
MANUSCRIPT, 2025 1

On the Oracle Complexity of Interpolation-Based
Gradient Descent

Dongmin Lee, William Lu, and Anuran Makur

Abstract— Recent work on first-order optimizers for em-
pirical risk minimization (ERM) has suggested that smooth-
ness of ERM loss functions in the training data, rather than
in the optimization parameters, can be leveraged to improve
the oracle complexity of gradient descent (GD) methods. In
this paper, we propose an inexact gradient method, piece-
wise polynomial interpolation-based gradient descent (PPI-
GD), which approximates the full gradient in each iteration
by querying the first-order oracle at equidistant points in
the data domain to construct polynomial interpolants of
the resulting gradient samples over appropriately sized
patches of the data domain. We analyze the oracle com-
plexity of PPI-GD for strongly convex and non-convex loss
functions when the data space dimension is bounded by a
polylogarithmic function of the number of training samples,
and find it to outperform several GD variants in key regimes
when the loss function is sufficiently smooth. Furthermore,
our analysis extends several techniques from the error
analysis of bicubic spline interpolants to the setting of d-
variate tensor product polynomial interpolants which may
be of independent interest in interpolation analysis.

Index Terms— First-order optimization, inexact gradient
descent, oracle complexity, polynomial interpolation

I. INTRODUCTION

First-order optimization algorithms such as gradient de-
scent (GD) and its variants are commonly used within the
paradigm of empirical risk minimization (ERM) to optimize
loss functions over a finite training dataset. Theoretical work
on the performance of such algorithms has centered around the
notion of oracle complexity introduced by [1], defined as the
number of gradient queries necessary to guarantee convergence
(e.g., to the optimal objective value) up to some absolute
error ε. Classical results in this area include upper bounds for
GD under assumptions like convexity and strong convexity
[2], upper bounds for stochastic gradient descent (SGD) with
constant and decreasing step sizes [3], [4], and information-
theoretic lower bounds [5], among others.

Building upon work on inexact gradient descent methods
(e.g., [6]–[9]), a recent line of research initiated by [10] aims

The author ordering is alphabetical. This work was supported by the
National Science Foundation (NSF) CAREER Award under Grant CCF-
2337808.

Dongmin Lee and William Lu are with the Department of Computer
Science, Purdue University, West Lafayette, IN 47907, USA (e-mail:
lee4818@purdue.edu; lu909@purdue.edu).

Anuran Makur is with the Department of Computer Science and
the Elmore Family School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, USA (e-mail:
amakur@purdue.edu).

to improve upon the oracle complexity of classical gradient-
based optimizers by exploiting the smoothness of the ERM
loss function with respect to the data, a characteristic of many
machine learning objectives which was hitherto neglected in
previous literature on the subject. Specifically, the authors
consider the ERM formulation (cf. [11])

F (θ) =
1

n

n∑
i=1

f(xi;θ) ,

where n is the number of training samples and the loss
function f belongs to an (ℓ, Lh)-Hölder class with respect to
the training instance xi. The authors propose a method dubbed
local polynomial interpolation-based gradient descent (LPI-
GD), which evaluates ∇θf at a grid of virtual data points
and performs local polynomial regression to estimate the full
training gradient ∇θF on each iteration without incurring
n oracle calls. For strongly convex problems with d =
O(log log(n)) data dimensions and p parameter dimensions,
the authors establish the oracle complexity of LPI-GD as
Õ((p/ε)d/(2ℓ)), beating the O(n log(p/ε)) complexity of GD
and the O(p/ε) complexity of SGD when ℓ is sufficiently
large, p = O(poly(n)), and ε = Θ(poly(1/n)). However,
the assumption that d = O(log log(n)) limits the theoretical
relevance of LPI-GD to very low-dimensional datasets, and
it is conjectured that this dependence can be improved to d
scaling polylogarithmically in n.

In this paper, motivated by this conjecture and intrinsic
theoretical interest in the application of numerical analysis
techniques within the oracle complexity domain, we intro-
duce the piecewise polynomial interpolation-based gradient
descent (PPI-GD) method, which achieves the aforementioned
Õ((p/ε)d/(2ℓ)) oracle complexity for strongly convex ERM
problems in the substantially broader regime of data di-
mensionality d = O(log0.49(n)). Hence, this method and
its analysis resolve the conjectured scaling regime of d. In
addition, we also analyze the oracle complexity of PPI-GD for
non-convex loss functions and show that it outperforms GD
and SGD in a similar regime. At a high level, PPI-GD divides
the data space into patches with ℓ+ 1 grid points along each
axis and fits a tensor product polynomial interpolant to the
gradient values at the grid points for each patch. We establish
the oracle complexity of our method by generalizing proof
techniques initially considered in the context of bicubic splines
to the setting of multivariate polynomial interpolants. Next,
we enumerate the principal contributions of our work and
summarize the relevant literature on oracle complexity and
first-order optimizers.

2 MANUSCRIPT, 2025

A. Main Contributions
Our work makes the following contributions:
1) We present a new first-order optimization algorithm,

PPI-GD (Algorithm 1), to solve the ERM optimization
problem when the loss function satisfies standard Lips-
chitz continuity and Hölder smoothness assumptions in
the parameters and data instance, respectively. Although
theoretical analysis is the focus of our work, we also
discuss potential optimizations and other practical con-
siderations in implementing our algorithm.

2) We derive the oracle complexity of PPI-GD in the
strongly convex setting (Theorem 7). We remark that
PPI-GD improves upon the LPI-GD algorithm proposed
in [10] by achieving an equivalent oracle complexity
under weaker assumptions on the order of d, as sum-
marized in Table I. Moreover, in the important regime
where p = O(poly(n)) and ε = Θ(poly(1/n)), PPI-
GD outperforms GD, SGD, and their variants in oracle
complexity when the loss function is sufficiently smooth
with respect to the data instance (Proposition 8).

3) Analogously to the above, we establish the oracle com-
plexity of PPI-GD in the non-convex setting (Theorem 9)
and show asymptotic dominance over GD and SGD in
the regime of p = O(poly(n)) and ϵ = Θ(poly(1/n))
(Proposition 10)—also see Table I.

4) In service of deriving the oracle complexity results
above, we make several key observations regarding
multivariate polynomial interpolation which have not
been covered in the existing literature on numerical
analysis. In particular, we establish an error bound
for tensor product polynomial interpolants (Theorem 1)
by extending the notion of blended interpolants from
classical analyses of bicubic splines to the general case
of arbitrary degree and dimensionality.

B. Related Literature
There is a wealth of existing literature on first-order opti-

mization, and we provide a survey of the salient developments
therein. The notion of oracle complexity introduced in [1],
defined as the number of gradient calls necessary for a
given algorithm to achieve convergence within some absolute
error ε, is used as a measure of algorithmic performance
agnostic to the objective function under optimization. We refer
readers to [2] for further exposition on oracle complexity, and
we remark that the convergence rates of GD and SGD for
smooth functions in the convex, strongly convex, and non-
convex settings are well-known results [2], [12]–[14]. Earlier
work implicitly analyzed SGD in the context of stochastic
approximation algorithms [15], and more recent work [16]
has analyzed SGD in canonical and robust settings [13]. Since
then, numerous variations of GD and SGD have been proposed
to bolster their performance in a number of scenarios. For
example, mini-batch SGD (MBGD) [13], [17] improves wall-
clock time in parallel computation settings and convergence
rate in sparse regression problems [18], momentum (heavy-
ball method) [19] and Nesterov acceleration [20] improve con-
vergence rate in, e.g., strongly convex settings, and specialized

versions of GD provide performance gains when optimizing
low-rank functions [21]–[23]. SGD has been augmented by
several variance reduction methods originating from Monte
Carlo sampling theory [24, Chapter 9], most notably stochastic
variance reduced gradient (SVRG) [25], stochastic average
gradient (SAG) [26], [27], and stochastic dual coordinate
ascent (SDCA) [28]. Adaptive learning rates for GD have
been proposed, including adaptive gradient (AdaGrad) [29]
and its generalization to non-convex objectives [30], root mean
squared propagation (RMSprop) [31], and adaptive moments
(Adam) [32]. We refer readers to [13], [33] for a broader
overview of the aforementioned methods, and to [34], [35]
for an overview of empirical risk minimization in machine
learning. Lastly, classical results on oracle complexity also
include the lower bounds in [2], [5], [36]–[38]; we focus
exclusively on upper bounds in this work.

Of particular relevance to our present work is the literature
on inexact gradient descent methods, which includes well-
known results in the convex [6], [9] and strongly convex [7],
[8] settings. More recently, [39] analyzes the convergence
behavior of GD methods with non-vanishing gradient error,
[40] utilizes inexact GD methods to study the convergence
rate of a dual decomposition problem, and [41] investigates
how bias in the gradient oracle assists first-order optimizers
in escaping saddle points on non-convex objectives. Inexact
GD methods have been generalized to incorporate Nesterov
acceleration [42]–[44], and rates of convergence have been
studied for such extensions. Similarly in spirit to our work,
[45] introduces biased gradient oracles to model the opti-
mization of functions estimated with a batch size parameter,
and quantifies the convergence rate of a randomized stochastic
gradient algorithm in this regime.

Due to the utility of gradient information in inference
tasks such as variable selection, a prior line of work on
gradient estimation aims to simultaneously learn both the
model and the gradient of the loss function, using local
polynomial fitting [46], local polynomial regression [47], and
kernel methods [48], among others. More recent work has
utilized gradient estimation based on methods such as nearest
neighbors to design zeroth-order (gradient-free) optimizers
[49], [50]. Lastly, first-order methods which use gradient
estimation include the recently proposed LPI-GD [10], as well
as techniques which leverage smoothness of loss functions
for federated optimization [51]. We remark that work in this
vein often makes the assumption that d grows moderately
with respect to n (for example, d = O(log n)), due to the
curse of dimensionality as described in [46, Section 7.1].
This assumption holds for practical applications in domains
such as healthcare [52] and control systems [53], or problems
where dimensionality reduction methods such as principal
component analysis [54], Laplacian eigenmaps [55], modal
decompositions [56], or isometric embedding theorems such as
the Johnson-Lindenstrauss lemma [57] may be applied before
performing ERM.

C. Outline
Finally, we delineate the structure of our paper. In Section II,

we introduce applicable notation, formally define the ERM

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 3

TABLE I: Comparison of the oracle complexity of some first-order optimization algorithms, where the loss function satisfies
the assumptions outlined in Section II-C and γ ∈ (0, 1/2) is an arbitrary constant.

Algorithm Required order of d Oracle complexity for strongly convex loss Oracle complexity for non-convex loss

GD - O
(
n log

(p
ε

))
[2] O

Ä
n p

ε2

ä
[12]

SGD - O
(p
ε

)
[13] O

(Ä
p
ε2

ä2)
[14]

LPI-GD O(log log(n)) O
Ä
exp
Ä
2
√

log(n)
ä (p

ε

)d/(2ℓ)
log
(p
ε

)ä
[10] -

PPI-GD O(logγ(n)) O
Ä
exp

(
log2γ(n)

) (p
ε

)d/(2ℓ)
log
(p
ε

)ä
(Theorem 7) O

Å
exp

(
log2γ(n)

) Ä p
ε2

ä1+d/(2ℓ)
ã

(Theorem 9)

optimization problem under consideration, and specify the
assumptions we impose in our analysis of this problem. In
Section III-A, we formally present the PPI-GD algorithm
for solving the ERM optimization problem. Auxiliary results
concerning polynomial interpolation error are presented in
Section III-B in preparation for the ensuing discussion on
PPI-GD’s oracle complexity in Section III-C. We defer formal
proofs of the polynomial interpolation error bounds and oracle
complexity results to Sections IV and V, respectively. Lastly,
we provide some numerical simulations of PPI-GD in Sec-
tion VI and suggest directions for future inquiry in Section VII.

II. FORMAL MODEL AND SETUP

A. Notation

Let Z>0 denote the natural numbers starting from 1 and let
Z≥0 = Z>0 ∪ {0}. Let Ja, bK = [a, b] ∩ Z and [a] = J1, aK
denote integer intervals. Lowercase and uppercase bold letters
denote vectors and matrices, respectively. Uppercase calli-
graphic letters denote sets unless otherwise stated. Uppercase
non-italic letters denote operators. Given a set S, let 2S denote
its power set. Given a collection of sets Si indexed by i ∈ [d],
let×i∈[d]

Si = S1 × · · · × Sd denote their Cartesian product.
Let Cp(X) denote the class of all functions f : X → R
which are p times continuously differentiable (i.e., all pth
order partial derivatives exist and are continuous on X). In the
context of Landau notation, we use Õ(·) to hide subpolynomial
factors, i.e., factors which are asymptotically dominated by
every function nβ for β > 0. We use 1{·} to denote the
Iverson bracket, which equals 1 if the input proposition is
true and 0 otherwise. Let ∥·∥p denote the Lp-norm on vectors
or functions for p ∈ [1,∞].

The standard multi-index notation is used for conciseness in
the multivariate setting. Namely, given a d-tuple multi-index
s = (s1, . . . , sd) ∈ Zd

≥0, we let |s| = s1 + · · · + sd, xs =

xs11 · · ·x
sd
d for x ∈ Rd, and s! = s1! · · · sd!. In addition, given

a function f : Rd → R, we let

f (s) =
∂|s|f

∂xs11 · · · ∂x
sd
d

.

Given a domain X ⊂ R, a function h : X → R, and
n+ 1 points {zi}n+1

i=1 ⊂ X in the domain, let h[z1, . . . , zn+1]

denote the nth divided difference of h at {zi}n+1
i=1 , given by

the recurrence [58, p. 308]

∀i ≤ j, h[zi, . . . , zj]

=

{
h(zi) , if i = j ,
h[zi+1,...,zj]−h[zi,...,zj−1]

zj−zi
, otherwise .

(1)

B. Problem Statement

Let p ∈ Z>0 be the parameter space dimension and d ∈ Z>0

be the data space dimension. Let {x(i) : i ∈ [n]} ⊂ X be a
training set of n data samples, where X is a bounded data
space which we take to be X = [0, 1]d for simplicity. Let
f : X × Rp → R be a loss function. The loss for a data
sample x(i) and a parameter vector θ ∈ Rp is f(x(i);θ), and
the ERM objective function F : Rp → R is the empirical
average of the loss over the training set:

F (θ) ≜
1

n

n∑
i=1

f
Ä
x(i);θ

ä
.

We assume that the infimum of the objective function,

F ∗ ≜ inf
θ∈Rp

F (θ),

exists and is finite. In the strongly convex setting, we consider
algorithms A for finding an ε-approximation of the optimum
F ∗, i.e., A returns a parameter vector θ∗ ∈ Rp which satisfies

F (θ∗)− F ∗ ≤ ε , (2)

for a given ε > 0. In the non-convex setting where finding
the global minimum can be intractable, we instead require
algorithms A to use the notion of an ε-stationary point, i.e.,
they return a parameter vector θ∗ ∈ Rp satisfying

∥∇F (θ∗)∥2 ≤ ε. (3)

To this end, the algorithm is provided with a first-order
oracle O : X × Rp → R [1], which returns the gradient of f
at a given point x ∈ X in the data space and a given parameter
vector θ ∈ Rp:

O(x,θ) = ∇θf(x;θ) .

We remark that computing the full gradient of F requires n
oracle calls.

The first-order oracle complexity Γ(A) of an algorithm A
is the minimum number of oracle calls necessary for A to find
an ε-approximate solution as defined in (2) (or an ε-stationary
solution as in (3)). This notion of algorithmic complexity,
first suggested by [1], provides an accurate representation of
the algorithm’s performance when gradient computation is the
bottleneck, as is often the case in practice.

4 MANUSCRIPT, 2025

C. Assumptions

Throughout this work, we make the following assumptions
on the loss function which are standard in the optimization
literature:

1) (Smoothness in parameters) There exists Ll > 0 such
that for all x ∈ X , the gradient ∇θf(x;θ) is Ll-
Lipschitz continuous with respect to θ:

∀θ1,θ2 ∈ Rp,

∥∇θf(x;θ1)−∇θf(x;θ2)∥2 ≤ Ll ∥θ1 − θ2∥2 .

2) (Hölder smoothness in data) There exist ℓ ∈ Z>0 and
Lh > 0 such that for all i ∈ [p], gi(x) = ∂

∂θi
f(x;θ) is ℓ

times differentiable and belongs in the H(ℓ, Lh)-Hölder
class:

∀s ∈ Zd
≥0 such that |s| = ℓ− 1, ∀x1,x2 ∈ X ,∣∣∣g(s)i (x1)− g(s)i (x2)

∣∣∣ ≤ Lh ∥x1 − x2∥1 .

When we analyze PPI-GD in the strongly convex setting, we
additionally make the following assumption:

3) (Strong convexity in parameters) There exists µ > 0
such that for all x ∈ X , f(x;θ) is µ-strongly convex
with respect to θ:

∀θ1,θ2 ∈ Rp, f(x;θ1) ≥ f(x;θ2)

+∇θf(x;θ2)
T (θ1 − θ2) +

µ

2
∥θ1 − θ2∥22 .

Assumptions 1 and 3 are widely adopted in the analysis
of gradient descent methods [2], [13], [22], [25], and the
Hölder class used in Assumption 2 is standard in the literature
to describe a function’s higher-order smoothness [59]–[61].
Intuitively, Hölder classes roughly capture how closely a
function matches its Taylor polynomials of a certain degree.
Our definition of the multivariate Hölder class is a commonly
adopted generalization of the usual univariate definition in [59]
(see [60], [62], [63]). Note that H(ℓ, Lh)-Hölder smoothness
implies

∀i ∈ [p], ∀s ∈ Zd
≥0 with |s| = ℓ, sup

x∈X

∣∣∣g(s)i (x)
∣∣∣ ≤ Lh . (4)

Lastly, we remark that the assumptions delineated above
encompass a range of machine learning models. For example,
L2-regularized linear regression (also known as ridge regres-
sion) with regularization parameter λ satisfies Assumption
1 with Ll = 2d + λ − 2, Assumption 2 with ℓ = 2 and
Lh = 4, and Assumption 3 with µ = λ [10]. Similarly,
L2-regularized logistic regression satisfies Assumption 1 with
Ll = (d − 1)/2 + λ, Assumption 2 with ℓ = 2 and Lh = 1,
and Assumption 3 with µ = λ [10]. Note that the dependence
of Ll on d does not affect our analysis. Furthermore, recent
research concerning the low-rank phenomenon observed in
neural networks [64]–[66] and known relations between low-
rankness and Hölder smoothness [51], [62] suggest that neural
networks may satisfy Assumption 2 in practice as well.

Algorithm 1 PPI-GD

Input: Training data D = {x(i) : i ∈ [n]} ⊂ X = [0, 1]d

Input: Oracle access to ∇θf(x;θ) at any given x ∈ X and
θ ∈ Rp

Output: θ∗ satisfying |F (θ∗)− F ∗| ≤ ε

1: Initial parameters θ(0) ← some vector ∈ Rp;
2: Set number of iterations T ∈ Z>0 according to (19);
3: Choose the smallest m ∈ Z>0 that satisfies (15);
4: Construct uniform grid Gdm according to (5);
5: Divide X into patches P as in (6);
6: Precompute coefficients of ψs,y for all s ∈ [⌈m/ℓ⌉]d and

y ∈ G(Ps) according to (8);
7: for t ∈ [T] do
8: Make md oracle calls to get {∇θf(u;θ

(t−1)) : u ∈
Gdm};

9: for all x(i) ∈ D do
10: Find the patch Ps where x(i) belongs;
11: Compute the estimate ∇̂θf(x

(i);θ(t−1)) accord-
ing to (7) using the queried {∇θf(u;θ

(t−1)) : u ∈
Gdm} and precomputed ψs,y;

12: end for
13: θ(t) ← θ(t−1) − α

n

∑n
i=1 ∇̂θf(x

(i);θ(t−1));
14: end for
15: return θ(T);

III. MAIN RESULTS AND DISCUSSION

A. Algorithm

The standard method to find F ∗ is through gradient descent
(GD), which repeats the following iteration until convergence
starting from the initial iterate θ(0):

θ(i) = θ(i−1) − αt∇θF (θ
(i−1)) ,

The key idea of PPI-GD is to approximate each
∇θf(x

(i);θ(i−1)) by interpolating over grid points across the
data space. If the number of grid points is less than the number
of data points n, each iteration of PPI-GD will use fewer oracle
calls compared to GD.

First, let the uniform grid Gdm ⊂ [0, 1]d with m points along
each axis be defined as follows:

Gdm ≜
ß
1

m
u : u ∈ J0,m− 1Kd

™
, (5)

with Gm = G1m. At each iteration, md oracle calls are made
to query the gradient of f at each grid point in Gdm.

PPI-GD divides the data space [0, 1]d into hypercube
patches P which cover the space completely but may overlap.
Each patch will contain the same number of grid points
(ℓ + 1)d, but one grid point might belong to more than one
patch. The number of grid points in each patch is chosen so
that the polynomial interpolant of order ℓ is well defined.

Let I be a set of intervals as follows:

I ≜
ß
ℓ

m
[u− 1, u] : u ∈

[⌈m
ℓ

⌉
− 1
]™
∪
ßï

1− ℓ

m
, 1

ò™
=
{
I1, . . . , I⌈m/ℓ⌉

}

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 5

where each Ii are the intervals in I indexed in order of
increasing infimum. Then, the set of patches P can be defined
as the Cartesian power

P ≜ Id =

{
Ps =×

i∈[d]

Isi : s ∈
[⌈m

ℓ

⌉]d}
. (6)

Let G(Ii) = Gm ∩ Ii be the grid points belonging in each
interval Ii and G(Ps) = Gdm∩Ps the grid points in each patch
Ps. Note that |G(Ii)| = ℓ + 1 for all Ii ∈ I and |G(Ps)| =
(ℓ+ 1)d for all Ps ∈ P . In addition,

sup
x∈Ii

Ñ ∏
y∈G(Ii)

(x− y)

é
≤

ℓ∏
j=1

j

m
=

ℓ!

mℓ
.

For each patch Ps and i ∈ [p], a unique interpolating tensor
product polynomial of degree ℓ along each dimension exists:

∃ρs,i(x) =
∑

t∈J0,ℓKd
atx

t, ∀x ∈ G(Ps), ρs,i(x) =
∂

∂θi
f(x;θ).

This interpolant can be constructed with the tensor product
Lagrange basis:

ρs,i(x) =
∑

y∈G(Ps)

∂

∂θi
f(y;θ)ψs,y(x), (7)

where

ψs,y(x) ≜
d∏

j=1

Ñ ∏
z∈G(Isj)\{yj}

xj − z
yj − z

é
. (8)

It is straightforward to show that such a construction pro-
duces a valid interpolant, and a constraint counting argument
can prove its uniqueness. Note that each ψs,y(x) does not
depend on f or θ, so they can be precomputed once m, d,
and ℓ are known.

Thus, the interpolant can be evaluated by computing a linear
combination of {∇θf(u;θ) : u ∈ Gdm} with precomputed
weights. The computed values will approximate the true
gradient at each data point x, and their mean will approximate
∇θF . At the end of each iteration, this approximation can
be used instead of the true gradient to perform the gradient
descent update, where α is the (fixed) step size:

θ(t) = θ(t−1) − α

n

n∑
j=1

î
ρs,i
Ä
x(j)
ä
: i ∈ [p]

óT
.

This process is summarized in Algorithm 1.
We remark that due to the curse of dimensionality, a naı̈ve

implementation of PPI-GD requires O(pmd) space to store the
gradients of f at the grid points, which becomes intractable as
d increases. One approach to alleviate this is to preprocess the
data with dimensionality reduction [67] methods before run-
ning PPI-GD. Another practical concern is that the information
required to choose optimal values for hyperparameters such as
m and ℓ may not be known analytically. Nevertheless, just as
with any other hyperparameter, hyperparameter optimization
methods [68] can be used to empirically find suitable values.

Notwithstanding the remarks above, the primary objective
of our work is theoretical, and we focus on establishing the
oracle complexity of PPI-GD in the following sections. To
this end, we first derive error bounds on the aforementioned
polynomial interpolation process in Section III-B, because
our subsequent oracle complexity analysis depends on the
accuracy of the interpolated gradients. After establishing the
interpolation error bounds, we discuss the oracle complexity
of PPI-GD in Section III-C.

B. Interpolation Error Bounds
To begin our discussion of polynomial interpolation error,

we introduce some preliminary notions and conventions used
throughout this analysis. Let G = {ui}n+1

i=1 ⊂ [a, b] be a grid
of evenly spaced abscissae on [a, b], namely, a = u1 < · · · <
un+1 = b and ui+1 − ui = ∆u = (b − a)/n for all i ∈ [n].
(Note that n has no relation to the size of the training set
in the context of our interpolation error analysis.) For each
i ∈ [n + 1], let ϕi : [a, b] → R be the univariate polynomial
interpolation basis function (cf. [69, Corollary 2]) satisfying

∀i′ ∈ [n+ 1] , ϕi(ui′) =

®
1 , if i = i′ ,

0 , otherwise ,

which in the Lagrange basis is the degree-n polynomial

ϕi(x) =
∏
i′ ̸=i

x− ui′
ui − ui′

.

Given a function g : [a, b]d → R, let Pg : [a, b]d → R be the
d-variate total interpolant of g at the lattice of abscissae Gd,
given by

Pg(x1, . . . , xd) =

n+1∑
i1=1

· · ·
n+1∑
id=1

g(ui1 , . . . , uid)

d∏
s=1

ϕis(xs) ,

(9)
where we elide the dependence on n and G in the notation P
for simplicity. For any j ∈ [d], let Pjg : [a, b]d → R be the
univariate partial interpolant of g with respect to xj , given
by

Pjg(x1, . . . , xd)

=

n+1∑
i=1

g(x1, . . . , xj−1, ui, xj+1, . . . , xd)ϕi(xj) .

This definition naturally generalizes to multivariate partial in-
terpolants by taking multiple subscripts and computing linear
combinations over the tensor product of basis interpolants in
the subscripted dimensions:1

Pj1,...,jrg(x1, . . . , xd)

=

n+1∑
i1=1

· · ·
n+1∑
ir=1

g(x1, . . . , uis , . . . , xd)

r∏
s=1

ϕis(xjs) . (10)

When all d dimensions are included in the subscript, we
recover the total interpolant P1,...,dg = Pg. We mention two

1The r-times tensor product of the vector space of degree-n univariate
polynomials is a strict subset of the vector space of degree-rn r-variate
polynomials.

6 MANUSCRIPT, 2025

remarks regarding the definitions above. Firstly, forming a
partial interpolant Pj1,...,jrg according to (10) and evaluating
its value at some point (v1, . . . , vd) ∈ [a, b]d is equiva-
lent to first performing partial application on g to obtain
g(xj1 , . . . , xjr) = g(v1, . . . , xjs , . . . , vd), forming the total
interpolant Pg according to (9), and then evaluating the total
interpolant at (vj1 , . . . , vjr). Hence, interpolation error bounds
for univariate functions in the literature apply ipso facto
to univariate partial interpolants of multivariate functions.
Secondly, evaluating a multivariate interpolant of the form
(9) at some point (v1, . . . , vd) ∈ [a, b]d may equivalently be
done by successively forming and evaluating univariate partial
interpolants (cf. [70, Section 3.6.2]):

Pg(v1, . . . , vd)

(a)
=

n+1∑
i1=1

· · ·
n+1∑
id=1

g(ui1 , . . . , uid)

d∏
s=1

ϕis(vs)

(b)
=

n+1∑
id=1

(
· · ·

n+1∑
i2=1

(
n+1∑
i1=1

g(ui1 , . . . , uid)ϕi1(v1)

)
ϕi2(v2) · · ·

)
ϕid(vd)

(†1)
=

n+1∑
id=1

(
· · ·

n+1∑
i2=1

P1g(v1, ui2 , . . . , uid)ϕi2(v2) · · ·

)
ϕid(vd)

(†2)
=

n+1∑
id=1

(
· · ·P2P1g(v1, v2, ui3 , . . . , uid) · · ·

)
ϕid(vd)

...
(†d)
= Pd · · ·P1g(v1, . . . , vd) , (11)

where (a) holds by (9) and (b) holds by reversing the order
of the summations and applying the distributive property.
Algorithmically, we initialize a d-dimensional array of values
of g evaluated at the abscissae Gd. In step (†1), we use this
array to construct a univariate interpolant along the x1 axis for
each (ui2 , . . . , uid) ∈ Gd−1, and evaluate all the interpolants
at v1 to obtain a (d − 1)-dimensional array. In step (†2), we
use this new array to construct a univariate interpolant along
the x2 axis for each (ui3 , . . . , uid) ∈ Gd−2, and evaluate all
the interpolants at v2 to obtain a (d − 2)-dimensional array.
Repeating this process until step (†d) yields the desired result.

For any sequence j1, . . . , jr ∈ [d] of dimensions, let
Ej1,...,jrg : [a, b]d → R be the iterated interpolation error
given by

Ej1,...,jrg =

®
Pj1g − g , if r = 1 ,

PjrEj1,...,jr−1
g − Ej1,...,jr−1

g , otherwise .
(12)

Note that multiple subscripts of E in (12) specify successive
iterations of univariate partial interpolation, each on the E term
from the preceding iteration, while multiple subscripts of P in
(10) specify one iteration of multivariate partial interpolation

on g.2

With these preliminaries established, we present the main
result of this subsection, an upper bound on the uniform norm
interpolation error for d-variate functions.

Theorem 1 (Polynomial interpolation error bound). Let g :
[a, b]d → R be a function in the Hölder class H(ℓ, Lh).
Assume that ℓ ≥ d and |G| = n + 1 ≥ ℓ. Then, the error
in the total interpolant of g satisfies

∥Pg − g∥∞ ≤ Lh (∆u)
ℓ
Å
2n

n
+ 1

ãd
.

Theorem 1 is proved in Section IV. We split our argument
into three steps, delineated by the following propositions
which are also proved in Section IV. Firstly, we decompose
the total interpolation error into a sum of iterated interpolation
error terms, with one iterated term for each non-empty subset
of the d variables.

Proposition 2. For any continuous function g : [a, b]d → R,
the error in the total interpolant of g satisfies

∥Pg − g∥∞ ≤
∑

K∈2[d]:
K̸=∅

∥EKg∥∞ .

To establish the intuition behind Proposition 2, we consider
an example where g is a function of three variables x1, x2,
and x3. Figure 1 illustrates the decomposition in this case,
and the steps labeled with letters below correspond to edges
in the figure. Using the triangle inequality, we upper-bound
∥Pg − g∥∞ = ∥P1,2,3g − g∥∞ as a sum of the magnitudes
of three partial interpolants of error terms, where each partial
interpolant is subscripted with a different suffix of the variables
[x1, x2, x3]:

∥P1,2,3g − g∥∞
≤ ∥P1,2,3g − P2,3g∥∞ + ∥P2,3g − P3g∥∞ + ∥P3g − g∥∞
(a)
= ∥P2,3E1g∥∞ + ∥P3E2g∥∞ + ∥E3g∥∞ . (13)

The partial interpolants P2,3g and P3g in the triangle inequal-
ity are analogous to blended interpolants from the bicubic
spline literature [71]. Next, we split each term in (13) into the
sum of an iterated interpolation error of g and another term
to be recursively decomposed:

∥P2,3E1g∥∞
(b)

≤ ∥E1g∥∞ + ∥P2,3E1g − E1g∥∞ , (14)

∥P3E2g∥∞
(c)

≤ ∥E2g∥∞ + ∥P3E2g − E2g∥∞ ,

∥E3g∥∞ = ∥E3g∥∞ .

Next, we recursively decompose ∥P2,3E1g − E1g∥∞. Simi-
larly to (13), we obtain

∥P2,3E1g − E1g∥∞
(d)

≤ ∥P3E1,2g∥∞ + ∥E1,3g∥∞ ,

and similarly to (14), we obtain

∥P3E1,2g∥∞
(e)

≤ ∥E1,2g∥∞ + ∥P3E1,2g − E1,2g∥∞ ,

2Equivalently, multiple subscripts of P specify successive iterations of
univariate partial interpolation, each on the P term from the preceding
iteration, as per the discussion in (11).

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 7

∥E1,3g∥∞ = ∥E1,3g∥∞ .

Lastly, by definition of E, we have

∥P3E2g − E2g∥∞
(f)
= ∥E2,3g∥∞ ,

∥P3E1,2g − E1,2g∥∞
(g)
= ∥E1,2,3g∥∞ .

In a nutshell, by repeatedly applying the logic of steps (13) and
(14), the recursive decomposition above generates an iterated
error term ∥EKg∥∞ for every non-empty subset of variables
K. Hence, this process may be modeled with a recursion tree,
and using strong induction over the tree proves Proposition 2.
The power of d scaling within the power set 2[d] is expected
due to the curse of dimensionality.

Secondly, we establish an error bound for univariate poly-
nomial interpolation, based on judicious usage of a Newton
basis representation of the interpolant followed by application
of the mean value theorem for divided differences:

Proposition 3. Consider any function h : [a, b] → R with
h ∈ Cq([a, b]). Assume |G| = n + 1 ≥ q. Then, the error in
the (degree-n) univariate interpolant of h satisfies

∥Ph− h∥∞ ≤
2n+1−q

n
(∆u)

q
∥∥∥h(q)∥∥∥

∞
.

Thirdly, we upper-bound the magnitude of the iterated error
terms from Proposition 2 by repeatedly applying Proposition 3
to bound the effect of each iteration:

Proposition 4. Consider any function g : [a, b]d → R with
g ∈ Cℓ([a, b]d). Assume ℓ ≥ d and |G| = n + 1 ≥ ℓ. For
notational convenience, let αq = 2n+1−q/n for any q ∈ Z>0.
Then, for any distinct j1, . . . , jr ∈ [d],

∥Ej1,...,jrg∥∞ ≤

αℓ−r+1 α
r−1
1 (∆u)

ℓ

∥∥∥∥∥ ∂ℓg

∂xℓ−r+1
j1

∂xj2 · · · ∂xjr

∥∥∥∥∥
∞

.

Each application of Proposition 3 gives rise to one of the
α terms above. The proof of Proposition 4 also utilizes the
following lemma, which states the equality of interchanging
partial differentiation and partial interpolation and is proved
in Section IV.

Lemma 5. For any distinct j1, . . . , jr, k ∈ [d] and any
function g : [a, b]d → R differentiable with respect to xk,
we have

∂Pj1,...,jrg

∂xk
= Pj1,...,jr

Å
∂g

∂xk

ã
.

Finally, combining the intermediate results above and using
the Hölder smoothness of g proves Theorem 1. As previously
mentioned, we defer the technical details to Section IV.

C. Oracle Complexity

Now that we have analyzed the error bounds on multivariate
polynomial interpolation in a general setting, we apply those
results to our PPI-GD algorithm. First, we get the following
result on the error of our approximate gradient.

Lemma 6. For any constant δ > 0, if the number of grid
points md is large enough that

m ≥

(
Lh

δ

Ç
2ℓ

ℓ
+ 1

åd
)1/ℓ

(15)

holds, then for all i ∈ [p] and θ ∈ Rp,

sup
x∈X

∣∣∣∣∣ ∂̂∂θi f(x;θ)− ∂

∂θi
f(x;θ)

∣∣∣∣∣ ≤ δ.
Lemma 6 is proved in Section V. Then, we use the afore-

mentioned result on interpolation error to derive the oracle
complexity of our proposed PPI-GD method in the strongly
convex setting.

Theorem 7 (Oracle complexity of PPI-GD in strongly convex
setting). Suppose Assumptions 1 through 3 hold. Given some
(small) accuracy ε > 0, let m be the smallest positive integer
that satisfies inequality (15) in Lemma 6 with δ given by
(20). Let the step size be α = 1/Ll. If ℓ ≥ d ≥ 2 and
d ≤ log−1/2(2) logγ(n)−1/2 for some constant 0 < γ < 1/2,
the first-order oracle complexity of PPI-GD (to obtain an ε-
approximate solution) is bounded by

Γ(PPI-GD) ≤ C1 exp
(
log2γ(n)

) (p
ε

)d/2ℓ
log
(p
ε

)
where the constant C1 only depends on µ, Ll, ℓ, and Lh.

Theorem 7 is proved in Section V. To obtain the final scaling
with p in the proof, we assume that the parameters θ belong in
a hypercube with constant edge length (that does not depend
on d). This assumption is used to establish a relation between
the parameter space dimension p and the L2-distance between
the initial choice of parameters θ(0) and minimizer θ∗.

Next, we present the following proposition which illustrates
a regime where PPI-GD outperforms GD, SGD, SVRG, and
MBGD in terms of oracle complexity for strongly convex loss.

Proposition 8. Under the same assumptions as Theorem 7, if
p/ε = O(nβ) for some β > 0, GD, SGD, SVRG, MBGD, and
PPI-GD exhibit the following oracle complexity (expressed in
Landau notation):

Algorithm Oracle complexity

GD Õ(n)

SGD Õ(nβ)

SVRG Õ(n)

MBGD Õ(nβ)

PPI-GD Õ(n(dβ)/(2ℓ))

Proposition 8 is proved in Section V. The regime p/ε =
O(nβ) studied here encompasses a wide range of common
settings, including the case where p and 1/ε are some positive
power of n. For example, in machine learning contexts where
overparameterization (p > n) can often be beneficial [72], it
is natural to consider a regime of p = O(nb) (where b ≥ 1)
and ε = Θ(1/

√
n), with the error bound matching the scaling

of the standard error.
Note that Proposition 8 implies the oracle complexity of

PPI-GD to be Õ(nβ/2) since ℓ ≥ d by assumption. Thus, in

8 MANUSCRIPT, 2025

Fig. 1: Recursion tree for the three-variable case of Proposition 2, showing how we decompose total interpolation error
∥Pg − g∥∞ = ∥P1,2,3g − g∥∞ into a sum of iterated error terms ∥EKg∥∞, with one such term for each non-empty subset of
variables. Letters along edges correspond to labeled steps from the proof sketch in Section III-B. At blue nodes (e.g., (13)),
the decomposition process produces partial interpolants of iterated errors. At red nodes (e.g., (14)), the process produces an
iterated error term (black child) and another term to be recursively decomposed (blue child). The partial interpolation operator
P in blue nodes is subscripted with a suffix of the variables [x1, x2, x3], and blue nodes with PJt,3K have 3 − t red children
and 1 black child.

∥P1,2,3g − g∥∞

∥P2,3E1g∥∞ ∥P3E2g∥∞ ∥E3g∥∞

∥E1g∥∞ ∥P2,3E1g − E1g∥∞ ∥E2g∥∞ ∥P3E2g − E2g∥∞

∥P3E1,2g∥∞ ∥E1,3g∥∞ ∥E2,3g∥∞

∥E1,2g∥∞ ∥P3E1,2g − E1,2g∥∞

∥E1,2,3g∥∞

(a)
(a)

(a)

(b) (b) (c)
(c)

(d) (d) (f)

(e) (e)

(g)

∥EKg∥∞ terms with K ∈ 2J1,3K and 1 ∈ K

∥EKg∥∞ terms with K ∈ 2J2,3K and 2 ∈ K

this regime, PPI-GD always outperforms the other methods
in terms of asymptotic oracle complexity when β < 2. In
addition, increasing ℓ can reduce the exponent (dβ)/(2ℓ)
to any arbitrary positive value, which implies that sufficient
smoothness in data allows PPI-GD to outperform the other
methods for any β > 0.

Although the strongly convex setting is important and well
studied in the optimization literature, strong convexity can be
a stringent requirement. Thus, we now shift our attention to
the non-convex case. Note that the step size must be reduced
from 1/Ll to 1/(4Ll) in this setting.

Theorem 9 (Oracle complexity of PPI-GD in non-convex
setting). Given some (small) ε > 0, let m be the smallest
positive integer that satisfies inequality (15) in Lemma 6
with δ = ε/(2

√
p). Let the step size be α = 1/(4Ll). If

ℓ ≥ d ≥ 2 and d ≤ log−1/2(2) logγ(n) − 1/2 for some
constant 0 < γ < 1/2, the first-order oracle complexity of
PPI-GD (to reach an ε-stationary point) is bounded by

Γ(PPI-GD) ≤ C2 exp
(
log2γ(n)

) (p
ε2

)1+d/(2ℓ)

where the constant C2 only depends on Ll, ℓ, and Lh.

An analog to Proposition 8 immediately follows.

Proposition 10. Under the same assumptions as Theorem 9,
if p/ε2 = O(nβ) for some β > 0, GD, SGD, and PPI-GD
exhibit the following oracle complexity (expressed in Landau
notation):

Algorithm Oracle complexity

GD Õ(n1+β)

SGD Õ(n2β)

PPI-GD Õ(n(1+d/(2ℓ))β)

Theorem 9 and Proposition 10 are proved in Section V.
All our remarks regarding Proposition 8 also apply to Propo-
sition 10: under our assumptions, PPI-GD beats the other
methods when β < 2, and sufficient smoothness (i.e., a large
enough ℓ) can arbitrarily relax this bound.

We conclude this section with some remarks on the im-
plications of our analysis by reexamining the oracle com-
plexities summarized in Table I. Looking at each fac-
tor in isolation, we see that PPI-GD’s oracle complex-
ity O(exp(log2γ(n))(p/ε)d/(2ℓ) log(p/ε)) for strongly convex
loss has better scaling in n than GD’s O(n log(p/ε)) (ne-
glecting other factors like p and ε), and better scaling in
p/ε than SGD’s O(p/ε). Likewise, in the non-convex setting,
PPI-GD’s O(exp(log2γ(n))(p/ε2)1+d/(2ℓ)) scales better in n
than GD’s O(n(p/ε2)), and scales better in p/ε2 than SGD’s
O((p/ε2)2). This observation motivates Propositions 8 and 10,
which show that PPI-GD outperforms the other methods in
the important regimes of p/ε = O(nβ) (for strongly convex
loss) or p/ε2 = O(nβ) (for non-convex loss) for any β > 0.
While this holds true for LPI-GD as well, our algorithm does
not require as strong a bound on d, relaxing the curse of
dimensionality effect in LPI-GD significantly.

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 9

IV. PROOFS OF INTERPOLATION ERROR BOUNDS

In this section, we prove Theorem 1, which upper-bounds
the uniform norm total interpolation error for d-variate func-
tions. As discussed in Section III-B, we begin by proving
Proposition 2, which decomposes the total error into a sum
of iterated interpolation error terms.

Proof of Proposition 2. We will show by induction that for all
t ∈ [d],

∥Pt,...,dg − g∥∞ ≤
∑

K∈2Jt,dK:
K̸=∅

∥EKg∥∞ . (16)

Base case: t = d. By inspection, we have

∥Pdg − g∥∞
(a)
= ∥Edg∥∞ =

∑
K∈2{d}:
K̸=∅

∥EKg∥∞ ,

where (a) holds by the definition of E.
Inductive step: t < d. We have

∥Pt,...,dg − g∥∞
(a)
= max

(x1,...,xd)∈[a,b]d
|Pt,...,dg(x1, . . . , xd)− g(x1, . . . , xd)|

(b)
= max

(x1,...,xd)∈[a,b]d

∣∣∣∣∣
n+1∑
it=1

· · ·
n+1∑
id=1

g(x1, . . . , xt−1, uit , . . . , uid)

d∏
s=t

ϕis(xs)

− g(x1, . . . , xd)
∣∣∣∣∣

(c)
= max

(x1,...,xd)∈[a,b]d

∣∣∣∣∣
d∑

r=t

(
n+1∑
ir=1

· · ·
n+1∑
id=1

g(x1, . . . , xr−1, uir , . . . , uid)

d∏
s=r

ϕis(xs)

−
n+1∑

ir+1=1

· · ·
n+1∑
id=1

g(x1, . . . , xr, uir+1
, . . . , uid)

d∏
s=r+1

ϕis(xs)

)∣∣∣∣∣ ,
where (a) holds by definition of uniform norm and max may
be used due to the continuity of g and the compactness of
[a, b]d, (b) holds by definition of P, we assume in (c) and all
subsequent steps that the iterated sum

∑
ir+1
· · ·
∑

id
reduces

to a single copy of the summand when r = d, and (c)
holds because the sum over r ∈ Jt, dK telescopes. Proceeding
onwards, we have

∥Pt,...,dg − g∥∞
(d)

≤ max
(x1,...,xd)∈[a,b]d

d∑
r=t

∣∣∣∣∣
n+1∑
ir=1

· · ·
n+1∑
id=1

g(x1, . . . , xr−1, uir , . . . , uid)

d∏
s=r

ϕis(xs)

−
n+1∑

ir+1=1

· · ·
n+1∑
id=1

g(x1, . . . , xr, uir+1
, . . . , uid)

d∏
s=r+1

ϕis(xs)

∣∣∣∣∣

= max
(x1,...,xd)∈[a,b]d

d∑
r=t

∣∣∣∣∣
n+1∑

ir+1=1

· · ·
n+1∑
id=1(

n+1∑
ir=1

g(x1, . . . , xr−1, uir , . . . , uid)ϕir (xr)

− g(x1, . . . , xr, uir+1 , . . . , uid)

)
d∏

s=r+1

ϕis(xs)

∣∣∣∣∣
(e)
= max

(x1,...,xd)∈[a,b]d

d∑
r=t

∣∣∣∣∣
n+1∑

ir+1=1

· · ·
n+1∑
id=1(

Prg(x1, . . . , xr, uir+1
, . . . , uid)

− g(x1, . . . , xr, uir+1
, . . . , uid)

) d∏
s=r+1

ϕis(xs)

∣∣∣∣∣
(f)
= max

(x1,...,xd)∈[a,b]d

d∑
r=t

∣∣∣∣∣
n+1∑

ir+1=1

· · ·
n+1∑
id=1

Erg(x1, . . . , xr, uir+1
, . . . , uid)

d∏
s=r+1

ϕis(xs)

∣∣∣∣∣
(g)
= max

(x1,...,xd)∈[a,b]d

d∑
r=t

|Pr+1,...,dErg(x1, . . . , xd)| ,

where (d) holds by the triangle inequality, (e) holds by
definition of P, (f) holds by definition of E, we assume in (g)
and all subsequent steps that Pr+1,...,d is the identity operation
when r = d, and (g) holds by definition of P. We note that
steps (c) through (g) correspond to the decomposition of blue
nodes in Figure 1 and, for example, (13) in the proof sketch
in Section III-B. Proceeding onwards, we have

∥Pt,...,dg − g∥∞
(h)

≤
d∑

r=t

max
(x1,...,xd)∈[a,b]d

|Pr+1,...,dErg(x1, . . . , xd)|

(i)
=

d∑
r=t

∥Pr+1,...,dErg∥∞

(j)

≤
d∑

r=t

∥Erg∥∞ +

d−1∑
r=t

∥Pr+1,...,dErg − Erg∥∞

(k)

≤
d∑

r=t

∥Erg∥∞ +

d−1∑
r=t

∑
K∈2Jr+1,dK:

K̸=∅

∥EKErg∥∞

(l)
=

d∑
r=t

∥Erg∥∞ +

d−1∑
r=t

∑
K∈2Jr,dK:
r∈K, |K|≥2

∥EKg∥∞

(m)
=

d∑
r=t

∑
K∈2Jr,dK:

r∈K

∥EKg∥∞

(n)
=

∑
K∈2Jt,dK:

K̸=∅

∥EKg∥∞ ,

where (h) holds by independently maximizing each term of

10 MANUSCRIPT, 2025

the sum
∑d

r=t, (i) holds by definition of uniform norm, (j)
holds by the triangle inequality, (k) holds by the induction
hypothesis, (l) holds by definition of E, (m) combines the
singleton and non-singleton sequences with lowest term r, and
(n) combines the sequences in 2Jt,dK grouped by their lowest
term r. We note that step (j) corresponds to the decomposition
of red nodes in Figure 1 and, for example, (14) in the proof
sketch in Section III-B. Furthermore, each copy of the inner
sum in step (m) is illustrated as a subtree in Figure 1.

Lastly, we obtain Proposition 2 as a specific case of the
inductive argument above. We have

∥Pg − g∥∞ = ∥P1,...,dg − g∥∞
(a)

≤
∑

K∈2[d]:
K̸=∅

∥EKg∥∞

as desired, where (a) holds by (16).

Next, we prove Proposition 3, which bounds univariate
interpolation errors.

Proof of Proposition 3. Given any x ∈ [a, b] distinct from the
abscissae G, let Qxh : [a, b] → R be the degree-(n + 1)
polynomial which interpolates h at the points G ∪ {x}. We
have

∥Ph− h∥∞
(a)
= max

x∈[a,b]−G
|Ph(x)− h(x)|

(b)
= max

x∈[a,b]−G
|Qxh(x)− Ph(x)|

(c)
= max

x∈[a,b]−G

∣∣∣∣∣h[u1, . . . , un+1, x]

n+1∏
i=1

(x− ui)
∣∣∣∣∣

(d)

≤ n! (∆u)n+1
max

x∈[a,b]−G
|h[u1, . . . , un+1, x]| ,

(17)

where it suffices to take the maximum in (a) over x /∈ G
because Ph interpolates h at all points in G, (b) holds because
Qxh(x) = h(x) by definition and Qxh is well-defined since
x /∈ G, (c) holds because the Newton basis representation of
Qxh is (cf. [58, p. 308])

Qxh(τ) = Ph(τ) + h[u1, . . . , un+1, x]

n+1∏
i=1

(τ − ui) ,

and (d) holds by the even spacing of the grid G.
Next, we will show by induction that for any t ≥ q and any

distinct (not necessarily sorted) points {zi}t+1
i=1 ⊂ [a, b],

|h[z1, . . . , zt+1]| ≤
Å

2

b− a

ãt−q
∥∥h(q)∥∥∞

q!
. (18)

Base case: t = q. By inspection, we have

|h[z1, . . . , zt+1]| = |h[z1, . . . , zq+1]|
(a)

≤
∥∥h(q)∥∥∞

q!

=

Å
2

b− a

ãt−q
∥∥h(q)∥∥∞

q!
,

where (a) holds by the mean value theorem for divided
differences [58, p. 312].

Inductive step: t > q. We have

|h[z1, . . . , zt+1]|
(a)
=

∣∣∣∣h[z2, . . . , zt+1]− h[z1, . . . , zt]
zt+1 − z1

∣∣∣∣
(b)

≤ 1

b− a
|h[z2, . . . , zt+1]− h[z1, . . . , zt]|

(c)

≤ 1

b− a

(
|h[z2, . . . , zt+1]|+ |h[z1, . . . , zt]|

)
(d)

≤ 2

b− a

Å
2

b− a

ãt−1−q
∥∥h(q)∥∥∞

q!

=

Å
2

b− a

ãt−q
∥∥h(q)∥∥∞

q!

as desired, where (a) holds by the definition of divided
differences (1), (b) holds because z1 and zt+1 are points in
[a, b], (c) holds by the triangle inequality, and (d) holds by the
induction hypothesis.

Proceeding from (17), we have

∥Ph− h∥∞
(a)

≤ n! (∆u)n+1
Å

2

b− a

ãn+1−q
∥∥h(q)∥∥∞

q!

(b)
= n! (∆u)

n+1
Å

2

n∆u

ãn+1−q
∥∥h(q)∥∥∞

q!

≤ 2n+1−q

n
(∆u)

q
∥∥∥h(q)∥∥∥

∞

as desired, where (a) holds by (18) because n+1 ≥ q and (b)
holds by the even spacing of the grid G.

Next, we prove Proposition 4, which bounds the uniform
norm of an iterated interpolation error in terms of the partial
derivatives of the function being interpolated.

Proof of Proposition 4. We have

∥Ej1,...,jrg∥∞
(a)
=
∥∥PjrEj1,...,jr−1g − Ej1,...,jr−1g

∥∥
∞

(b)

≤ α1 (∆u)

∥∥∥∥∂Ej1,...,jr−1
g

∂xjr

∥∥∥∥
∞

(c)
= α1 (∆u)

∥∥∥∥ ∂

∂xjr

(
Pjr−1Ej1,...,jr−2g − Ej1,...,jr−2g

)∥∥∥∥
∞

(d)
= α1 (∆u)

∥∥∥∥∂Pjr−1Ej1,...,jr−2g

∂xjr
−
∂Ej1,...,jr−2g

∂xjr

∥∥∥∥
∞

(e)
= α1 (∆u)

∥∥∥∥Pjr−1

Å
∂Ej1,...,jr−2g

∂xjr

ã
−
∂Ej1,...,jr−2g

∂xjr

∥∥∥∥
∞

(f)

≤ α2
1 (∆u)

2

∥∥∥∥∂2Ej1,...,jr−2
g

∂xjr−1
∂xjr

∥∥∥∥
∞
,

where (a) holds by definition of E, (b) holds by Proposition 3,
(c) holds by definition of E, (d) holds by linearity of differen-
tiation, (e) holds by Lemma 5, and (f) holds by Proposition 3.
Repeating steps (c) through (f), we have

∥Ej1,...,jrg∥∞

≤ αr−1
1 (∆u)

r−1

∥∥∥∥ ∂r−1Ej1g

∂xj2 · · · ∂xjr

∥∥∥∥
∞

(g)
= αr−1

1 (∆u)
r−1

∥∥∥∥ ∂r−1

∂xj2 · · · ∂xjr
(Pj1g − g)

∥∥∥∥
∞

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 11

(h)
= αr−1

1 (∆u)
r−1

∥∥∥∥ ∂r−1Pj1g

∂xj2 · · · ∂xjr
− ∂r−1g

∂xj2 · · · ∂xjr

∥∥∥∥
∞

(i)
= αr−1

1 (∆u)
r−1

∥∥∥∥Pj1

Å
∂r−1g

∂xj2 · · · ∂xjr

ã
− ∂r−1g

∂xj2 · · · ∂xjr

∥∥∥∥
∞

(j)

≤ αℓ−r+1 α
r−1
1 (∆u)

ℓ

∥∥∥∥∥ ∂ℓg

∂xℓ−r+1
j1

∂xj2 · · · ∂xjr

∥∥∥∥∥
∞

as desired, where (g) holds by definition of E, (h) holds by
linearity of differentiation, (i) holds by repeated application of
Lemma 5, and (j) holds by Proposition 3 because n+1 ≥ ℓ ≥
ℓ− r + 1.

Next, we prove Lemma 5, which states that interchanging
the order of partial differentiation and partial interpolation with
respect to distinct variables gives the same result.

Proof of Lemma 5. We have

∂Pj1,...,jrg

∂xk
(x1, . . . , xd)

(a)
=

∂

∂xk

n+1∑
i1=1

· · ·
n+1∑
ir=1

g(x1, . . . , uis , . . . , xd)

r∏
s=1

ϕis(xjs)

(b)
=

n+1∑
i1=1

· · ·
n+1∑
ir=1

∂g

∂xk
(x1, . . . , uis , . . . , xd)

r∏
s=1

ϕis(xjs)

(c)
= Pj1,...,jr

Å
∂g

∂xk

ã
(x1, . . . , xd) ,

where (a) holds by definition of P, (b) holds because k is
distinct from j1, . . . , jr, and (c) holds by definition of P.

Finally, we prove Theorem 1 using the intermediate results
established above.

Proof of Theorem 1. We have

∥Pg − g∥∞
(a)

≤
∑

K∈2[d]:
K̸=∅

∥EKg∥∞

(b)

≤
∑

K∈2[d]:
K̸=∅

Ç
2n−ℓ+|K|

n

åÅ
2n

n

ã|K|−1

(∆u)
ℓ

∥∥∥∥∥ ∂ℓg

∂x
ℓ−|K|+1
j1

∂xj2 · · · ∂xj|K|

∥∥∥∥∥
∞

(c)

≤ Lh (∆u)
ℓ
∑

K∈2[d]:
K̸=∅

Ç
2n−ℓ+|K|

n

åÅ
2n

n

ã|K|−1

(d)

≤ Lh (∆u)
ℓ
∑

K∈2[d]:
K̸=∅

Å
2n

n

ã|K|

= Lh (∆u)
ℓ

d∑
r=1

Ç
d

r

åÅ
2n

n

ãr
(e)

≤ Lh (∆u)
ℓ
Å
2n

n
+ 1

ãd
as desired, where (a) holds by Proposition 2, (b) holds by
Proposition 4 because ℓ ≥ d and n+ 1 ≥ ℓ, (c) holds by (4),

(d) holds because |K| ≤ d ≤ ℓ, and (e) holds by the binomial
theorem.

V. PROOFS OF ORACLE COMPLEXITY

First, we prove Lemma 6.

Proof of Lemma 6. From Theorem 1, we have

∥Pg − g∥∞ ≤ Lh
1

mℓ

Ç
2ℓ

ℓ
+ 1

åd

.

Bounding the right hand side by δ implies that if

m ≥

(
Lh

δ

Ç
2ℓ

ℓ
+ 1

åd
)1/ℓ

,

then ∥Pg − g∥∞ ≤ δ.

Next, we prove Theorem 7.

Proof of Theorem 7. Let the condition number σ=Ll/µ>1.
From [10] (Proposition 2), the required number of iterations T
in order for an inexact gradient descent algorithm to achieve
an ε-approximate solution is

T =

⌈Å
log

Å
σ

σ − 1

ãã−1

log

(
F (θ(0))− F ∗ + p

2µ

ε

)⌉
(19)

when the gradient estimation error δ satisfies

δ =

Å
1− 1

σ

ãT/2

. (20)

Then, note that

md ≤

Ñ(
Lh

δ

Ç
2ℓ

ℓ
+ 1

åd)1/ℓ
+ 1

éd

(a)

≤

Ñ
L
1/ℓ
h 2d

Å
σ

σ − 1

ã1/(2ℓ)(F (θ(0))− F ∗ + p
2µ

ε

)1/ℓ
+ 1

éd

≤ Ld/ℓ
h 2d(d+1)

Å
1 +

σ

2(Ll − µ)

ãd/(2ℓ)Ç
p+ 2µ(F (θ(0))− F ∗)

ε

åd/(2ℓ)

≤ Ld/ℓ
h 2d(d+1)

Å
1 +

σ

2(Ll − µ)

ãÇ
p+ 2µ(F (θ(0))− F ∗)

ε

åd/(2ℓ)

,

where (a) holds since (2ℓ/ℓ+ 1)1/ℓ ≤ 2 when ℓ ≥ 2. Thus

Γ(PPI-GD) ≤ Tmd

≤ Ld/ℓ
h 2d(d+1)

Ñ
σ + 2(Ll − µ)

(Ll − µ) log
Ä

σ
σ−1

äéÅ
p+∆

ε

ãd/(2ℓ)
log

Å
p+∆

2µε

ã
,

where ∆ = 2µ(F (θ(0))− F ∗).

12 MANUSCRIPT, 2025

Suppose ℓ ≥ d and d ≤ log−1/2(2) logγ(n)− 1/2 for some
0 < γ < 1/2. Then, note that

2d(d+1) = 2(d+(1/2))2−1/4

≤ 2−1/4 exp
(
log(2)

Ä
log−1/2(2) logγ(n)

ä2)
= 2−1/4 exp

(
log2γ(n)

)
for sufficiently large n. If we assume that the parameters θ are
bounded in some hypercube of constant edge length (which
is usually the case in practice), ∥θ(0) − θ∗∥22 = O(p), which
implies ∆ = O(p) (due to Lipschitz continuity). Thus, we get

Γ(PPI-GD) ≤ Ld/ℓ
h 2d(d+1)

Ñ
σ + 2(Ll − µ)

(Ll − µ) log
Ä

σ
σ−1

äéÅ
p+∆

ε

ãd/(2ℓ)
log

Å
p+∆

2µε

ã
≤ C exp

(
log2γ(n)

) (p
ε

)d/(2ℓ)
log
(p
ε

)
,

where C depends on µ, Ll, ℓ, and Lh but not d, n, p, or ε.

Next, we prove Proposition 8.

Proof of Proposition 8.

Γ(PPI-GD)
(a)

≤ C exp
(
log2γ(n)

) (p
ε

)d/(2ℓ)
log
(p
ε

)
(b)
= O(subpoly(n)(nβ)d/(2ℓ))

= Õ(n(dβ)/(2ℓ)),

where (a) is from Theorem 7 and (b) follows from the regime
p/ε = O(nβ). A similar argument can be used to prove the
oracle complexity results for the remaining methods based on
known bounds presented in Table I for GD and SGD, [25] for
SVRG, and [13] for MBGD (also see [10]).

Now, we apply similar techniques to the non-convex setting.
First, we prove Theorem 9.

Proof of Theorem 9. First, by setting δ = ε
2
√
p in Lemma 6,

we get ∥∥∥“∇F (θ)−∇F (θ)
∥∥∥2
2
≤ ε2

4
.

Next, note that Assumption 1 (Ll-smoothness) implies

F (θ(t+1))

≤ F (θ(t)) +∇F (θ(t))T(θ(t+1) − θ(t))

+
Ll

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2
2

= F (θ(t))− α∇F (θ(t))T“∇F (θ(t))

+
Llα

2

2

∥∥∥“∇F (θ(t))
∥∥∥2
2

= F (θ(t))− α
∥∥∥∇F (θ(t))

∥∥∥2
2

− α∇F (θ(t))T
Ä“∇F (θ(t))−∇F (θ(t))

ä
+
Llα

2

2

∥∥∥“∇F (θ(t))
∥∥∥2
2

≤ F (θ(t))− α
∥∥∥∇F (θ(t))

∥∥∥2
2

+
α

2

Å∥∥∥∇F (θ(t))
∥∥∥2
2
+
∥∥∥“∇F (θ(t))−∇F (θ(t))

∥∥∥2
2

ã
+ Llα

2

Å∥∥∥∇F (θ(t))
∥∥∥2
2
+
∥∥∥“∇F (θ(t))−∇F (θ(t))

∥∥∥2
2

ã
≤ F (θ(t)) +

(
Llα

2 − α

2

)∥∥∥∇F (θ(t))
∥∥∥2
2
+
ε2

4

(
Llα

2 +
α

2

)
= F (θ(t))− 1

16Ll

∥∥∥∇F (θ(t))
∥∥∥2
2
+

3ε2

64Ll
.

(Recall that α = 1/(4Ll) is the step size.) Thus,

T−1∑
t=0

∥∥∥∇F (θ(t))
∥∥∥2
2
≤ 16Ll(F (θ

(0))− F ∗) +
3

4
Tε2,

so if T = 64Ll(F (θ
(0))− F ∗)/ε2,

1

T

T−1∑
t=0

∥∥∥∇F (θ(t))
∥∥∥2
2
≤ 16Ll

T
(F (θ(0))− F ∗) +

3

4
ε2 = ε2.

This implies that a ε-stationary point (as defined in (3)) is
reached at least once. Therefore,

Γ(PPI-GD) ≤ Tmd

≤ 64Ll(F (θ
(0))− F ∗)

ε2

Ñ(
2
√
pLh

ε

Ç
2ℓ

ℓ
+ 1

åd)1/ℓ
+ 1

éd

≤ 64Ll(F (θ
(0))− F ∗)

ε2

ÅÅ
2d+(1/ℓ)Lh

1/ℓ
(p
ε2

)1/(2ℓ)ã
+ 1

ãd
≤ 64Ll(F (θ

(0))− F ∗)

ε2
2d

2+d+d/ℓLh
d/ℓ
(p
ε2

)d/(2ℓ)
(a)

≤ C2 exp
(
log2γ(n)

) (p
ε2

)1+d/(2ℓ)

where (a) follows from 2d(d+1) ≤ 2−1/4 exp
(
log2γ(n)

)
and

F (θ(0))− F ∗ = O(p) as shown in the proof of Theorem 7.
We note that this flavor of analysis in the non-convex setting

is standard in the literature (see, e.g., [22], [73]).

Finally, we prove Proposition 10.

Proof of Proposition 10. First, [12, Theorem 2.1] and [14,
Corollary 2.2] imply the oracle complexities of GD and SGD
to be O(n(p/ε2)) and O((p/ε2)2), respectively. Plugging in
p/ε2 = O(nβ) produces the desired result. PPI-GD’s oracle
complexity can be derived similarly from Theorem 9, noting
that O(exp(log2γ(n))) is subpolynomial when γ < 1/2.

VI. EXPERIMENTS

Experiments were conducted to evaluate the empirical per-
formance of PPI-GD compared to other GD methods when
used to train a neural network classifier. The models and
optimization algorithms were implemented with the NumPy
Python library. All experiments were run on a machine with
an Intel Core i7-8700K CPU and 16 GB of memory.

Three synthetic classification datasets were generated for
the experiments. Each dataset is parameterized by the vari-
able ν ∈ {0.5, 1, 1.5}, which captures the “noisiness” of
the dataset. Each dataset consists of n = 10000 randomly
generated samples in [0, 1]2×{0, 1}. Each data point is of the

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 13

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.10

0.06

0.07

0.08

0.09

0.20

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(a) p = 881, ν = 0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.10

0.12

0.14

0.16

0.18

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(b) p = 881, ν = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.12

0.14

0.16

0.18

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(c) p = 881, ν = 1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.10

0.07

0.08

0.09

0.20

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(d) p = 4145, ν = 0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.12

0.15

0.18

0.20

0.23

0.25

0.28

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(e) p = 4145, ν = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(f) p = 4145, ν = 1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.10

0.09

0.20

0.30

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(g) p = 6321, ν = 0.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.20

0.30

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(h) p = 6321, ν = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

0.20

0.30

L
os

s

GD

SGD

SVRG

PPIGD 4

PPIGD 6

PPIGD 8

(i) p = 6321, ν = 1.5

Fig. 2: Comparison of GD, SGD, SVRG, and PPI-GD (with ℓ = 1 and m ∈ {4, 6, 8}) when training a neural network.
p ∈ {881, 4145, 6321} is the number of parameters, and ν ∈ {0.5, 1, 1.5} is the noise in data.

TABLE II: Lowest loss attained for each optimizer, rounded to four decimal places. The best result in each round is highlighted.

Optimizer (a) (b) (c) (d) (e) (f) (g) (h) (i)

GD 0.0627 0.0903 0.1071 0.0853 0.1128 0.1290 0.1628 0.1631 0.1633
SGD 0.0577 0.0885 0.1055 0.0728 0.1068 0.1351 0.0877 0.1250 0.1472

SVRG 0.0595 0.0887 0.1062 0.0741 0.1081 0.1260 0.0903 0.1209 0.1385

PPIGD 4 0.0600 0.0889 0.1055 0.0758 0.1131 0.1251 0.1067 0.1252 0.1389
PPIGD 6 0.0572 0.0878 0.1050 0.0740 0.1059 0.1237 0.0937 0.1213 0.1383
PPIGD 8 0.0572 0.0876 0.1048 0.0729 0.1055 0.1234 0.0873 0.1226 0.1464

form (x1, x2,1{sin(5x1) + sin(5x2) + ξ}), where x1, x2 ∼
Unif(0, 1) and ξ ∼ N (0, ν).

Fully connected leaky ReLU (rectified linear unit) neural
networks were used to classify the datasets. Each neural
network has h ∈ {4, 16, 24} hidden layers with 16 nodes
each. The number of trainable parameters in each model is
p = 272h− 207 ∈ {881, 4145, 6321}.

In each round of simulations, the performance (in terms
of wall-clock time) of GD, SGD, SVRG, and three separate
runs of PPI-GD with different parameters was measured. Each
algorithm was allowed to run for 20 seconds, and the training
MSE loss was recorded every 0.1 seconds. For consistency,
the same learning rate schedule (inverse square root with an

initial value of 0.2) was used for every optimizer. The update
frequency of SVRG was set to n = 10000. Hyperparameters
ℓ = 1 and m ∈ {4, 6, 8} were chosen for PPI-GD (each
denoted by PPIGD 4, PPIGD 6, and PPIGD 8 in the plots).

Figure 2 shows the learning curves for each combination
of dataset and model, and Table II presents the lowest loss
attained. The results demonstrate that PPI-GD can outperform
GD and SGD not only theoretically but also in simulations in
certain settings.

As expected, the optimizers converge more quickly when
the model is simpler (i.e., when p is smaller) or when the data
is less noisy (i.e., when ν is smaller). Notably, the performance
of SGD degrades quickly in the face of noise. This is because

14 MANUSCRIPT, 2025

SGD performs well on datasets that can be easily generalized
from a small subset, and noise makes this much more difficult.
Indeed, it is evident from Figure 2 that the other algorithms
are less affected by noise than SGD.

Figure 2(g) is especially noteworthy, as it clearly depicts
the unique characteristics of PPI-GD. Although PPI-GD with
m = 4 improves very quickly at first, it soon converges to a
suboptimal point. This is because PPI-GD, unlike some other
inexact gradient methods like SGD, is biased. As a result,
unlike SGD, PPI-GD does not converge to the exact solution
even when T →∞. When the grid size is small, each iteration
is very computationally efficient, but the approximate gradient“∇F (θ(t)) is less accurate. As m increases, the initial rate
of convergence becomes slower, but the algorithm ultimately
converges to a more accurate solution.

VII. CONCLUSION

In this paper, we introduced the PPI-GD algorithm for
optimizing ERM objectives which satisfy Hölder smoothness
assumptions in the training data, by using multivariate poly-
nomial interpolation to approximate the true gradient oracle at
each iteration. When the data space dimension satisfies d =
O(log0.49(n)), we established that the oracle complexity of
PPI-GD scales as Õ((p/ε)d/(2ℓ)) in the strongly convex setting
and Õ((p/ε2)1+d/(2ℓ)) in the non-convex setting, showing
that our algorithm has lower complexity than GD, SGD, and
variants for sufficiently smooth loss functions in the common
regime where p = O(poly(n)) and ε = Θ(poly(1/n)).
PPI-GD improves upon former inexact gradient methods for
smooth objectives by relaxing necessary conditions on the
scaling of d, showing that an astute choice of gradient es-
timation method contributes substantially towards obtaining
algorithms with theoretical gains in oracle complexity in a
broad range of domains.

Future research in this vein may incorporate classic tech-
niques such as momentum, Nesterov acceleration, and mini-
batching, since the primary innovation of PPI-GD in lever-
aging smoothness in training data is orthogonal to these
techniques in principle. Moreover, our present work builds
upon the classical literature on bicubic spline interpolation to
derive generalized error bounds on polynomial interpolants,
and a fruitful future direction may involve analyzing natural
spline interpolants in the same generalized manner. Overall,
our main contributions suggest that interesting complexity
results remain to be discovered at the intersection of inexact
gradient methods and interpolation analysis.

REFERENCES

[1] A. S. Nemirovskii and D. B. Yudin, Problem complexity and method
efficiency in optimization. Wiley-Interscience, 1983.

[2] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2004.

[3] M. Schmidt, “Convergence rate of stochastic gradient with constant
step size,” Sep 2014. [Online]. Available: https://open.library.ubc.ca/
collections/facultyresearchandpublications/52383/items/1.0050992

[4] S. Lacoste-Julien, M. Schmidt, and F. R. Bach, “A simpler approach
to obtaining an o(1/t) convergence rate for the projected stochastic
subgradient method,” CoRR, vol. abs/1212.2002, 2012. [Online].
Available: http://arxiv.org/abs/1212.2002

[5] A. Agarwal, M. J. Wainwright, P. L. Bartlett, and P. K. Ravikumar,
“Information-theoretic lower bounds on the oracle complexity of convex
optimization,” in Proceedings of the Advances in Neural Information
Processing Systems 22, Vancouver, BC, Canada, December 6-11 2009,
pp. 1–9.

[6] A. d’Aspremont, “Smooth optimization with approximate gradient,”
SIAM Journal on Optimization, vol. 19, no. 3, pp. 1171–1183, October
2008.

[7] M. P. Friedlander and M. Schmidt, “Hybrid deterministic-stochastic
methods for data fitting,” SIAM Journal on Scientific Computing, vol. 34,
no. 3, pp. A1380–A1405, Jan. 2012.

[8] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods with
inexact oracle: the strongly convex case,” CORE Discussion Papers
2013016, vol. 2013, no. 16, March 2013.

[9] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of smooth
convex optimization with inexact oracle,” Mathematical Programming,
Series A, vol. 146, pp. 37–75, August 2014.

[10] A. Jadbabaie, A. Makur, and D. Shah, “Gradient-based empirical risk
minimization using local polynomial regression,” Stochastic Systems,
INFORMS, pp. 1–40, March 2024.

[11] V. Vapnik, “Principles of risk minimization for learning theory,” in
Advances in Neural Information Processing Systems, vol. 4. Morgan-
Kaufmann, 1991.

[12] S. A. Vavasis, “Black-box complexity of local minimization,” SIAM
Journal on Optimization, vol. 3, no. 1, pp. 60–80, Feb. 1993.

[13] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311, Jan.
2018.

[14] S. Ghadimi and G. Lan, “Stochastic first- and zeroth-order methods
for nonconvex stochastic programming,” SIAM Journal on Optimization,
vol. 23, no. 4, pp. 2341–2368, 2013.

[15] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, Septem-
ber 1951.

[16] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic
approximation approach to stochastic programming,” SIAM Journal on
Optimization, vol. 19, no. 4, pp. 1574–1609, January 2009.

[17] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal
distributed online prediction using mini-batches,” Journal of Machine
Learning Research, vol. 13, no. 6, pp. 165–202, January 2012.

[18] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch
gradient descent: Faster convergence under data sparsity,” in 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE, 2017,
pp. 2880–2887.

[19] B. T. Polyak, “Some methods of speeding up the convergence of iter-
ation methods,” USSR Computational Mathematics and Mathematical
Physics, vol. 4, no. 5, pp. 1–17, December 1964.

[20] Y. E. Nesterov, “A method of solving a convex programming problem
with convergence rate O

(
1
k2

)
,” Doklady Akademii Nauk SSSR, vol. 269,

no. 3, pp. 543–547, 1983.
[21] R. Cosson, A. Jadbabaie, A. Makur, A. Reisizadeh, and D. Shah,

“Gradient descent with low-rank objective functions,” in Proceedings of
the 62nd IEEE Conference on Decision and Control (CDC), Singapore,
December 13-15 2023, pp. 3309–3314.

[22] R. Cosson, A. Jadbabaie, A. Makur, A. Reisizadeh, and D. Shah, “Low-
rank gradient descent,” IEEE Open Journal of Control Systems, vol. 2,
pp. 380–395, October 2023.

[23] A. Jadbabaie, A. Makur, and A. Reisizadeh, “Adaptive low-rank gradient
descent,” in Proceedings of the 62nd IEEE Conference on Decision and
Control (CDC), Singapore, December 13-15 2023, pp. 3315–3320.

[24] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo
Methods, ser. Wiley Series in Probability and Statistics. Hoboken, NJ,
USA: John Wiley & Sons, Inc., 2011.

[25] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, vol. 26. Curran Associates, Inc., 2013.

[26] N. Le Roux, M. Schmidt, and F. Bach, “A stochastic gradient method
with an exponential convergence rate for finite training sets,” in Pro-
ceedings of the Advances in Neural Information Processing Systems 25
(NeurIPS), Lake Tahoe, NV, USA, December 3-8 2012, pp. 1–9.

[27] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Mathematical Programming, Series A,
vol. 162, p. 83–112, March 2017.

[28] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, pp. 567–599, February 2013.

https://open.library.ubc.ca/collections/facultyresearchandpublications/52383/items/1.0050992
https://open.library.ubc.ca/collections/facultyresearchandpublications/52383/items/1.0050992
http://arxiv.org/abs/1212.2002

LEE, LU, AND MAKUR: ON THE ORACLE COMPLEXITY OF INTERPOLATION-BASED GRADIENT DESCENT 15

[29] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 61, pp. 2121–2159, July 2011.

[30] K. Chakrabarti and N. Chopra, “Generalized adagrad (g-adagrad) and
adam: A state-space perspective,” in 2021 60th IEEE Conference on
Decision and Control (CDC). IEEE, 2021, pp. 1496–1501.

[31] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude,” 2012, cOURSERA: Neural
Networks for Machine Learning.

[32] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), San Diego, CA, USA, May 7-9 2015, pp. 1–13.

[33] S. Bubeck, Convex Optimization: Algorithms and Complexity, ser. Foun-
dations and Trends in Machine Learning. Hanover, MA, USA: now
Publishers Inc., 2015, vol. 8, no. 2-4.

[34] C. M. Bishop, Pattern Recognition and Machine Learning, ser. Infor-
mation Science and Statistics. New York, NY, USA: Springer, 2006.

[35] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed., ser. Springer
Series in Statistics. New York, NY, USA: Springer, 2009.

[36] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “SPIDER: Near-optimal non-
convex optimization via stochastic path-integrated differential estimator,”
in Proceedings of the Advances in Neural Information Processing
Systems 31 (NeurIPS), Montréal, QC, Canada, December 2-8 2018, pp.
1–11.

[37] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Lower bounds
for finding stationary points II: first-order methods,” Mathematical
Programming, Series A, pp. 1–41, September 2019.

[38] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro, and
B. Woodworth, “Lower bounds for non-convex stochastic optimization,”
Mathematical Programming, vol. 199, no. 1, pp. 165–214, May 2023.

[39] A. Ramaswamy and S. Bhatnagar, “Analysis of gradient descent methods
with nondiminishing bounded errors,” IEEE Transactions on Automatic
Control, vol. 63, no. 5, pp. 1465–1471, 2017.

[40] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual first-order
methods application to dual decomposition,” IEEE Transactions on
Automatic Control, vol. 59, no. 5, pp. 1232–1243, 2013.

[41] S. Vlaski and A. H. Sayed, “Second-order guarantees of stochastic
gradient descent in nonconvex optimization,” IEEE Transactions on
Automatic Control, vol. 67, no. 12, pp. 6489–6504, 2021.

[42] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent for
convex and smooth functions,” in 2017 IEEE 56th Annual Conference
on Decision and Control (CDC). IEEE, 2017, pp. 2260–2267.

[43] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent,”
IEEE Transactions on Automatic Control, vol. 65, no. 6, pp. 2566–2581,
2019.

[44] E. Trimbach, E. D. H. Nguyen, and C. A. Uribe, “On acceleration
of gradient-based empirical risk minimization using local polynomial
regression,” in 2022 European Control Conference (ECC). IEEE, 2022,
pp. 429–434.

[45] N. Bhavsar and L. Prashanth, “Nonasymptotic bounds for stochastic
optimization with biased noisy gradient oracles,” IEEE Transactions on
Automatic Control, vol. 68, no. 3, pp. 1628–1641, 2022.

[46] J. Fan and I. Gijbels, “Local polynomial modeling and its applications,”
London: Chapmanand, 1996.

[47] K. De Brabanter, J. De Brabanter, I. Gijbels, and B. De Moor, “Deriva-
tive estimation with local polynomial fitting,” Journal of Machine
Learning Research, vol. 14, no. 1, pp. 281–301, 2013.

[48] M. Delecroix and A. Rosa, “Nonparametric estimation of a regression
function and its derivatives under an ergodic hypothesis,” Journal of
Nonparametric Statistics, vol. 6, no. 4, pp. 367–382, 1996.

[49] Y. Wang, S. Du, S. Balakrishnan, and A. Singh, “Stochastic zeroth-
order optimization in high dimensions,” in International conference on
artificial intelligence and statistics. PMLR, 2018, pp. 1356–1365.

[50] G. Ausset, S. Clémençon, and F. Portier, “Nearest neighbour based
estimates of gradients: Sharp nonasymptotic bounds and applications,”
in International Conference on Artificial Intelligence and Statistics.
PMLR, 2021, pp. 532–540.

[51] A. Jadbabaie, A. Makur, and D. Shah, “Federated optimization of smooth
loss functions,” IEEE Transactions on Information Theory, vol. 69,
no. 12, pp. 7836–7866, December 2023.

[52] E. Choi, C. Xiao, W. Stewart, and J. Sun, “Mime: Multilevel medical
embedding of electronic health records for predictive healthcare,” Ad-
vances in neural information processing systems, vol. 31, 2018.

[53] M. C. Nechyba and Y. Xu, “Neural network approach to control system
identification with variable activation functions,” in Proceedings of 1994

9th IEEE International Symposium on Intelligent Control. IEEE, 1994,
pp. 358–363.

[54] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

[55] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering,” Advances in neural information process-
ing systems, vol. 14, 2001.

[56] S.-L. Huang, A. Makur, G. W. Wornell, and L. Zheng, Universal
Features for High-Dimensional Learning and Inference, ser. Foundations
and Trends in Communications and Information Theory, A. Barg, Ed.
Hanover, MA, USA: now Publishers Inc., February 2024, vol. 21, no.
1-2.

[57] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of johnson
and lindenstrauss,” Random Structures & Algorithms, vol. 22, no. 1, pp.
60–65, 2003.

[58] U. M. Ascher and C. Greif, A First Course on Numerical Methods.
SIAM, 2011.

[59] A. B. Tsybakov, Introduction to Nonparametric Estimation, ser. Springer
Series in Statistics. New York, NY: Springer, 2009.

[60] V. Sadhanala, Y.-X. Wang, J. L. Sharpnack, and R. J. Tibshirani,
“Higher-order total variation classes on grids: Minimax theory and
trend filtering methods,” in Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc., 2017.

[61] G. H. Chen and D. Shah, “Explaining the success of nearest neighbor
methods in prediction,” Foundations and Trends® in Machine Learning,
vol. 10, no. 5-6, pp. 337–588, 2018.

[62] J. Xu, “Rates of convergence of spectral methods for graphon estima-
tion,” in Proceedings of the 35th International Conference on Machine
Learning. PMLR, Jul. 2018, pp. 5433–5442.

[63] A. Agarwal, D. Shah, D. Shen, and D. Song, “On robustness of principal
component regression,” Journal of the American Statistical Association,
Oct. 2021.

[64] G. Gur-Ari, D. A. Roberts, and E. Dyer, “Gradient descent happens in
a tiny subspace,” Dec. 2018.

[65] L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou, “Empirical
analysis of the Hessian of over-parametrized neural networks,” in
International Conference on Learning Representations, 2018.

[66] T. Le and S. Jegelka, “Training invariances and the low-rank phe-
nomenon: beyond linear networks,” in International Conference on
Learning Representations, 2022.

[67] L. Van Der Maaten, E. O. Postma, and H. J. van den Herik, “Dimen-
sionality reduction: A comparative review,” Tilburg University Technical
Report, Tech. Rep. TiCC-TR 2009-005, 2009.

[68] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
Machine Learning: Methods, Systems, Challenges, F. Hutter, L. Kotthoff,
and J. Vanschoren, Eds. Cham: Springer International Publishing, 2019,
pp. 3–33.

[69] C. de Boor, “Bicubic spline interpolation,” Journal of Mathematics and
Physics, vol. 41, no. 3, pp. 212–218, 1962.

[70] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge
University Press, 2007.

[71] R. E. Carlson and C. A. Hall, “Error bounds for bicubic spline inter-
polation,” Journal of Approximation Theory, vol. 7, no. 1, pp. 41–47,
1973.

[72] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Un-
derstanding deep learning (still) requires rethinking generalization,”
Communications of the ACM, vol. 64, no. 3, pp. 107–115, 2021.

[73] H. Li, J. Qian, Y. Tian, A. Rakhlin, and A. Jadbabaie, “Convex and
non-convex optimization under generalized smoothness,” in Advances in
Neural Information Processing Systems, A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran
Associates, Inc., 2023, pp. 40 238–40 271.

	Introduction
	Main Contributions
	Related Literature
	Outline

	Formal Model and Setup
	Notation
	Problem Statement
	Assumptions

	Main Results and Discussion
	Algorithm
	Interpolation Error Bounds
	Oracle Complexity

	Proofs of Interpolation Error Bounds
	Proofs of Oracle Complexity
	Experiments
	Conclusion

