR.
Song, Y.; and Ermon, S. 2019. Generative Modeling by Es-
timating Gradients of the Data Distribution. NeurIPS, 32.
Song, Y.; and Ermon, S. 2020. Improved Techniques for
Training Score-Based Generative Models. In NeurIPS.
Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.; Er-
mon, S.; and Poole, B. 2021. Score-Based Generative Mod-
eling through Stochastic Differential Equations. In ICLR.
Struppek, L.; Hintersdorf, D.; and Kersting, K. 2023. Rick-
rolling the Artist: Injecting Backdoors into Text Encoders
for Text-to-Image Synthesis. In ICCV.

Tang, D.; Wang, X.; Tang, H.; and Zhang, K. 2021. De-
mon in the Variant: Statistical Analysis of DNNs for Robust
Backdoor Contamination Detection. In USENIX Security.
Tao, G.; Liu, Y.; Shen, G.; Xu, Q.; An, S.; Zhang, Z.; and
Zhang, X. 2022a. Model Orthogonalization: Class Distance
Hardening in Neural Networks for Better Security. In SP,
1372–1389.
Tao, G.; Shen, G.; Liu, Y.; An, S.; Xu, Q.; Ma, S.; Li, P.; and
Zhang, X. 2022b. Better Trigger Inversion Optimization in
Backdoor Scanning. In CVPR, 13368–13378.
Turner, A.; Tsipras, D.; and Madry, A. 2018. Clean-label
Backdoor Attacks.
Vice, J.; Akhtar, N.; Hartley, R.; and Mian, A. 2023. BAGM:
A Backdoor Attack for Manipulating Text-to-Image Gener-
ative Models. CoRR, abs/2307.16489.
Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng,
H.; and Zhao, B. Y. 2019. Neural Cleanse: Identifying and
Mitigating Backdoor Attacks in Neural Networks. SP, 707–
723.
Wang, L.; Javed, Z.; Wu, X.; Guo, W.; Xing, X.; and Song,
D. 2021. Backdoorl: Backdoor attack against competitive
reinforcement learning. arXiv preprint arXiv:2105.00579.
Wang, Z.; Mei, K.; Ding, H.; Zhai, J.; and Ma, S. 2022.
Rethinking the Reverse-engineering of Trojan Triggers.
NeurIPS, 35: 9738–9753.
Xiang, C.; Mahloujifar, S.; and Mittal, P. 2022. Patch-
Cleanser: Certifiably Robust Defense against Adversarial
Patches for Any Image Classifier. In USENIX Security,
2065–2082.
Xu, M.; Yu, L.; Song, Y.; Shi, C.; Ermon, S.; and Tang, J.
2022. GeoDiff: A Geometric Diffusion Model for Molecular
Conformation Generation. In ICLR.
Xu, Q.; Tao, G.; Honorio, J.; Liu, Y.; An, S.; Shen, G.;
Cheng, S.; and Zhang, X. 2023. MEDIC: Remove Model
Backdoors via Importance Driven Cloning. In CVPR,
20485–20494.
Zeng, Y.; Qiu, H.; Guo, S.; Zhang, T.; Qiu, M.; and Thurais-
ingham, B. 2020. DeepSweep: An Evaluation Framework
for Mitigating DNN Backdoor Attacks using Data Augmen-
tation. arXiv preprint arXiv:2012.07006.
Zhai, S.; Dong, Y.; Shen, Q.; Pu, S.; Fang, Y.; and Su,
H. 2023. Text-to-Image Diffusion Models can be Easily
Backdoored through Multimodal Data Poisoning. CoRR,
abs/2305.04175.
Zhang, K.; Tao, G.; Xu, Q.; Cheng, S.; An, S.; Liu, Y.; Feng,
S.; Shen, G.; Chen, P.-Y.; Ma, S.; and Zhang, X. 2023. FLIP:
A Provable Defense Framework for Backdoor Mitigation in
Federated Learning. In ICLR.
Zhang, Q.; and Chen, Y. 2023. Fast Sampling of Diffusion
Models with Exponential Integrator. In ICLR.
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang,
O. 2018. The unreasonable effectiveness of deep features as
a perceptual metric. In CVPR, 586–595.
Zhang, Z.; Han, L.; Ghosh, A.; Metaxas, D. N.; and Ren,
J. 2022. SINE: SINgle Image Editing with Text-to-Image
Diffusion Models. volume abs/2212.04489.

Zhao, W.; Bai, L.; Rao, Y.; Zhou, J.; and Lu, J. 2023. UniPC:
A Unified Predictor-Corrector Framework for Fast Sampling
of Diffusion Models. NeurIPS.

Appendix

Algorithm 1: Overall algorithm of ELIJAH.

1: function ELIJAH(diffusion model Dm)
2: τ = INVERTTRIGGER(Dm.Mθ)
3: if DETECTBACKDOOR(Dm, τ) then
4: Dm.Mθ = REMOVEBACKDOOR(Dm.Mθ, τ)
5: return Dm

A Algorithms
Note that for simplicity, we assume the tensors (e.g., ϵ, xT ,
etc.) can be a batch of samples or inputs. We only add the
indices (e.g., xT[1,n]) when we emphasize the number of sam-
ples (e.g., n). We call the whole chain a diffusion model de-
noted by Dm and the learned network model M . Dm(xT)
will generate the final image x0 iteratively calling M for T
steps.

Algorithm 1 shows the overall algorithm of our frame-
work. For simplicity, we omit other parameters here.
Because our original DETECTBACKDOOR (Algorithms 4
and 5) calls INVERTTRIGGER (Algorithm 2), it doesn’t need
τ as a parameter. Here we explicitly run INVERTTRIGGER
and pass τ to DETECTBACKDOOR to illustrate the work-
flow. Details of each sub-algorithm are explained as follows.

A.1 Trigger Inversion
Algorithm 2 shows the pseudocode of our trigger inversion.
For a given diffusion model to test, we feed its learned net-
work M to Algorithm 2, and set the epochs and learning
rate. Line 2 initializes τ using a uniform distribution. Line
3-6 iteratively update τ using the gradient descent on the
trigger inversion loss defined in Equation (4). Line 7 returns
the inverted τ .

A.2 Backdoor Detection
Algorithm 3 describes how we extract the uniformity score
and TV loss for a diffusion model Dm. Line 2 calls Algo-
rithm 2 to invert a trigger τ for the learned network Dm.M .
Line 3 samples a set of n trigger inputs xTb,[1,n] from the τ -
shifted distribution N (τ, I). Line 4 generates a batch of im-
ages x[1,n] by feeding xTb,[1,n] toDm. Lines 5 and 6 compute
uniformity score and TV loss. Line 7 returns the extracted
features.

Algorithm 4 shows how we conduct backdoor detection
when we have both clean models and backdoored models
(attacked by a different method from the one to detect).
BUILDDETECTOR takes in a set of clean and backdoored
models {Dmi} and the corresponding labels {li ∈ { ‘c’,
‘b’ }} where ‘c’ stands for clean and ‘b’ for backdoored.
Lines 2-6 extract features for all models and build the train-
ing dataset Dtrain for the random forest. Lines 7-8 train and

Algorithm 2: Trigger inversion. T is the leftmost step.

1: function INVERTTRIGGER(model M , epoch e, lr η)
2: Init τ from U [0, 1)
3: for i ∈ {1, . . . , e} do
4: Sample ϵ from N (0, I)
5: τ = τ − η∇τLossτ (ϵ) ▷ Equation (4)
6: return τ

Algorithm 3: Extract features for backdoor detection.

1: function EXTRACTFEATURE(diffusion model Dm,
img num n, epoch e, lr η)

2: τ = INVERTTRIGGER(Dm.M , e, η)
3: Sample xTb,[1,n] from N (τ, I)

4: Generate n images x[1,n] = Dm(xTb,[1,n])

5: Compute uniformity s = S(x[1,n]) ▷ Equation (5)
6: Compute TV Loss l = LTV (x[1,n])
7: return (s, l)

return a learned random forest classifier cls. Given a model
to test, DETECTBACKDOOR extracts its features (Line 11)
and uses cls to predict its label (Line 12).

When we only have access to the clean models, we
use threshold-based detection in Algorithm 5. COM-
PUTETHRESHOLD computes the thresholds for the unifor-
mity score and TV loss. More specifically, Line 2 initializes
the two empty feature lists. Lines 3-6 compute the unifor-
mity score and TV loss for each clean DM and add them to
the lists. Line 8 sorts the two lists in ascending order. Line
9-10 computes the thresholds for uniformity score and TV
loss according to the defined False Positive Rate (FPR). Line
11 returns the thresholds. The threshold-based detection al-
gorithms DETECTBACKDOORU and DETECTBACKDOORT
are straightforward. Given a model to check, they compute
the feature uniformity score (Line 14) or TV loss (Line 18).
If the feature is smaller than the threshold, the model is con-
sidered backdoored (Line 15 or 16).

A.3 Backdoor Removal
Algorithm 6 shows the procedure of removing the backdoor.
Given a backdoored model Mθ, the inverted trigger τ and
a set of clean (real or synthetic) data D, Line 2 first gets a
frozen copy of the backdoored model. Lines 3-9 apply the
backdoor removal loop for e epochs. Line 4 gets the clean
samples from D as the training samples. Line 5 samples the
initial clean noise xT . Lines 6 and 7 compute the backdoored
model’s outputs of clean inputs and backdoored ones. Line
8 computes the frozen model’s outputs of clean inputs as the
reference. Line 9 updates θ using gradient descent on our
backdoor removal loss. Line 11 returns the fixed model.

B More Experimental Details
B.1 Configuration
Runs of Algorithms. For each model in the 151 clean and
296 backdoored models, we run Algorithm 2 and Algo-
rithm 6 once, except for Algorithm 4 and Algorithm 5 be-

Algorithm 4: Backdoor detection via random forest.

1: function BUILDDETECTOR(diffusion models {Dmi},
labels {li ∈ { ‘c’, ‘b’ }}, img num n, epoch e, lr η)

2: Dtrain = {}
3: for Dmi, li ∈ {Dmi}, {li} do
4: fi = EXTRACTFEATURE(Dmi, n, e, lr)
5: Dtrain = Dtrain ∪ {(fi, li)}
6: Train a random forest classifier cls on Dtrain

7: return cls
8: function DETECTBACKDOOR(classifier cls, diffusion

model Dm, img num n, epoch e, lr η)
9: f = EXTRACTFEATURE(Dm, n, e, lr)

10: return cls(f)

Algorithm 5: Backdoor detection via threshold.

1: function COMPUTETHRESHOLD(clean diffusion mod-
els {Dmi}, img num n, epoch e, lr η, FPR γ)

2: Utrain = [], Ttrain = []
3: for Dmi ∈ {Dmi} do
4: si, li = EXTRACTFEATURE(Dmi, n, e, lr)
5: Utrain.append(si)
6: Ttrain.append(li)
7: Sort Utrain and Ttrain in ascending order
8: ψU = Utrain[⌊|Utrain| ∗ γ⌋]
9: ψT = Ttrain[⌊|Ttrain| ∗ γ⌋]

10: return ψU , ψT

11: function DETECTBACKDOORU(diffusion model Dm,
threshold ψ, img num n, epoch e, lr η)

12: s = EXTRACTFEATURE(Dm, n, e, lr)[0]
13: return s < ψ

14: function DETECTBACKDOORT(diffusion model Dm,
threshold ψ, img num n, epoch e, lr η)

15: l = EXTRACTFEATURE(Dm, n, e, lr)[1]
16: return l < ψ

cause clean models and some backdoored models are in-
volved in multiple detection experiments. Given the num-
ber of models we evaluated, we believe the results should be
reliable.
Parameters and Settings. For trigger inversion, we use
Adam optimizer (Kingma and Ba 2015) and 0.1 as the learn-
ing rate. We use 100 epochs for DDPM/NCSN, 10 epochs
for LDM and ODE models. We set the batch size to 100 for
DMs with 3×32×32 space, 50 for 3×128×128 space, and
20 for 3× 256× 256 space because of GPU memory limita-
tion. Ideally, a larger batch size will give us a better approx-
imation of the expectation in Equation (4). We set λ = 0.5
because we tested on a subset of models for λ ∈ [0, 1] with
steps 0.1 and found λ = 0.5 gave the best detection results.

For feature extraction, we only use 16 images generated
by input with the inverted trigger since we find it’s sufficient.

For the random-forest-based backdoor detection, we ran-
domly split the clean model into 80% training and 20% test-
ing. We add all the backdoored models by one attack to the
test dataset. We add all the backdoored models attacked by

Algorithm 6: Backdoor removal. T is the leftmost step.

1: function REMOVEBACKDOOR(model Mθ, epoch e, lr
η, trigger τ , clean data D)

2: Mf = FREEZE(Mθ)
3: for i ∈ {1, . . . , e} do
4: Sample x0 from D
5: Sample xT from N (0, I)
6: ϵc =Mθ(x

T , T)
7: ϵb =Mθ(x

T + τ, T)
8: ϵf =Mf (x

T , T)
9: θ = θ − η∇θLossθ(ϵc, ϵb, ϵf , x

0) ▷ Eq. (10)
10: return Mθ

Table 2: Detection accuracy with different settings. ACC
means the detection rate with the trained random forest.
U@05 means using the threshold extracted on the cleaning
training set with a 5% false positive rate. Model DDPM-C
(resp. DDPM-A) means DDPM models trained on CIFAR-
10 (resp. CelebA-HQ) dataset.

Attack Model ACC(%)↑ U@5(%)↑ T@5(%)↑
BadDiff DDPM-C 100 92.04 98.23
BadDiff DDPM-A 100 100 100
TrojDiff DDPM-C 98.36 100 96.36
TrojDiff DDIM-C 98.36 100 96.36

VillanDiff NCSN-C 100 100 100
VillanDiff LDM-A 100 100 100
VillanDiff ODE-C 100 100 98.50

a different method from the one to test into the training data.
For the threshold-based backdoor detection, we split the

clean model into 80% training and 20% testing. We add all
the backdoored models by one attack to the test dataset. We
derive the thresholds based on the clean training dataset.

To compute ∆ASR, ∆SSIM, and ∆FID, we use 2048
generated images. Generating a lot of images for hundreds
of models is very consuming. For example, it take more than
2 hours to generate 2048 32 × 32 samples using NCSN
trained on the Cifar10 dataset with batch size 2048 on a
NVIDIA Quadro RTX A6000 GPU. Since we are comparing
the changes, the trends can be implied by using the same rea-
sonable amount of samples to compare the metric on back-
doored model and the corresponding fixed one.

B.2 Threshold-based Detection

Table 2 compares our detection performance between the
random-forest-based method and the threshold-based one
with the false positive rate set to 5%. The third column
shows the detection accuracy with the random forest. The
fourth/fifth column shows the results with a uniformity/TV
loss threshold. They perform comparably well while the ran-
dom forest have a overall higher accuracy.

Table 3: Performance against different trigger sizes. Num-
bers show the relative scores compared with backdoored
models. The trigger is a white square and the target image
is mickey.

Trigger size Detected ∆ASR↓ ∆SSIM↓ ∆FID↓
3×3 ✔ -1.00 -0.97 0.02
4×4 ✔ -1.00 -0.97 0.04
5×5 ✔ -1.00 -0.92 0.08
6×6 ✔ -1.00 -0.94 0.11
7×7 ✔ -1.00 -0.94 0.05
8×8 ✔ -1.00 -0.93 0.02
9×9 ✔ -1.00 -0.92 0.05

Table 4: Performance against different poisoning rates.
Numbers show the relative scores compared with back-
doored models.

Poisoning rates Detected ∆ASR↓ ∆SSIM↓ ∆FID↓
0.05 ✔ -1.00 -1.00 -0.07
0.10 ✔ -1.00 -1.00 0.18
0.20 ✔ -1.00 -1.00 -0.03
0.30 ✔ -1.00 -1.00 0.15
0.50 ✔ -1.00 -1.00 0.20
0.70 ✔ -1.00 -1.00 -0.11
0.90 ✔ -1.00 -1.00 -0.07

B.3 Effect of the Trigger Size
We use TrojDiff to backdoor DMs with various trigger sizes
and test ELIJAH on them. Results are shown in Table 3. ELI-
JAH can detect and eliminate all the backdoors with slight
decreases in model utility.

B.4 Effect of the Poisoning Rate
We evaluate ELIJAH on DMs backdoored by BadDiff with
different poisoning rates. Table 4 demonstrates ELIJAH can
completely detect and eliminate all the backdoors and even
improve the model utility in many cases.

B.5 Effect of Clean Data
Figure 9 shows our backdoor removal without clean data can
quickly (in 20 updates) invalidate the ground truth trigger
so it cannot generate the target image. However, our trigger
inversion algorithm can find another effective trigger. With
the inverted trigger, the “fixed” model can still generate the
target image.

B.6 Effect of Backdoor Removal Loss
Figure 10 and Figure 11 show fine-tuning the backdoored
model only with 10% clean data cannot remove the back-
door. The green dashed line displays the ASR which is al-
ways close to 1 for the fine-tuning method, while ours (de-
noted by the solid green line) quickly reduces ASR to 0
within 5 epochs.

0 10 20 30 40
Updates

0.0

0.5

1.0

1.5

2.0

2.5

Sc
or

e

FID (%)
SSIM
ASR

Figure 9: Only use backdoor removal on a model back-
doored by BadDiff with stop sign trigger and hat target.

0 10 20 30 40
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sc
or

e
Type

FID (%)
SSIM
ASR

Method
Ours
Finetune

Figure 10: Fine-tuning with only real data on a model back-
doored by BadDiff with the box trigger and the hat target.

B.7 Backdoor Removal with Real/Synthetic Data

Figure 12 and Figure 13 show more comparison between
backdoor removal with real data and synthetic data. The
overlapped SSIM and ASR lines mean the same effective-
ness of backdoor removal. The FID changes in a simi-
lar trend. This means we can have a real-data-free back-
door removal approach. Since our backdoor detection is also
sample-free, our whole framework can work even without
access to real data.

B.8 Detailed ODE Results

Table 5 shows the detailed results for all the ODE samplers.
Our method can successfully detect the backdoored models
and completely eliminate the backdoors while only slightly
increasing FID.

0 10 20 30 40
Epoch

0.0

0.5

1.0

1.5

Sc
or

e

Type
FID (%)
SSIM
ASR

Method
Ours
Finetune

Figure 11: Fine-tuning with only real data on a model back-
doored by BadDiff with stop sign trigger and box target.

Table 5: ODE results of VillanDiff backdoor detection and
removal. Model DDIM-C means DM with DDIM sampler
trained on the CIFAR-10 dataset.

Model ACC↑ ∆ASR↓ ∆SSIM↓ ∆FID↓
DDIM-C 1.00 -1.00 -1.00 0.14
PNDM-C 1.00 -1.00 -1.00 0.25
DEIS-C 1.00 -1.00 -1.00 0.15

DPMO1-C 1.00 -1.00 -1.00 0.15
DPMO2-C 1.00 -1.00 -1.00 0.15
DPMO3-C 1.00 -1.00 -1.00 0.15

DPM++O1-C 1.00 -1.00 -1.00 0.15
DPM++O2-C 1.00 -1.00 -1.00 0.15
DPM++O3-C 1.00 -1.00 -1.00 0.15

UNIPC-C 1.00 -1.00 -1.00 0.15
HEUN-C 1.00 -1.00 -1.00 0.25

B.9 Visualized results
Figure 14 visualizes some ground truth triggers and the cor-
responding inverted triggers. An interesting observation is
that usually, the inverted trigger is not the exact same as the
ground truth one. This means the injected trigger is not pre-
cise or accurate, that is, a different trigger can also trigger the
backdoor effect. It’s not an issue for our backdoor detection
and removal framework.

B.10 Results for Inpainting Tasks
BadDiff shows they can also backdoor models used for the
inpainting tasks. Given a corrupted image (e.g., masked with
a box) without the trigger, the model can recover it into
a clean image (e.g., complete the masked area). However,
when the corrupted image contains the trigger, the target im-
age will be generated. Our method can successfully detect
the backdoored model and completely eliminate the back-
doors while maintaining almost the same inpainting capa-
bility.

0 10 20 30 40
Epoch

0.0

0.5

1.0

1.5

Sc
or

e

Type
FID (%)
SSIM
ASR

Data Type
Real
Synthetic

Figure 12: Backdoor removal with real data or synthetic data
on a model backdoored by BadDiff with the stop sign trigger
and the hat target. ASR and SSIM lines overlap.

B.11 Details of Adaptive Attacks
We tried two different ways of adaptive attacks. In both
cases, attackers completely know our framework. In the first
case, attackers directly utilize our loss the suppress the dis-
tribution shift at the timestep T . Because the backdoor injec-
tion relies on the distribution shift, suppressing it will make
the attack fail. In the second case, attackers choose to only
inject the distribution shift starting from the timestep T − 1
while training the timestep T with only clean training loss.
The intuition is our simple trigger inversion loss only uses
the timestep T . However, this adaptive attack also failed be-
cause even if the T − 1 step learns the distribution shift, it
could not be satisfied by the T step. That is, the attack also
failed.

C Parameter Instantiation for Diffusion
Models and Attacks

DDPM. This is straightforward, as DDPM is directly de-
fined using a Markov chain. κt =

√
αt, υt = βt, κ̃t = 1√

αt
,

κ̂t = 1−αt
√
αt

√
1−ᾱt

, υ̃t = 1−ᾱt−1

1−ᾱt βt, where βt is the pre-
defined scale of noise added at step t, αt = 1 − βt and
ᾱt =

∏t
i=1 α

i.
NCSN. κt = 1, υt = (σt)2 −

∑t−1
i=1(υ

i)2, κ̃t =
(σt−1)2

(σt−1)2+(υt)2 , κ̂t = 1 − κ̃t, υ̃t = (1 − κ̃t)(σt)2, where
σt denotes scale of the pre-defined noise.
LDM. As LDM is considered DDPM in the latent space, the
instantiation is almost the same.
BadDiff BadDiff only attacks DDPM, with ρt = 1 −

√
αt,

ρ̃t = (1−
√
αt)

√
1−ᾱt

αt−1 .

TrojDiff ρt = kt, υtb = βtγ2, κ̃tb =
√
αt(1−ᾱt−1)

1−ᾱt + 1√
ᾱt

,

κ̂tb =
−
√
1−ᾱt(γ√
ᾱt

, ρ̃t =
√
1−ᾱt
√
ᾱt

+
√
1−ᾱt−1βt−

√
αt(1−ᾱt−1kt)

1−ᾱt ,

where kt =
√
1− ᾱt −

∑t
i=2

∏t
j=i

√
αjki−1. Note the

0 10 20 30 40
Epoch

0.0

0.5

1.0

1.5

Sc
or

e

Type
FID (%)
SSIM
ASR

Data Type
Real
Synthetic

Figure 13: Backdoor removal with real data or synthetic data
on a model backdoored by BadDiff with the box trigger and
the hat target. ASR and SSIM lines overlap.

subscript shows a different chain for the backdoor from the
clean chain.
VillanDiff It considers a more general set of DMs
and assumes the trigger distribution shift is ρ̂tr.
That is, the clean forward chain is q(xtc|x0c) =

N (xtc; α̂
tx0c , β̂

tI) and the backdoor forward chain is
q(xtb|x0b) = N (xtb; α̂

tx0c + ρ̂tr, β̂tI). Then κt = α̂t

α̂t−1 ,

υt = β̂t −
∑t−1

i=1((
∏

j=i+1 tκ
j)2υi), κ̃t = κtβ̂t−1

(κt)2β̂t−1+υt
,

κ̂t = α̂t−1υt

(κt)2β̂t−1+υt
, υ̃t = κ̂t

α̂t β̂
t.

D Summary of used Symbols
N (µ, σ) Normal distribution with mean µ and std σ

xt, xt
c, xt

b DM’s output at step t, c/b means clean/backdoor

Mθ UNet M with parameter θ (omitted sometimes)

q(xt|xt−1) Forward probability defined by DM

pθ(x
t−1|xt) Reverse probability based on Mθ

r or τ Ground truth injected or inverted trigger

λ The linear dependence coefficient

x[1,n] A set (or a tensor) of n x’s

κt, κ̂t, κ̃t Transitional content schedulers in DM

υt, υ̃t Transitional noise schedulers in DM

ρt, ρ̃t Scale of distribution shift

E Limitation of Existing Methods on DMs
Here we use the simplified NC11 on a cat-dog classifier f as
an example. NC first generates a trigger for each label. E.g.,
τcat = argminτ

∑
x∈Xdog

[1,n]
ℓ(cat, f(x+τ)), i.e., when τcat is

11https://github.com/bolunwang/backdoor

G
T

r
In

ve
rte

d
τ

G
T

r
In

ve
rte

d
τ

Figure 14: Ground truth triggers r and the corresponding
inverted triggers τ , as well as 16 generated images using
inputs with the inverted triggers.

added to n dog’s images, f misclassifies them as cat12. NC
regards the model as backdoored if there’s a significantly
small trigger for one label, e.g. τcat ≪ τdog. NC needs the la-
bel information and clean samples (highlighted in red) while
DMs don’t output labels or have clean samples belonging to
a victim class. It hence can’t be easily adapted to DMs.

12ℓ is the classification loss such as cross-entropy.

