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Abstract

Recent research on Doeblin coefficients has shed light on their usefulness as a multi-way generalization of the Dobrushin
contraction coefficient for TV distance, in a separate vein from their classic role in the theory of Markov chain ergodicity. However,
strong conditions, such as being bounded away from 0, are typically necessary for Doeblin coefficients to establish the existence
of information contraction. Building on the recently formulated concept of Dobrushin curves, we aim to propose a finer-grained
Doeblin-based characterization of multi-way contraction behavior which yields non-vacuous contraction guarantees even for
channels whose Doeblin coefficient is 0. To this end, we introduce the notion of a Doeblin curve—a nonlinear function which
quantifies the contraction behavior of a Markov kernel on collections of input distributions at specific levels of divergence and
power. Through the course of our analysis, we develop a new variational characterization of Doeblin coefficients, present several
properties of Doeblin curves, define several versions of power-constrained Doeblin curves, and derive upper and lower bounds
using our aforementioned variational characterization. We then utilize these results in diverse areas, including generalization bounds
for noisy iterative optimization, error bounds for reliable computation with noisy circuits, and differential privacy guarantees for
online iterative algorithms. In particular, we extend results in these areas to broader domains or group settings, leveraging Doeblin
curves to reveal finer-grained contraction phenomena than Doeblin coefficients.

Index Terms
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I. INTRODUCTION

Analyzing the contraction properties of channels or Markov kernels is a fundamental problem in information theory stemming
back to the celebrated data processing inequality, which states that the f-divergence between two distributions does not increase
after they are passed through a Markov kernel [2], [3]. Data processing inequalities can be strengthened using contraction
coefficients [4]-[9], which quantify the degree to which two distributions contract after being pushed forward through a Markov
kernel (also see more recent work [10]-[18] and the references therein). In some cases, the quantification of this contraction
behavior can be extended to an arbitrary collection of distributions represented by another Markov kernel, e.g., using Doeblin
coefficients [19].

Historically, such contraction analyses were closely tied to investigating the convergence rate of a Markov chain to its
steady-state distribution. Initial work in this vein by Doeblin [20], [21] established exponential convergence rates for all Markov
matrices with strictly positive Doeblin coefficients, while more general weak ergodicity results for inhomogeneous Markov
chains have been obtained using similar ideas, e.g., [22, Lemma 3]. Furthermore, [19] recently showed that Doeblin coefficients
may be perceived as an n-way generalization of total variation (TV) distance, a view in which the submultiplicativity of Doeblin
coefficients corresponds to the data processing inequality for n input distributions.

However, the utility of Doeblin coefficients remains limited in the regime of channels whose Doeblin coefficient is 0, for
which information contraction properties cannot be easily established using existing Doeblin-based techniques. For example,
prior work has demonstrated that Markov chains exhibit convergence to stationarity even under much weaker conditions such
as drift and local minorization, cf. [23], and a strictly positive Doeblin coefficient may be considered a strong assumption.
Consequently, contemporary results in Markov process analysis often shed the dependence on Doeblin coefficients altogether,
instead being rooted in alternative methods such as spectral gap (or Poincaré) and logarithmic Sobolev inequalities [24].

The issue of contraction coefficients taking on trivial values exists in broader information-theoretic settings too [14], [25].
For example, Dobrushin’s contraction coefficient for TV distance often takes the value 1 which does not demonstrate any
meaningful information contraction [25]. To circumvent this issue, [25] develops nonlinear functions called Dobrushin curves
that capture TV contraction even if the contraction coefficient is 1. Propelled by this line of inquiry, we seek to understand
Doeblin-based information contraction properties of Markov kernels under general conditions, including the case of zero Doeblin
coefficient. To this end, we introduce the notion of a Doeblin curve in this work. This nonlinear function quantifies the degree
of contraction exhibited by its associated Markov kernel K, when applied to an arbitrary collection of input distributions
represented by another kernel W. In contrast to conventional Doeblin coefficients, the nonlinearity of the Doeblin curve captures
a more nuanced view of the contraction behavior of K.
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A. Main Contributions and Outline

We briefly outline the structure of our paper and list our main contributions. Following a discussion of preliminaries, in
Section II-A, we present a new variational characterization of Doeblin coefficients as an infimum over arbitrary partitions of
the output space. Next, we introduce and formally define the Doeblin curve of a general Markov kernel and enumerate basic
properties in Section II-B. We discuss power-constrained versions in Section II-C, derive upper and lower bounds using the
aforementioned variational characterization in Section II-D, and present examples of kernels with closed-form Doeblin curves.
Notably, in contrast to much of the literature on information contraction and Doeblin coefficients, this work is developed in the
context of Markov kernels over general Polish spaces (as opposed to Markov matrices over finite sets).

Building on these theoretical results, we discuss several applications of Doeblin curves in Section III. In Section III-A, we
employ Doeblin curves to derive generalization error bounds for noisy iterative algorithms operating on feasible sets with
infinite diameter, a situation in which Doeblin coefficients fail to produce non-trivial contraction bounds. In Section III-B,
we discuss lower bounds for reliable computation using circuits of noisy g-ary gates. Lastly, in Section III-C, we utilize our
variational characterization of Doeblin coefficients to extend the definition of (e, §)-local differential privacy (LDP) to a group
setting, and provide differential privacy guarantees for noisy iterative algorithms in terms of the Doeblin curve of the privacy
mechanism.

We provide proofs of our main results in Section IV and proofs for the aforementioned applications in Section V. We defer
further technical miscellany to Appendices A to C and relate Doeblin curves back to the classic setting of Markov chain
ergodicity in Appendix D.

B. Related Literature

We summarize the prior literature on Doeblin coefficients, multi-way divergence metrics, and strong data processing inequalities
(SDPIs). At the outset, Doeblin’s seminal work [20], [21] introduced coupling as a technique for establishing uniform exponential
convergence rates of Markov chains with respect to TV distance (also see [26]-[28]), and minorization as a technique to
prove the weak ergodicity of inhomogeneous Markov chains (also see [22]). Notably, Doeblin coefficients were extremal
minorization constants in such techniques. Subsequent results [27, Theorem 3.1], [29, Lemma 5], [30, Section IV-D] established
the equivalence between Doeblin minorization and degradation by erasure channels, akin to the view of contraction coefficients
for Kullback-Leibler (KL) divergence as domination by erasure channels under the less noisy preorder [13]. Doeblin coefficients
also find relevance in various machine learning and applied probability problems, such as change detection algorithms [31],
regret bounds in multi-armed bandit problems [32], Markov chain Monte Carlo methods [33], analysis of mixing times [34],
and estimation of entropy rates [35]. Previous work on strong data processing inequalities [12, Remark 3.2], [36, Section I-D]
has also shown how the Doeblin minorization condition yields upper bounds on contraction coefficients for f-divergences.

Extending the notion of f-divergence to compare three or more distributions simultaneously is another key avenue of research.
For example, [37], [38] develop some general approaches for such extensions. Moreover, [19] established several properties
of Doeblin coefficients (including geometric aspects, simultaneous and maximal coupling characterizations, and contraction
properties over Bayesian networks), and noted that Doeblin coefficients may be perceived as a multi-way generalization of TV
distance. (Interestingly, max-Doeblin coefficients [19], or maximal leakage [39], also share many of these properties [40].)

Much like Doeblin coefficients, the Dobrushin contraction coefficient for TV distance also plays a seminal role in the analysis
of Markov kernels. Both the Doeblin and Dobrushin coefficients share key properties such as submultiplicativity [13], [19],
and the latter enjoys utility in applications such as generalization error bounds [41], differential privacy guarantees [42], and
analysis of reinforcement learning algorithms [43]. As noted earlier, [25] introduced Dobrushin curves to quantify information
dissipation in channels with average input cost constraint even when their Dobrushin coefficient is trivially 1. Akin to this
nonlinear perspective, other studies [13], [14] developed strong data processing inequalities which capture similar fine-grained
contraction behavior. In this paper, we extend these ideas to the realm of Doeblin coefficients, demonstrating that analogous
nonlinear enhancements can be devised to broaden the efficacy of Doeblin-based approaches for characterizing contraction
behavior in general settings.

C. Preliminaries

We define relevant notation, review technical preliminaries, and provide several pertinent characterizations of Doeblin
coefficients used in our paper. Let N 2 {1,2,...} denote the natural numbers starting from 1. Let R, denote the non-negative
real numbers. Let [n] = {1,...,n} denote integer intervals. Given a function f : X — R defined on a convex domain X C R,
let f: X — R denote its upper concave envelope (i.e., the pointwise infimum of all its concave upper bounds, or the “convex
hull of f” [44, Chapter B, Proposition 2.5.1, Definition 2.5.3]). Given a Banach space (X, ||-||), denote the diameter and
Chebyshev radius of a (multi-)subset S C X" as

1S o £ sup ||z —y||, rad(S) £ inf sup|jz —al . 1
z,yeS a€X 28

All measures considered in this paper are finite. Let (X', Fx) and (), Fy) be (measurable) Polish spaces equipped with
Borel o-algebras, and let &2 denote the set of probability measures on (), Fy). (Throughout this paper, all Polish spaces



considered are assumed to have cardinality at least 2.) A Markov kernel (or channel) K acting from X to ) is a mapping
K : X x Fy — [0,1] such that K(- | z) is a probability measure for each z € X and K (A | -) is a measurable function for
each A € Fy. For any scalar a € R, kernel K, and measure 7, we write K > am to denote that

Vee X, VAe Fy, K(A|z)>a -n(4).

Given probability distributions P and @, let P ® ) denote their product distribution and let P * () denote their convolution.
Given o-algebras Fx and Fy, let Fx ® Fy denote their product o-algebra. Given measures P; : Fy — R, for i € [n], let
[P1,...,P,] : [n] x Fy — Ry denote the kernel formed by collecting these measures, i.e.,

Vi e [n],VAEJ:y, [P1,7Pn](A|Z)éP,L(A)
Let &, denote the Dirac measure (i.e., point mass) concentrated at x. Let = denote the identity kernel, i.e.,
Ve e X, E(-|z) £ 8.().

Given measures 7, 1 : Fy — R4, we write 7 < p to indicate that 7w is dominated by (or absolutely continuous with
respect to) p, ie., p(A) =0 = m(A) = 0 for all A € Fy. When 7 < p and p is o-finite, we let g—z : Y — R, denote
the Radon-Nikodym derivative of 7 with respect to p. We say that a Markov kernel K : X x Fy — [0,1] is absolutely
continuous if there exists a o-finite measure 4 : Fy — R, such that K(- | #) < u for all z € X." For example, note that if
X ={x1,22,...} is countably infinite, one such dominating finite measure fx is

K(- | z)
. _ ) 2
u(-) ;:1 9 (@)
By Doob’s variant of the Radon-Nikodym theorem [45, Chapter V, Theorem 4.44], absolute continuity of K implies the

existence of a kernel function of Radon-Nikodym derivatives %(y | z) : Y x X = Ry, such that

dK
Ve e X, VA e Fy, K(A\o:):/ (| z)du

A dp
and % is jointly measurable with respect to the product o-algebra Fy ® Fx. We impose this mild regularity condition on
K as a precondition for several of our results; it is standard in measure-theoretic treatments of information theory (cf. [46,
Theorem 2.12]).

Given a collection of measures {m;};cz on a Polish space (), Fy), where Z is an arbitrary index set, define their greatest
common component |\, m; [47, Chapter 3, Section 7.1] as the unique measure on (), Fy) given by

VA e Fy, /\ mi(A) 2 sup{v(A): Vi € I, m; > v}, 3)
€T
where the supremum is taken over all measures v : Fy — R, such that m; > v for each i € 7. We remark that A, ; 7;(A) #
inf;cz m;(A) in general, because the pointwise infimum of measures is not a measure in general (as it may fail to satisfy
countable additivity). We refer readers to [47, Chapter 3, Theorem 7.1] for a proof that the pointwise supremum in (3) defines
a valid measure.

When we want to emphasize the discrete, finite-dimensional nature of a setting, we denote vectors and matrices with lowercase
and uppercase bold letters, respectively. Let #;_; C R? be the (d — 1)-dimensional probability simplex of row pmf vectors,
and let REX? be the set of all d x d row stochastic matrices. Let e; € &;_; be the ith standard basis row vector. Given a
matrix A, let [A]; ; denote its entry at row 7 and column j, and let [A](;y = e;A denote its ith row, represented as a row vector.
If A is square, let A;(A) denote its ith eigenvalue (counting algebraic multiplicity and ordered by descending magnitude). Let
[I]l, denote the ¢P-norm in Euclidean space.

Given a Markov kernel K, define its Doeblin coefficient 7(K) € [0,1] and complementary Doeblin coefficient p(K) € [0, 1]
as

7(K)&sup{a€R:3n € £, K > ar}, “)
p(K) 21— 7(K).
The Doeblin coefficient of K may be characterized in terms of its greatest common component as

T(K)= \ K |z), )

reX

'Note that such a common dominating measure . always exists for any K, but we additionally require o-finiteness of g so that [45, Chapter V, Theorem
4.44] can be invoked.



because the scalar o = A, K (Y | 2) and the measure 7(-) = (1/a) A c» K (- | x) achieve the supremum in (4) by [22,
Theorem 1].> For finite spaces (i.e., row stochastic matrices K € RI.*™), 7(K) reduces to Doeblin’s coefficient of ergodicity
[48], [19, Definition 1], [22, Eq. 11], defined as

n

7(K) =) min [K], . (6)

= i€[m]

II. MAIN RESULTS ON DOEBLIN CURVES

We begin by recalling the maximal coupling characterization of Doeblin coefficients [19, Theorem 2] defined as follows.
Consider a collection of probability measures {P; };c7 where Z is a Polish index set and each probability measure P; is on a
respective Polish space (V;, Fy,). A coupling of probability measures {P;};cz is a collection {Y;};cz of random variables all
defined on the common measure space ®;cz(YV;, Fy,), equipped with a (joint) probability measure P such that for all ¢ € Z,
the marginal probability law of Y; on (), Fy,) is equal to P;. (Since each (Y;, Fy,) is Polish, results such as the Kolmogorov
extension theorem guarantee the existence of measures IP on the infinite collection of random variables {Y;};cz which are
consistent with finite dimensional distributions [49].) With this groundwork established, the following proposition states the
desired maximal coupling characterization for Polish spaces.

Proposition 1 (Maximal Coupling Characterization of Doeblin Coefficients). Let K : X x Fy — [0,1] be a Markov kernel
defined over Polish spaces (X, Fx) and (Y, Fy). Then,

7(K)= sup PMVz,2'€eX,Y,=Y,), 7
P:Y,~K(-|z)

where the supremum is taken over all couplings {Y,}rcx of the probability measures {K (- | ) }zcx-
Proposition 1 is proved in Section IV-A for completeness. We remark that for any Markov kernel K, the supremum in (7) is

achieved by the construction in (34), which we refer to as the “maximal coupling” for the remainder of this paper. Next, we
present our main results, beginning with a new variational characterization of Doeblin coefficients.

A. Variational Characterization of Doeblin Coefficients

Our first main result is a new variational characterization of Doeblin coefficients, expressed as an infimum over arbitrary
partitions of the underlying space. In this sense, our result is comparable to the Gel’fand-Yaglom-Peres variational characterization
of KL divergence [50] or the extensions to f-divergences in [51], [46, Theorem 7.6].

Theorem 1 (Variational Characterization of Doeblin Coefficient). Let K : X X Fy — [0, 1] be an absolutely continuous Markov
kernel defined over Polish spaces (X, Fx) and (Y, Fy). Then,

7(K)=inf  inf inf ZK (4; | =),
neNzy,...,.cp,€Xn partltwn ofy
Aq,..
where the innermost infimum is taken with respect to all measurable n-partitions Ay, ..., A, € Fy, ie., A;NA; =D for all

i#jand |J;_; Ai =D

Theorem 1 is proved in Section IV-A. The proof uses the characterization of Doeblin coefficients in (5) and the Radon-
Nikodym theorem to express 7(K) in terms of the density of the greatest common component of K. To relate this quantity to
the individual densities —l( | z) for x € X, we utilize the notion of lattice infimum as a measurable analogue of pointwise
infimum, so that the lattice infimum of uncountably many measurable functions W( | ) (indexed by x € X)) remains
measurable. Approximating this uncountable lattice infimum with a countable sequence gives rise to the infima over n € N and
Z1,...,T, € X in Theorem 1, and we complete the proof by leveraging the following proposition to convert the integral of the
pointwise minimum of finitely many densities into an infimum over partitions.

Proposition 2 (Integral Characterization of Infimum). Let K : X X Fy — [0,1] be an absolutely continuous Markov kernel
defined over Polish spaces (X, Fx) and (Y, Fy). For any fixed x1,...,x, € X and any fixed constants 1, ..., > 0, we

have
2 : dK
npartlzleon ofy Vil (Ai | 2:) /y (Znel[lr?] i du (| xz)) H

Proposition 2 is proved in Section IV-A and is also used in the proofs of subsequent results. We remark that Proposition 2
may be interpreted as a special case of Theorem | where X is finite. To see this, observe that whereas the infima over n € N
and z1,...,x, € X in Theorem 1 define the finite subset of X" included in the sum (and thus the infinite subset of X omitted

2If o = 0, we may take 7 to be any probability measure on ).



from the sum), they are unnecessary when X’ is finite, as any z; € X may be “omitted” from the sum by simply taking the
respective A; to be (). We note that by imposing stronger regularity conditions on K, we may prove Theorem 1 without the
use of lattice infima; we refer interested readers to Appendix B for an analytically simpler argument under equicontinuity
assumptions on %'

Throughout the rest of the paper, we find it helpful to define a notion of constrained Doeblin coefficient® for a Markov kernel
K : X x Fy —[0,1] and a measurable set S € Fr as

Ts(K)£sup{a€R:3r € P,V €8, K(-|z) > ar},
ps(K) 21— 7s(K).

We remark that ps(K) is monotonically non-decreasing in S, i.e., for any two sets R,S € Fx such that R C S, we have
pr(K) < ps(K).

B. Doeblin Curves

As our centerpiece contribution, we introduce the notion of a Doeblin curve to capture contraction properties of Markov
kernels whose Doeblin coefficient is 0. For any Polish space (U, Fy,), define the composition of two kernels W : U x Fx — R
and K : X x Fy — Ry as the kernel WK : U x Fy — R, given by

Yuel, VA € Fy, WK(A|u)é/K(A|;c)W(d:E\u). 8)
X

Now, we define the Doeblin curve of a Markov kernel K : X x Fy — [0, 1] as the function Fx(-;G) : [0,1] — [0, 1] given by
Fi(t:9) = sup {p(WK) : p(W) < t, W € G}, ©)

where the supremum is taken over all Markov kernels W : U x F» — [0, 1] from all Polish spaces (U, Fy;), such that W belongs
to some non-empty constraint set G. We define the joint range of the input and output complementary Doeblin coefficients as
F(K;G) = cl{(p(W),p(WK)) : W € G} C [0,1]2, where cl denotes closure. Specifically, the joint range F(K;G) is contained
within the set {(t,y) € [0,1]2 : y < Fx(t;G)}. For any kernel K, the Doeblin curve Fg (t;G) is monotonically non-decreasing
in ¢ for any fixed constraint set G. Also, the Doeblin curve F  (¢; G) and joint range §(K; G) are monotonically non-decreasing
in G, i.e., for any two sets of kernels G, H such that G C H, we have Fi(-;G) < Fg(-;H) and F(K;G) C F(K;H).

By submultiplicativity of complementary Doeblin coefficients [22, Section 4], [19, Theorem 1], we have p(W K) < p(W)p(K).
Hence, the Doeblin curve and joint range satisfy the outer bounds

Fr(t:G) < p(K)t, §(K;G) C{(t,y) €[0,1]* 1y < p(K)t}, (10)

and since p(K) < 1, we have
Fr(t:6) <t, $(K:G) C{(t.y) €[0,1]* 1y <t}. (11)

Figure 1 presents the numerically simulated joint range for a discrete memoryless channel K € R2X5, comprising 1 million

instances of W sampled uniformly from the set of 5 x 5 row stochastic matrices. The blue dashed line depicts the Doeblin curve
of K obtained analytically from Proposition 3, Part 2. The blue dots represent numerically sampled points (p(W), p(WK)) €
F(K;R%%%) in the joint range of K. The figure shows that when W is uniformly sampled, such as in settings where channel
inputs do not inherently tend towards degenerate regions of the probability simplex, the corresponding points in the joint range
indicate noticeably more information contraction than the worst-case bound given by the Doeblin curve would suggest.

We enumerate several additional properties of Doeblin curves in the following proposition. For brevity, we call a Markov kernel
W :U x Fx — [0,1] a constant kernel if there exists a fixed probability measure 7 : Fx — [0,1] such that W(- | u) = 7 (")
for all u € U.

Proposition 3 (Properties of Doeblin Curves). The Doeblin curve defined in (9) satisfies the following properties:

1) (Data processing property) Given Markov kernels K1 and Ko and constraint sets Gy and G, the Doeblin curve of the
composite channel represented by the diagram X RN V1= A ELEN Yo, with constraint set G consisting of all kernels
W such that W € Gy and WK, € Gy, satisfies Fx k,(t;G) < Fi,(Fk, (t;G1); G2).

2) (Sharpness) For any Markov kernel K : X x Fy — [0,1] and any convex constraint set G containing the identity kernel
E:X x Fx — [0,1] from X to X, i.e., Z(- | u) = 8,(-) for all u € X, and a constant kernel W : X x Fy — [0,1], i.e.,
W(- | u) ==(-) for all u € X for some fixed probability measure 7 : Fx — [0, 1], the Doeblin curve F(t;G) achieves
the bound in (10) with equality, i.e., Fx(t;G) = p(K)t.

3The constrained Doeblin coefficient 75 (K) is essentially the (unconstrained) Doeblin coefficient 7(K”) of the kernel K’ obtained by restricting the input
space of K to S. Hence, Theorem 1 also holds for constrained Doeblin coefficients by taking the middle infimum over z1,...,z, € S instead of X.
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Fig. 1. Randomly sampled joint range F(K;R525) for a 5 x 5 Markov matrix K, shaded in blue.

3) (Super-homogeneity) For any Markov kernel K : X x Fy — [0,1] and any convex constraint set G containing a constant
kernel W : U x Fx — [0,1], the Doeblin curve F i (t; G) satisfies F(\t;G) > A\Fg (t;G) for all X € [0,1] and t € [0,1],
or equivalently, the function t — F g (t;G)/t is non-increasing.

4) (Lipschitz continuity) For any Markov kernel K : X x Fy — [0, 1] and any convex constraint set G containing a constant
kernel W : U x Fx — [0,1], the Doeblin curve F i (t;G) is 1-Lipschitz continuous in t.

Proposition 3 is proved in Section IV-B, primarily by using the fact that convex combinations of any Markov kernel
with a constant kernel linearly interpolate p. We remark that Doeblin curves generalize the notion of Dobrushin curves in
[25], just as Doeblin coefficients generalize contraction coefficients for TV distance. When G only contains Markov kernels
W :U x Fx — [0,1] where |U| = 2, the Doeblin curve Fx (-;G) reduces to the Dobrushin curve of K. We emphasize that
the super-homogeneity property (Proposition 3, Part 3) does not necessarily imply that Fx is concave, and the concavity of
F i is also unknown in the Dobrushin case [25, Remark 1].

Although the joint range §(K; G) is contained within the area under the Doeblin curve F (- ;G) due to the definition of F g
as a supremum, it is not necessarily the entire area under F g, as shown by the following counterexample.

Proposition 4 (Joint Range of 2 x n Discrete Channels). The joint range of any discrete memoryless channel K € RZX™

considering inputs W € RIL*? with any number of rows m > 2, is the line 3(K; U2 Rgﬁf?) ={(t,p(K)t) : t €[0,1]}.

Proposition 4 is proved in Section I'V-B.

C. Power-Constrained Doeblin Curves

Inspired by earlier developments of nonlinear information contraction [25], we note that the amount by which input distributions
contract after passing through a channel depends on the power level of the input distributions. Hence, power constraints on
the input kernel W admit natural and useful classes of constraint sets G which we consider in our subsequent analysis. To
commence this discussion, we define two notions of power level for W taking values in a normed output space.

Definition 1 (Power Level). Let (X, ||-||) be a separable Banach space equipped with the Borel o-algebra Fx induced by
the norm topology. Given some convex and strictly increasing power function M : Ry — Ry with M(0) = 0, we define the
following notions of power level for a Markov kernel W : U x Fx — [0, 1].

o Uniform average power:

W a2 sup / M(Jlz]) W(de | u). (12)
weld J x

o Average extremal power: Let P be the maximal coupling of random variables { X, }uey with X, ~ W(- | u) for each
u € U, as defined in (34). Then,
19 lae 2 B [sup (1,1)] a3

where the expectation is taken with respect to the maximal coupling { X, }ney ~ P, and we only define this notion of
power for kernels W such that sup,c;; M (|| Xy]|) is measurable.



Note that the uniform average power is an extremal special case of the average power ||W|||a £ E[ [, M(||z||) W (dz | U)]
where the expectation is taken over some marginal distribution of U € U. The three power levels satisfy the relations
A < W llua < |[[W]||ag- Since the marginal distribution of U is usually unknown, we hereafter consider only the uniform
average (12) and average extremal (13) formalizations in our analysis. Note that the canonical notion of power (cf. [46, Section
20.1]) corresponds to taking [|W]||,, with M(z) = z2. We provide examples of non-trivial kernels satisfying the average
extremal power constraint in Appendix C.

We write FYA(t; p) and F4AE(¢;p) to denote the Doeblin curves where the set G in (9) consists of all kernels satisfying the
respective power constraints |||V |||, < p and [|[W||[,e < p for some p € [0,00). Since Doeblin curves are monotonically
non-decreasing in the constraint set, we have FYA(¢;p) > FAE(¢; p). Furthermore, we note that each of the power-constrained
Doeblin curves satisfies the following homogeneity property (akin to Dobrushin curves).

Proposition 5 (Homogeneity of Power-Constrained Doeblin Curves). For any Markov kernel K : X x Fy — [0,1], the
power-constrained Doeblin curves FY* and FAE satisfy FYA(At; Ap) = AFYA(t;p) and FRE(Mt; Ap) = AFRE(t;p) for all
A € Ry such that Mt < 1.

Proposition 5 is proved in Section IV-B using similar arguments based on convex combinations with constant kernels as
those used in the proof of Proposition 3. In addition, the Doeblin curves of certain classes of kernels such as additive noise
channels are invariant under scaling (when the power constraint is scaled accordingly) as the following proposition shows.

Proposition 6 (Scale Invariance of Power-Constrained Doeblin Curves for Additive Noise Channels) Let X =Y = R%
Suppose K, : X x Fy — [0,1] is an additive noise channel parameterized by o such that K (A ] x) f adf(y_x)dy
where f : RY — R is a probability density function. Then, if the power function is M (z) = FUA( p) = %A & (t;p/o?) for
all 0 > 0 and p > 0.

Proposition 6 is proved in Section I'V-B.

D. Bounds on Power-Constrained Doeblin Curves

In this subsection, we present upper and lower bounds on the power-constrained Doeblin curves for a general kernel and
provide examples of kernels whose Doeblin curves may be computed in closed form. Throughout this analysis, let (X, ||-||) be
a separable Banach space equipped with the Borel o-algebra Fy induced by the norm topology, let (), Fy) be an arbitrary
Polish space, and let K : X x Fy — [0, 1] be an absolutely continuous Markov kernel. Let B(a,r) C X denote the closed
ball centered at a € X with radius 7 in the || - ||-norm. Define functions 6 : X x Ry — [0,1] and © : Ry — [0,1] as
0(a,m) = pp(a,r)(K) and O(r) = sup,cy 0(a,r). We remark that © (and hence ©, by Lemma 9, Part 2) are non-decreasing,
because ps is non-decreasing in S as previously mentioned. Since X" is a Banach space, there exists an element 0 € X such
that ||0]| = 0; we denote this element in bold font to distinguish it from the scalar 0 € R. Let

d(S
Vésup{ﬁisf”) S X, 0<||S]. < oo} (14)
denote the Jung constant of X [52], [53], i.e., the tightest multiplicative factor between the Chebyshev radius and diameter of
any bounded subset of X. In Euclidean space X = R%, we have v < d/(d + 1) for a general norm |-|| [54, Theorem 6], and
~ = 1/2 for the ¢>°-norm [46, Section 5.3].

First, we present upper and lower bounds on the average extremal power-constrained Doeblin curve of K (similar to [25]).

Theorem 2 (Bounds on Average Extremal Doeblin Curve). The power-constrained Doeblin curve F’}(E satisfies the upper and
lower bounds t0(0, M~ (2)) < FiE(t;p) <tO(2y M~(R)) for all t € (0,1].

The proof is provided in Section IV-C, utilizing the variational characterization of Doeblin coefficients from Theorem 1 and
the maximal coupling characterization from Proposition 1.

If K acts as a convolution operator on R? (e.g., additive noise), then #(a, s) is independent of a, namely 6(a, s) = ©(s) for
all a € X. This immediately leads to the following counterpart to [25, Corollary 5].

Corollary 1 (Average Extremal Doeblin Curves of Convolution Kernels). For any kernel K which acts as a convolution operator
on X =Y =R% and for which © is concave, we have t©(M~'(2)) < F3E(t;p) < t@(d+1 M~1(2)). Furthermore, if

d=1or ||| is the {>°-norm, then F4E(t;p) = t©(M~1(2)).

The equality in the d = 1 or £*°-norm case trivially follows, since the upper and lower bounds from Theorem 2 match. The
next corollary provides three examples of closed-form Doeblin curves for convolution kernels on R.

Corollary 2 (Examples of Average Extremal Doeblin Curves). Consider the Gausszan Laplace and q-Gaussian [55, Section
2.3] (q = 2) additive noise kernels on X =) = R, given by K{(A|x; 0?) = fA = 27r exp( (y—a)’ )dy, Ky(Alz; b) =
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I exp(f@) dy, and K3(Alz; B) = [, @(m)dy, respectively. Then, under the norm ||| = | - | and power
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Fig. 2. Average extremal power-constrained Doeblin curves for the Gaussian, Laplace, and g-Gaussian (¢ = 2) additive noise kernels on R.

function M ( ) = 22, the average extremal power-constrained Doeblin curves for these kernels are F?{El (t;p,0?) = t(1 —

LV/p/t), FiE (t;p,b) = t(l —exp(—+/p/t)), and Fi& (t;p, B) = 2t arctan(y/Bp/t), where ® : R — (0,1) denotes
the standard Gaussian CDF B(y) = [* yoo = exp(——) dt.

Corollary 2 is proved in Section IV-C. By following the steps in this proof up to (97), we obtain that © is concave for any
convolution kernel on R whose density function g(z) = g(z —y) = (y | ) is symmetric about z = 0 and non-increasing on
z € [0,00). For such convolution kernels, the Doeblin curve FAE is concave in ¢, since Corollary 1 establishes that FAF is the
perspective of the composition of a concave function © and a concave non-decreasing function M ~! (cf. [25, Remark 4]).

Figure 2 presents Doeblin curves for the convolution kernels in Corollary 2 with 02 = 1, b = 1, and 3 = 1. The trivial
upper bound (11) due to submultiplicativity of p is depicted by all three curves remaining below the gray dotted line y = ¢.
Since the derivatives of all three curves approach 1 as ¢ — 0, the complementary Doeblin coefficients for all three kernels
are p(K1) = p(K32) = p(K3) = 1. Hence, the contraction behavior of these kernels is only captured by their Doeblin curves
through the analysis in Theorem 2 and the ensuing corollaries.

Lastly, we present bounds on the uniform average power-constrained Doeblin curve of a general kernel K. To do so, we
impose additional regularity structure by requiring all input kernels W to have a fixed source space I/ with finiteness or
boundedness assumptions. We also impose sub-Gaussianity assumptions on W as required.

Proposition 7 (Upper Bound on Uniform Average Doeblin Curve). Let U be a finite set. Let G be the set of all Markov kernels
W :U x Fx — [0, 1] satisfying the following assumptions:
a) (Uniform average power constraint) |[|W{|| 5 < p.
b) (Sub-Gaussianity) Consider the set of random variables {Z,}vcu given by Z, = M (|| X.]), Xu ~ W(- | u) for each
u € U. Then, there exists o > 0 such that for any u € U, E[e)‘(Z“%E[Z“D] < exp( 2)for all A e R.

Then, the constrained Doeblin curve F g (t;G) satisfies the upper bound F g (t;G) < t@(27 M=Y((p+ o\/2log, |U])/t)) for
all t € (0,1).

Proposition 8 (Upper Bound on Uniform Average Doeblin Curve). Let (U, dy) be a Polish space endowed with a metric
dy : UXU — Ry such that (U, dy) is totally bounded, i.e., the e-covering number N (e,U,dy) = min{n € N : 3{ui,... u:} C
U,Yu € U, Fi € [n], dy(u,ul) < e} is finite for all € > 0. Let G be the set of all Markov kernels W : U x Fx — [0,1]
satisfying the following assumptions:

a) (Uniform average power constraint) |[|W{|| 5 < .

b) (Sub-Gaussian increments) Consider the random process {Zy }yeu given by Z,, = M(|| X,||), where { Xy }ueu ~ P is the
maximal coupling of random variables with X,, ~ W (- | u) for each uw € U, as deﬁned in (34). Then, there exists o > 0
such that for any u,v € U, E[e/\((z —Zv)ElZu—2y ])} < exp(%) Sforall A e R

¢) (Measurability) Under the above definition of {Z,}ycu, the quantity sup,c,{Z, — E[Z,]} is measurable.

Then, the constrained Doeblin curve F i (t;G) satisfies the upper bound
el oo

Fr(t;G) < t@(m M! (f + 32

V1og, N(e,U,dy) de))

for all t € (0,1], where |[U|| . £ sup, ey du(u,v) denotes the diameter of (U, dy).



Proposition 9 (Lower Bound on Uniform Average Doeblin Curve). The power-constrained Doeblin curve F}J(A satisfies the
lower bound FY2(t;p) > t6(0, M~(2)) for all t € (0,1].

Propositions 7 to 9 are proved in Section I'V-C by adapting the arguments from the proof of Theorem 2. We emphasize that
Proposition 9 does not apply to the constrained Doeblin curves Fg (¢; G) from Propositions 7 and 8, which are upper-bounded
by FUKA in general due to the stricter constraints imposed on the input kernels W when defining the former. We provide
examples of non-trivial kernels satisfying the preconditions of Propositions 7 and 8 in Appendix C.

III. MAIN RESULTS ON APPLICATIONS

In this section, we present three illustrative applications of Doeblin curves to other areas of information theory and learning
theory. Firstly, we derive generalization error bounds for iterative optimization algorithms operating over unbounded feasible
sets. Secondly, we establish lower bounds for reliable computation using circuits of noisy g-ary gates. Lastly, we introduce
a new definition of (e, §)-differential privacy based on our variational characterization of Doeblin coefficients, and provide
improved privacy bounds for online iterative optimization.

A. Bounds on Generalization Error

In this subsection, we use Doeblin curves to extend existing information-theoretic generalization error bounds for noisy
iterative optimization algorithms in [41] to settings where the feasible set has infinite diameter or the optimization problem is
unconstrained altogether (also see [56]). We utilize the information-theoretic framework introduced in [41], which provides
generalization error bounds for compact feasible sets by leveraging the Dobrushin contraction coefficient of additive noise
channels. Their results indicate that data points used in earlier iterations have a decaying contribution to the generalization
error due to the cumulative effect of noise injection, with the rate of decay governed by the Dobrushin coefficient of the
underlying noise channel. This analysis yields a non-trivial bound only when the feasible set has finite diameter, since the
Dobrushin coefficient trivially equals 1 otherwise. To address feasible sets with infinite diameter, we utilize Doeblin* curves as
a finer-grained tool to capture information decay for data points used in earlier iterations even when Dobrushin coefficients fail
to do so, thereby yielding non-trivial generalization error bounds despite the absence of coarser coefficient-based contraction.

Formally, following [41], we begin by considering a general (possibly non-convex) stochastic optimization problem,

lg(w, 2)] = /Z g(w,) dy,

in G . wh G =
min uw(w), where G,(w) Z]EM
where w € YW C R? are the model parameters constrained to the (potentially unbounded) feasible set W, y is the underlying
data distribution over the samples Z belonging to the sample space Z, and g : W x Z — R is the loss function. In practice,
the true data distribution 1 is usually unknown, and only a dataset S = (Z1, ..., Z,,) consisting of n independent and identically
distributed samples Z; ~ p is available. Thus, we instead consider the empirical risk minimization (ERM) problem

1 n
in G h G £ _ Zi )
11;%151\; S(w) ,  Where s(w) " ;g(w, )

with the aim of finding a solution which generalizes well to the original problem of minimizing G,. To this end, we consider the
following noisy iterative algorithm. The algorithm is initialized with an arbitrary parameter W, € V. Before the optimization
process, T' disjoint mini-batch index sets By, ..., Br are chosen deterministically and fixed, where B; C [n] contains the indices

of the samples comprising the mini-batch at iteration ¢. Next, the algorithm performs 7T iterations by updating the parameters
W, according to the rule

W 2 proj <Wt_1 — N Vg (Wieer, Zi) + tht>
w |Bt| 1€EBy

for each iteration ¢ € [T'], where the projection operator projy,, ensures that the parameters remain within the feasible set W,
1 is the learning rate, Vg represents the partial gradient of g with respect to its first argument (i.e., the model parameters),
N; ~ Normal(0, I) represents independent additive standard Gaussian noise (where I is the identity matrix of appropriate
dimension),’ and m; controls the noise magnitude. We remark that several algorithms can be expressed in this form, such as
Stochastic Gradient Langevin Dynamics (SGLD) and Differentially-Private Stochastic Gradient Descent (DP-SGD).

“4In all applications of Doeblin curves, suitable constraints may be placed on the Doeblin curve to obtain tighter bounds by incorporating prior knowledge
about the input distributions. For example, when deriving our results on generalization error, we only utilize the Doeblin curve FgA of the additive noise
mechanism to quantify the contraction between fwo distributions pushed through the mechanism. Hence, we may instead consider the constrained curve which
only includes input kernels with [I/| = 2, which reduces to the Dobrushin curve of the noise mechanism. Nonetheless, we present all results in this paper in
terms of the more general Doeblin curve F(%A for conceptual simplicity.

SWe focus on Gaussian noise for conceptual simplicity, although our results can be easily extended to other noise distributions such as Laplace.



We assume that the loss function is bounded above by a constant A > 0, i.e., g(w,2) < A for all w € W and z € Z, and
that the gradient of the loss is bounded in magnitude, i.e.,

Ywe W, Vz e Z, |[Vg(w,z)|l, <L. (15)

Our objective is to upper-bound the expected generalization error at the final model parameters W after T iterations, i.e.,
|E[G.(Wr) — Gs(Wr)]|, where the expectation is taken with respect to the randomness in the dataset S and the noise
Ny, ..., Np throughout the optimization process.

Let F(LIJ)A denote the uniform average power-constrained Doeblin curve of the Normal(0, I') additive noise channel under the
power function M (z) = 22. Our main result is formally stated as follows.

Theorem 3 (Expected Generalization Error). The expected generalization error satisfies

T
Bt - o
G, (W) = G (W)l < 430 LR (- B (25bpirs ) ) 16
t=1
where for each t € {0,...,T — 1} we define
(<47 é |:va Wt7 ) ]E [Vg(WbZ)]H :| )
(Wt Z) (Wt,2) 2
~Pyw, Qu ~Pw, ®pn

for each t € {2,...,T} we define

1
P e — <2 max 5upE[||Wt 1||2 ‘ Z; = Z} + 2n; L2>
mi
U B,

and the composition of Doeblin curves in (16) reduces to the identity function (i.e., no Doeblin curves are applied) for the
t =T term of the sum.

Theorem 3 is proved in Section V-A. The argument utilizes the following lemma to express the expected generalization error
in terms of the TV-information between the model parameter W and each data sample Z;.

Lemma 1 (Generalization Error and TV-Information [41, Lemma 1]). Define the TV-information between two random variables
XandY as
Iv(X;Y) 2 [[Pxy — Px @ Pyllqy (17)

where Px y is the joint distribution of (X,Y), and Px and Py are the marginal distributions of X and Y, respectively. Then,
the expected generalization error satisfies

A n
E[G.(Wr) = Gs(Wr)]| < — > Iv(Wr; Zi) .
i=1
Our principal contribution is to bound the TV-information between the output Wr of the learning algorithm and the data
samples Z; by utilizing properties of the Gaussian noise channel’s Doeblin curve, as formalized in the following lemma which
holds for possibly non-compact W.

Lemma 2 (Recursive Bound on TV-Information). The TV-information between the final model parameter W and a data
sample Z; satisfies

Iv(Wr; Z;) < F%’*(- A (F“%A (ITV(Wt;Zi)§pt+1);pt+2) ;pT) ; (18)
where t is the iteration on which Z; is used in the update rule (i.e., t € B;), for each s € {t + 1,...,T} we define
1
ps = — (2 max SupE[HWe 1l ‘ Z; = z} +277QL2> (19)
m s—

"
r=1

and the composition of Doeblin curves in (18) reduces to the identity function if t = T (in which case (18) trivially holds with
equality).

Lemma 2 is proved in Section V-A. We remark that bounds on the second moment E[||W;||3] of the iterates W; have been
derived in the literature, e.g., under additive Gaussian noise [56]. These results can often be directly translated into bounds on
pq. In principle, tighter bounds can be obtained by considering the second moment E[||W; — @||3] of the iterates with respect
to a reference point w € Y chosen as the center of the feasible set or, ideally, the optimal solution w*. However, since w* is
unknown in practice, we use the worst-case bounds on the second moment of the iterates instead.



B. Reliable Computation Using Noisy q-ary Gates

In this subsection, we use Doeblin curves to establish information-theoretic bounds on the expressive power of circuits of
noisy gates for the computation of g-ary functions. This builds on results for Boolean functions in [25]. We consider n-input
circuits which compute a single output value using b-input gates, where the result of each gate is perturbed by independent
noise. Historically, the study of such architectures began with von Neumann’s pioneering work on fault-tolerant Boolean circuits
[57]-[59], and has been largely limited to binary operations. We expand this line of study to multivalued logic systems, as
motivated by recent advancements in classical and quantum information processing [60].

Formally, we model a noisy circuit over a g-ary alphabet Q = {&,...,§,} C R? as a directed acyclic graph with n
input vertices Xi,..., X, € Q indexed by i € [n]. The inputs are processed by a collection of m gate vertices indexed by
j € [m], each of which takes b; < b R%-valued arguments and computes a Q-valued result Z; € Q, which is then corrupted by
independent noise from some arbitrary fixed kernel ® to produce Y; € R?. Formally, letting \; and M; denote the incoming
edge sets of input vertices and gate vertices feeding into gate j, respectively, we have

Z; = Fj({Xi}iGNj 7{YJ”}J"eMj) Vi~ 0] Z)

for some deterministic gate function T'; : (R%)% — Q, where b; = |\;| + | M| < b. Without loss of generality, we assume
the gates are indexed in topological order, i.e., M; C [j — 1] for each j € [m]. At the end, the circuit produces a single output
vertex Y,, with no outgoing edges. We assume there exists a directed path from each X; to Y,,, so none of the circuit inputs
are discarded. We note that this model can be seen as a g-ary generalization of the setup considered in [25, Section 5.3].

One goal of such a circuit is to compute a function G : Q" — Q with error probability at most Penor > 0. Namely,
there must exist some fixed decoding function G : R — Q such that for any input vector (z1,...,z,) € Q", P(G(Y;,) =
G(z1,...,24)) > 1 — Penor, where the probability is taken with respect to all the noise in the circuit. In the binary case
(¢ = |Q| = 2), by Le Cam’s relation, the error probability of the optimal decoder can be controlled by the TV distance between
the marginal distributions of Y,,, induced by setting some “initial” input vertex to 0 or 1, respectively, while fixing all other
input values [25, Eq. 146]. So, several works study the question of how information measures contract over fault-tolerant
circuits, e.g., [25] recursively upper-bounds TV distance while [9] bounds mutual information. Propelled by such analyses, and
in light of the interpretation of complementary Doeblin coefficients as a multi-way generalization of TV distance [19, Theorem
2], we analyze the complementary Doeblin coefficient of the ¢ induced marginal distributions of Y,,, as a first step towards
understanding information propagation in noisy g-ary circuits. (Intuitively, perceiving a circuit as a Markov chain, the analysis
of TV distance in [25] is related to the coupling time of two copies of the chain with two different values at the “initial” vertex
[61]. On the other hand, our analysis of Doeblin coefficients is related to the coupling time of g copies of the chain initiated
at all ¢ possible values.) Our main contribution is the following theorem, which relates the Doeblin coefficient to the noise
mechanism’s Doeblin curve.

Theorem 4 (Upper Bound on Circuit Output Divergence). Fix € > 0. For all n-input circuits of noisy b-input gates with
sufficiently large n, there exists some input vertex, which we take to be X, without loss of generality, such that for any fixed
values xa,...,xy, € Q of the remaining inputs,

p([P)(,}j, . .,Pl(/‘i?]) < max {t € [0,1] : BYA(min{1,bt}; p) = t} +e,

where Pi(/iz is the marginal distribution of Yy, induced by the circuit when setting X1 = { and X; = x; for all i > 1, Fgf\ is
the uniform average power-constrained Doeblin curve of the noise kernel ® for some norm ||-|| on R? and power function
M Ry — Ry, and p £ maxgco M(||€])).

Theorem 4 represents an information-theoretic limit on the quality of any output decoder, since decoding performance
improves as output divergence increases. We defer the proof to Section V-B. The proof constructs a coupling of the induced
marginal distributions at each gate output Y}, using the maximal coupling characterization of Doeblin coefficients (34) to refine
the couplings from earlier gates. This is formalized in the following lemma. For notational convenience, we denote collections
of superscripted variables as w9 = (w®, ... w(@).

Lemma 3 (Stepwise Coupling Construction). Let U be a finite subset of a separable Banach space. Let (V, Fy) be a Polish
space and let ® : U x Fy, — [0,1] be a Markov kernel from U to V. Let Pl(jl), ceey P[(Jq) be a collection of probability measures

on U, and let P‘(fl)7 e ,P‘Sq) be the respective probability measures on V induced by pushing P[(f) through ® for each { € [q],
ie.,

vAe Fy, PP (4) 2 /M ®(A | u)dPY (u). (20)
Then, given any coupling 7y of PL(,l), e ,P[(Jq), there exists a coupling Ty of P‘(/l), . ,P‘(/q) satisfying

Vltmmy (ﬁ(v(l) - V(Q))) S (UU:}E’LFU (ﬁ(U(l) == U“”))m) : @1)



where we define p = maxyey M (||ul]).

Lemma 3 is proved in Section V-B by constructing 7y as the weighted average (with respect to U119 ~ 1) of the maximal
coupling (34) of ®(- | U My, ..., - | U (‘Z)). Iterating this construction for each gate leads to repeated application of the
Doeblin curve FA, which converges to the greatest fixed point of a transformed version of FYA.

C. Relation to Differential Privacy and Online Algorithms

In this subsection, we utilize our variational characterization of Doeblin coefficients to motivate a new definition of group local
differential privacy (LDP). The standard information-theoretic® definition of LDP asserts that a mechanism K : X x Fy — [0, 1],
which is nothing but a Markov kernel, is (e, d)-LDP if for any inputs z, 2’ € X, both K(- | ) and K (- | 2’) exhibit similar
distributions [42], [63]-[65], i.e.,

Vo, o' € X, VAe Fy, K(A|z)—eK(A|2')<§. (22)
Subtracting both sides from 1, this is equivalent to
Vo, o' € X,VA e Fy, K(A°|z)+eK(A|2')>1-4. (23)

This rearrangement has an interesting interpretation: Consider a binary hypothesis testing scenario that aims to distinguish
whether the output Y of a mechanism is derived from the distribution K (- | z) versus K (- | 2) for any fixed « and z’. Let
A C Y be any possible choice of the rejection region for the hypothesis Y ~ K (- | 2’). The reformulated version in (23)
essentially highlights the impossibility of achieving a very low weighted sum of type-I and type-II errors from the data Y
derived from a differentially private mechanism K (see [66, Theorem 2.1] for more details).

Motivated by our variational characterization of Doeblin coefficients from Theorem 1, we extend the standard definition of
LDP to a group setting.” Consider any group size n > 2 and any € = (e1,...,€,) € R" such that ¢; = 0 and ¢; < ¢; for all
1 < j. A mechanism K is said to be (€, d,n)-LDP if for any z1,...,z, € X and any Fy-measurable n-partition Aq,..., A4,
of V,

D e K (A |a) =13, (24)
i=1
This definition may be interpreted in the context of an m-ary hypothesis testing problem. Given a set of n hypotheses
H;:Y ~ K(- | z;) indexed by i € [n], where Y is the observed variable, the generalized definition in (24) states that the
problem of identifying a single false hypothesis has a large weighted sum error for any possible choices of rejection regions.
Any reasonable test for this hypothesis testing problem would partition the space ) into n rejection regions Ay,..., A, and
the test rejects hypothesis H; if Y takes on a value in A;. Therefore, K (A; | ;) represents the conditional probability of error
given H; in this scenario. For n = 2, the notion of (e, §, 2)-LDP reduces to the standard definition in (22). Furthermore, K
being (e, d,n)-LDP for n > 2 is a stronger condition, as it implies that K is also ([ey,. .., €y], 0, m)-LDP for all 2 < m < n.
Motivated by this formulation, we define weighted analogues of the Doeblin and complementary Doeblin coefficients for a
Markov kernel K : X x Fy — [0, 1]:

Y ; 3 €i ) )
TE(K’ n) - zl,..l.g:f;LeX n—part}tIi%)fr‘l of Y Z € K(Al | ZZ) ’ (25)
Ar,., A, =L
pe(K,n) 21— 71 (K,n). (26)

We remark that 7¢(K,n) € [0, 1] (and so pe(K,n) € [0, 1]), because for any z1,...,z, € X, we have

(a) n
Te(K,n) < e KV o)+ > e K0 | 2) L K] 21)

=2

@,
where (a) holds by upper-bounding the infima in (25) with a specific instance, (b) holds because €; = 0, and (c) holds because
K is a Markov kernel. Moreover, akin to how [42], [67] reformulated local differential privacy in terms of the E, contraction
coefficient,® pe(K,n) captures (e, 8, n)-LDP exactly: pe(K,n) <6 if and only if K is (e, 8, n)-LDP (see proof of Theorem 5
in Section V-C).

In addition, we note a connection between p. and the concept of min-DeGroot distance from [19], which is construed as a
generalization of Bayes statistical information. In this context, a hidden random variable X € X’ (where X = {z1,...,z,} has
cardinality |X'| = n) follows a prior distribution A € R™, and a random variable Y € } is observed according to an observation

SThis differs slightly from the learning-theoretic definition, which considers input datasets of multiple users differing by only one user [62, Definition 2.4].

7Accordingly, this is different from learning-theoretic definitions of group differential privacy based on distance between the input datasets [62, Theorem 2.2].

8We note that the E-divergence is a weighted version of TV distance, which is equivalent (when appropriately scaled) to Bayes statistical information or
DeGroot distance [68].



model denoted by K. Let X e X be any (possibly randomized) estimator of X based on Y, such that X — Y — X forms a
Markov chain. [19] defines the min-DeGroot distance 7iin (A, K) as the reduction in Bayes risk when observing the data Y’
compared to not observing Y. Specifically,

dK

Tinin (A, K) 2 min \; — / (min Ai— (| xz)) du,
i€[n] y \i€[n] d,u

where p is the common dominating measure for K (- | 1),..., K (- | z,) from (2). By setting \; = e/ >"""_; e and applying

Proposition 2, the min-DeGroot distance can be interpreted as a rescaled version of p(K,n), namely,

pe(K,n) = <Z e€i> Tmin(A, K) . 27
i=1

Therefore, the definition of (e, d,n)-LDP is essentially a rescaled version of the generalized notion of Bayes statistical information
obtained from the set {z1,...,z,}. Our proposed definition of an (e, d, n)-LDP mechanism underscores that, given the processed
data of the entire group, obtaining any substantial “information” (quantified in the Bayes statistical information sense) about
any individual member is “hard.”

In the following theorem, we prove contraction properties of p. (K, n). By (27), these results translate to contraction properties
of Tnlin()\7 K)

Theorem 5 (Contraction of p.(K,n)). Let K : X x Fy — [0,1] be an absolutely continuous Markov kernel. For any group
size n > 2 and any € = (€1,...,€,) € R such that ¢, = 0 and €; < €; for all i < j, we have the following properties:
1) (Submultiplicativity) For any Markov kernel W : U x Fx — [0,1],

pe(WHK,n) < pe(W,n) pe(K,n).
2) (Contraction behavior) K is (e, d,n)-LDP iff for any Markov kernel W : U x Fx — [0, 1],
pe(WK,n) < dpe(W,n).
3) (Doeblin curves) For any Markov kernel W : U x Fx — [0,1] satisfying ||[W{||ya < P
pe(WEK,n) < Fif(pe(W,n); p). (28)

Theorem 5 is proved in Section V-C. Parts 1 and 2 imply that p. exhibits contraction-coefficient-like properties akin to p,
with Part 1 acting as a meta-SDPI for p. (cf. [16, Proposition 3]) and Part 2 characterizing § as the contraction coefficient of
this meta-SDPI. In particular, the data processing inequality for pe, i.e.,

pe(WEK,n) < pe(W;n), (29)

is an immediate consequence due to pe(K,n) € [0,1]. In addition, considering the connection between p. and the min-
DeGroot distance highlighted above, Part 1 can be restated as an SDPI for min-DeGroot distances, i.e., for any Markov kernel
W : U x Fx — [0,1] with finite U, Tmin(X, WEK) < pe(K, [U]) Tmin (A, W).

Equation (28) and the techniques developed above provide tools for tighter privacy guarantees for various mechanisms. Using
these results, we now derive differential privacy guarantees for online iterative algorithms using Doeblin curves. While prior
works such as [67] rely on compactness assumptions, our focus is on extending such analyses to potentially unbounded spaces
where it can be difficult to capture privacy using classical contraction-coefficient-based techniques. To this end, we consider and
build on the online learning framework presented in [67, Section IV-B], where the learner sequentially minimizes a sequence of
convex objectives {g;}?_; over a parameter space YW C R%. The protocol proceeds as follows. The learner initializes with a
random parameter Wy € W, and at each iteration ¢ € [T'], the cost function g; is revealed. The learner then performs the update

W, & p)l;\?j(Wtfl — Vg (Wie1) + myNy) (30

where the projection operator proj,,, ensures that the parameters remain within the feasible set WV, 7, > 0 is the learning rate,
and m; scales the standard Gaussian noise N; ~ Normal(0, ) (where I is the identity matrix of appropriate dimension). By
taking g¢(w) £ ¢(w, Z;) where £ : W x Z — R is a loss function, this framework subsumes one-pass ERM, where the learner
approximates the solution of min, e % Zthl {(w, Z;) with data points Z1,...,Zp € Z revealed sequentially. The goal is to
ensure that the final iterate W satisfies a privacy guarantee. We assume the gradient of each objective g, is uniformly bounded,
ie.,

Vi€ [T], Yw e W, |[Vai(w)ll, < L. 31)

Existing LDP guarantees for online algorithms [67] rely on the contraction coefficient of E.-divergence, which quantifies the
decay of information due to additive noise. However, for W with infinite diameter, the contraction coefficient for E-divergence
degenerates to 1. Below, we utilize the contraction bound on p in terms of Doeblin curves Fy* from Theorem 5 to quantify
the contraction induced by the noise V.



Theorem 6 (Differential Privacy for Unconstrained Online Learning). Let Wo(i) ~ Pv(rl/i for i € [n] denote n different
initializations of the online learning process. Let W;Z) ~ Péf,)T be the respective output parameters after T iterations of the
update rule (30). Let FgA be the uniform average power-constrained Doeblin curve (with power function M(z) = 2%) of the

Normal(0, I) additive noise channel. Then,

1 n 1 n
pe([PIEV;?~--aPISI/7)~]7n)SFtlIJ)A<'"FgA<pe([P‘SV37...7P‘EVO)} )pl) 7pT)7

where for each t € [T] we define

a1 H ()
2 (2 E|||W,
pe S o (|

‘ } n 2772L2> (32)

Theorem 6 is proved in Section V-C using Theorem 5, Part 3. We note that the above result can also be used to derive
privacy amplification bounds for online learning algorithms as in [67] for more general VV. In addition, Theorem 6 can also be
perceived as a variation of Lemma 2 that bounds an n-way divergence instead of TV-information.

IV. PROOFS OF MAIN RESULTS ON DOEBLIN CURVES

In this section, we prove the main results presented in Section II, pertaining to fundamental properties of Doeblin coefficients
and curves.

A. Proofs of Doeblin Characterizations

In this subsection, we first prove Propositions 1 and 2. Next, we introduce essential preliminaries (such as lattice infimum)
required for generalizing the argument to Polish spaces. Finally, we present a detailed step-by-step proof of Theorem 1.

Proof of Proposition 1. We have

)Y ANEYI0)Y s P(aal € X, Y, = Yr), (33)

zEX P:Y,~K(:|z)
where (a) holds by the greatest common component characterization of Doeblin coefficient (5) and (b) holds by [19, Theorem
2], [47, Chapter 3, Theorem 7.3, p. 107]. L]

We remark that for any kernel K, the supremum in (33) is achieved by the maximal coupling given by (cf. [19, Eq. 34], [47,
Chapter 3, Theorem 7.3, p. 107])
Y* ifl=1
VoeXx, v, 2 ' ’ (34)
Y,, ifI=0,

K(Y | ) and the random variables I, Y*, and {Y,},cx are sampled independently from the probability

K(- - K(- — , K(- /
I~ Bernou”i(a)7 Y* ~ M’ Vo € X, Yz ~ ( | .’ﬂ) 1/\36 cx ( | z ) )
« —

where a = A
measures

reX

(Note that Y* and Y’r are unused in the case that their respective probability measures are undefined, i.e., « =0 or o = 1.)

Proof of Proposition 2. Fix an absolutely continuous Markov kernel K : X' x Fy — [0, 1] with common dominating measure
pw:Fy =+Ry. Fixzy,...,z, € X and y1,...,7v, > 0.

First, we will show that
inf E K(A; | x;) / min v, dK( | ;) | d
n- pd.rtmon of y ’Yl = y \i€[n ] d/J, ! i

A17 i) An

Let A%, ..., A’ be the specific partition of ) given by

dK
; {y y mm<argjmeﬁl]% o (yl%)) Z}

for each ¢ € [n], where the min operator is added to break ties. We have

FEIPNCE dK
< j ) = . . )
nparuuon ofyzlyl A ‘$2 Z/% |x1) ;A* (72 dﬂ( |xl)> d,u
(©) / ( > @/( . dK )
min xs) ) du = minv;— (- | ;) | d,
Ei JEW B e au [ (emin i 120 ) d



as desired, where (a) holds by upper-bounding the infimum with a particular instance, (b) holds by definition of Radon-Nikodym
derivative, (c) holds by definition of A, and (d) holds because A7, ..., A} is a partition of ).

Next, we will show that
E K(A; | x;) / min %( | ;) | d (35)
n- pamnon of )i ’)/1 y \i€[n] L d,LL ! H-

15 An

For any partition Aq,..., A, of ), we have

Z% (Ai | ) Z /\ VKA [2) 2 N K | 25) L sup {v() : V) € ] v K (- | ;) = v}

i=1j€ln J€[n]

() dK >
> miny;,— (- | x;) ) du,
_/y(ie[n]%du< 1))

where (a) holds because the greatest common component of a collection of measures is a lower bound on each individual
measure, (b) holds because Ay, ..., A, is a partition of ), (c) holds by definition of greatest common component (3), and (d)
holds by lower-bounding the supremum with the specific measure

dK
vacry, @2 [ (w1 o) i,
A \i€[n] " dp
which satisfies ;K (- | ;) > v* for each j € [n]. Lastly, since Ay,..., A, was arbitrary, taking the infimum over all
n-partitions of ) proves (35) as desired. O

Next, we present some preliminaries before carrying out the proof in the general setting of Polish spaces.

Definition 2 (Lattice Infimum [69, Section 2, p. 253]). Let X be a Polish domain, and let F be the set of all bounded
measurable functions f : X — R. Given a measure jn: X — R, the lattice infimum of an arbitrary subset of functions G C F,
denoted |\ geg 9> 18 the function in F such that:

1) For each h € G,

/\ g<h (p-ae.) (36)
9eg
2) For each f € F, if
Vheg, (f<h (wae)), (37)
then 5
< /\ g (p-ae.) (38)
9€g

For any G, the lattice infimum is p-a.e. unique. To see this, consider any two functions fi, fo € F satisfying Definition 2.
Since both functions satisfy the first condition (36), both functions satisfy the antecedent in the second condition (37), and so
by the consequent in the second condition (38), we have f1 < fy (u-a.e.) and fo < f1 (u-a.e.) Moreover, if G is countable,
the lattice infimum is simply the pointwise infimum of functions in G, i.e., A s g(z) = inf {g(z) : g € G}. However, when
G is uncountable, the lattice infimum and pointwise infimum are different in general. We remark that the notion of lattice
infimum serves primarily to avoid measurability issues, and the proof of Theorem 1 can be carried out without such notions for
“well-behaved” kernels as shown in Appendix B for completeness.

The following lemma shows that the density of the greatest common component of a collection of measures is the lattice
infimum of the individual measures’ densities.

Lemma 4 (Density of Greatest Common Component). Let {m;};cz be a collection of measures on a Polish space (Y, Fy),
where L is an arbitrary index set. Assume each m; is dominated by a common o-finite measure | (i.e., m; < u for all i € T).
Then, we have the following properties:

1) The greatest common component \._,7; is dominated by p, ie., /\iEI T <K [

i€l
2) The lattice infimum )\, 7 %’z exists.

3) The density of the greatest common component is i Niez Ti = Niez Cfgj (p-a.e.).

Proof of Lemma 4. Fix measures {m; };cz on (), Fy) satisfying m; < u for each i € 7.
Part 1: For any set A € Fy with u(A) =0, we have
(@)
A 7i(4) < m-(4) Zo

i€l



as desired, where (a) holds for any * € Z because the greatest common component of a collection of measures is a lower
bound on each measure, and (b) holds because 7;+ < .

Part 2: We refer readers to the analogous argument in [69, Lemma 2.6].

Part 3: For notational convenience, define a measure v* : Fy — R, as

VA € Fy, u*(A)é/ (/\ d“)du. (39)
A

i€l d‘LL

First, observe that for any ¢ € Z and A € Fy,, we have
@ [ dm | ®)
v (A) < / dp = m;i(A),
W< | T (4)
where (a) holds by Definition 2, Part 1 and (b) holds by definition of Radon-Nikodym derivative. Since v* < 7; for each i € Z,
it follows that for each A € Fy,

v'(A) <sup{v(4):VieZ v<m}. (40)
Next, observe that any measure v satisfying v < m; for each ¢ € 7 is itself dominated by u (i.e., v < u), because

v(A) < m(4) Do

for any set A € Fy with u(A) = 0, where (a) holds because 7; < . Hence, by the Radon-Nikodym theorem v i well-defined.

> du
Moreover, we have
dv dm i
<

du = dp

(u-a.e.) 41

dm;*
dp

for each 7 € Z. To see this, suppose the contrary: Assume that for some * € Z, we have Z—Z > on some set A* € Fy

with p(A*) > 0. Then,
p(A7) = / Y > / M g = (A7),
A= dp

which contradicts the fact that v < 7;«. Following from (41), we have

dv A dm;
— < (u-a.e.)
du Z/\I du

by Definition 2, Part 2, and therefore v < v* by (39). Since v was arbitrary, it follows that for each A € Fy,
v*'(A) >sup{rv(4):VieZ v<m}. (42)
Proceeding onwards, for each A € Fy, we have

/A (f\ 22) dp Csup {(4) Vi e T, v < m} @ A\ mi(4),

i€l i€L

where (a) holds by combining (39), (40), and (42) and (b) holds by (3). Hence, by definition of Radon-Nikodym derivative,
% ser™i = Niez %‘ as desired. ©

Finally, we prove Theorem 1.

Proof of Theorem 1. Fix an absolutely continuous Markov kernel K : X x Fy — [0,1] with common dominating measure
w:Fy = Ry. We have

)2 A K(y'@(b)/y@ A K('I)>du(6)/y </\ ‘ff;ux)) an, @3)

reX zeX reX

where (a) holds by the greatest common component characterization of Doeblin coefficient (5), (b) holds by definition of
Radon-Nikodym derivative, and (c) holds by Lemma 4, Part 3.

Next, we compute the lattice infimum A % (- | ). For notational convenience, let
dK
A . . .
= inf inf min — (- | z;) | dp . 44
@ neNzl,.--,wneX/y <ie[n] dp ] J) K )
For each k € N, let 55, £ {Zr1,---%kn, } C X be a finite sequence such that

dK 1
min — (- | ;) |du < D+ —,
[ (jmin 1500 e < @+ 1



where the existence of such a sequence is guaranteed by the definition of (1) as an infimum in (44). Construct an infinite
sequence {Z1,Z2,...} C X by concatenating the finite sequences s in ascending order of k. Define a sequence of functions
n:Y —Ras

dK
VneN, g, = —_ Ti) . 45
n gn(y) = lrg[lﬁdﬂ(ylx) (45)
By construction, it holds that
lim Jn dp = OF (46)

Moreover, each g, is non-negative, by the non-negativity of the Radon-Nikodym derivative; and {g, }nen is a non-increasing
sequence, since each successive g, is the minimum over a larger set of i. Hence, {g, }nen converges p-a.e. to a measurable
function g : Y — R, i.e.,

lim g, =g¢g (u-ae.) an
n—oo
The limiting function g satisfies
/ gdp'? 1im [ g,dn 2@, (48)
y n—oo y

where (a) holds by the dominated convergence theorem because g, < g; for all n € N and fy qdu=KQ|%1)=1< o0,
and (b) holds by (46).
Observe that for every x € X, we have

< —(: -a.e.
g u( [z)  (p-ae)

To see this, suppose the contrary: Assume that g > ‘Z—K( | z*) for some z* € X, on some set A* € Fy with positive measure
w(A*) > 0. Then, for any arbitrary € > 0, it follows that

a ® dK c dK . . dK,
(D(:)/ gdqu/ gdp > / —(~\x*)du+/ gdp (:)/ —('\x*)du+/ (hm mm('xi)> du
. wc « du *e « du «e \n—2o0ic[n] dp
10)
@ dK e dK &) dK )
2/ (Hm m1n(|xf)) du(:) lim <min(-|x;‘)>d,u>/ (lmin —( |z ))du—eg®—e
v p v y dp

n—00 i€[n] =00 i€[n] d,LL i€[n*]

and we obtain the contradiction (1) > @) > (1), where (a) holds by (48) and because ) = A* U A*, (b) holds by the supposition,
(c) holds by (45) and (47), (d) holds for the sequence z given by =] = 2™ and =] = Z,_; for all ¢ > 2, (e) holds by the
dominated convergence theorem, (f) holds for some n* (possibly depending on €) by definition of limit, and (g) holds by
lower-bounding the value for the specific sequence {z7,...,z}.} with the infimum over all finite sequences.

Similarly, observe that any function h : ) — R where h < %( | x) p-a.e. for every x € X satisfies h < g p-a.e. To see
this, suppose the contrary: Assume that h < dK( | ) p-a.e. for every x € X, and h > g on some set A* € Fy, with positive
measure p(A*) > 0. Then, for any arbitrary e > 0, it follows that

(@) ®) © : .
®= [ gdu+ | gdp< | hdu+ [ gdp < min 7( | Z3) | dp+ | gdu
A= Axc JA *c |® A* \U€[n*] d/L *c
(d) dK e dK
< lim (min(-|£i)>du+e+/ gd,u(:)/ (hm min(-|a~:i)>du+e+/ gdu
n—o0 J 4« \i€ln] dp xe « \n—ocien] du wc
) (9)
= gdp+e+ gdp=D+e

and we obtain the contradiction (1) < 3) < (1), where (a) holds by (48) and because Y = A* U A*¢, (b) and (c) hold by the
supposition, (c) holds for any finite n* € N because the finite union of measure-zero sets has measure zero, there always exists
some n* (possibly depending on €) to make (d) hold by definition of limit, (e) holds by the dominated convergence theorem,
(f) holds by (45) and (47), and (g) holds by (48) and because ) = A* U A*C.

Hence, by definition of lattice infimum (Definition 2), g = A__ %(- | ). Proceeding from (43), we have

/ d(a®—1nf inf ZKA|$

neNzy,..., T EX N pdrtmon of Y 4

171n

as desired, where (a) holds by (48) and (b) holds by (44) and Proposition 2. O



B. Proofs of Doeblin Curve Properties

In this subsection, we first prove Proposition 3. We begin by establishing two technical lemmata used in the proofs of
Proposition 3 and subsequent results.

Lemma 5 (Doeblin Coefficients Under Affine Transformation). Let W : U x Fx — [0,1] and K : X x Fy — [0, 1] be Markov
kernels. For any probability measures w, 1 : Fx — [0, 1] and scalars A\, o > 0 such that W —am > 0 and 1 — A& > 0 (where we
define & = 1 — « for convenience), consider the Markov kernel WU x Fx — [0,1] given by W =AW —an)+ (1 —\a)p
Then, the complementary Doeblin coefficients of W and WK are p(W) = XA p(W) and p(WK) = X p(WK).

Proof of Lemma 5. Fix Markov kernels W and K, probability measures 7 and 4, and scalars A and « satisfying the conditions
in Lemma 5. The complementary Doeblin coefficient of W is

W 2i— A W w1 (A(/\ W(X|u)—a7r()()>+(1—/\a)u(X)>

ueU ueU

@y ()\ (r(W) — am(X)) + (1 — \a) M(X)) @y (A (r(W) —a) + (1 — )\07)) — Ap(W)

as desired, where (a) and (c) hold by the greatest common component characterization of Doeblin coefficient (5), (b) holds by
Lemma 8, and (d) holds because 7 and v are probability measures. The composition of W with K is

Vu e, WK(-[u) = (WK( |u) = arK () + (1= Aa) pk (), (49)
so the complementary Doeblin coefficient of WK is

pWE) Y1 N WEW | u@1- (A(/\ WK(y|u)—omK()})> +(1—)\d)uK(3}))
ueU ueU

@y _ (/\ (r(WK) — arK(Y)) + (1 — \a) MK()))> @y ()\ (r(WK) —a) + (1 — Aa)) — Ap(WK)

as desired, where (a) and (c) hold by the greatest common component characterization of Doeblin coefficient (5), (b) holds by
Lemma 8 and (49), and (d) holds because 7K and pK are probability measures. O

Lemma 6 (Properties of Identity Kernel). Let (U, Fy) and (X Fax) be Polish spaces withlUd C X. Let K : X x Fy — [0,1]
be a Markov kernel. The identity kernel from U to X, i.e., =:U X Fx — [0,1] where Z(A | u) = 8, (A) for all w € U and
A € Fy, satisfies p(E) =1 and p(EK) = py(K).

Proof of Lemma 6. By inspection, the greatest common component of = is A ., Z(- | u) = 0, and so the complementary
Doeblin coefficient of =, by (5), is p(E) = 1 — A, E(X | u) = 1 as desired. By inspection, the composition of =
with K is 2K (A | u) = K(A | u) for all w € U and A € Fy, and so the complementary Doeblin coefficient of ZK is
PEK)=1— A,cu KV | u) = py(K) as desired. O

Now, we are ready to prove Proposition 3.

Proof of Proposition 3.
Part 1: Fix Markov kernels K; and K5 and constraint sets G; and Go. We have

a (b) c
Fi, i, (1 G) Y sup {p(W K1 Ka): p(W) < t, W € G} < sup {p(VKa): p(V) < Fre, (5G1), V € Go} L e, (Fie, (£ G1); Ga)

as desired, where (a) and (c) hold by definition of Doeblin curve (9), and (b) holds because any kernel W € G with p(W) < ¢
satisfies p(WK;) < sup{p(WKy) : p(W) <t, W € G1} =Fk, (¢t;G1) and WK, € G.

Part 2: Fix a Markov kernel K and a convex constraint set G containing the identity kernel Z(- | u) = 8,(-) and a constant
kernel W (- | u) = m(-). For t = 0, we trivially have Fx (;G) = 0 = p(K)t, so fix t € (0, 1] for the remainder of this part.
Let W : X x Fx — [0, 1] be the Markov kernel given by W (- |u) 2B Ju)+ (1 —t)W( |u) =tE(- |u)+ (1 —t)x(-)
for all w € X. The complementary Doeblin coefficients of W and WK are

1) @tp(z) P,

(a) (b)
pWE) Dt pEK) Lt o (K) = t p(KC),
where in each line (a) holds by Lemma 5 and (b) holds by Lemma 6. By convexity of G, we have W e G. Hence,

Fre(t:6) Y sup {p(WEK) : p(W) < t, W € G} > p(WK) = t p(K) .

where (a) holds by definition of Doeblin curve (9). Combining this lower bound with (10) completes the proof.



Part 3: Fix a Markov kernel K, a convex constraint set G containing a constant kernel W (- | u) = (-), and scalars
A € [0,1] and ¢ € [0, 1]. Fix an arbitrary ¢ > 0. By definition of Doeblin curve as a supremum (9), there exists a Markov
kernel W* € G such that p(W*) < t and p(W*K) > Fg (t;G) — €. Define another Markov kernel W as W (- | u) £ AW*(- |
w) 4+ (1 =NW( | u) = AW*(- | u) + (1 =) () for all u € U. By Lemma 5, we have p(W) = Ap(W*) < At and
p(WK) = Ap(W*K) > \(Fk(t;G) — €). By convexity of G, we have W € G. Hence,

xOEG) Csup [p(WK) : p(W) <M, W e G} > p(WK) > A(Fr(t:G) —¢), (50)

where (a) holds by definition of Doeblin curve (9). Since € > 0 was arbitrary, we have F g (At;G) > AFk (t;G) as desired.
Finally, to show the equivalent characterization that ¢t — F (¢; G)/t is non-increasing, fix s,¢ € (0, 1] such that s < ¢ and
observe that

Fi(0) @ (2) Fxh0) _ Pilt)
- t -

s s t ’

where (a) holds by applying (50) with A\ £ s/t < 1.
Part 4: By definition of Lipschitz continuity, we want to show that |[Fx(s;G) — Fx(t;G)| < |s —¢| for all s,¢ € [0, 1]. Fix
s,t € [0,1] such that s < ¢. If s = 0, the result trivially follows from (11). Otherwise, we have

a (b) Fr(s;:G) (©
Fie(5:0) ~ P60 2 L (2) Fr(t:0) ~ Fre(s:0) € L Fie(s:6) — Ficls: 6) = (¢ = ) XD L Dy

as desired, where (a) holds because F (s;G) < Fi (t; G) by monotonicity of Doeblin curves, (b) holds by applying Part 3
with A £ s/t < 1, (c) holds because F(s) < s by (11), and (d) holds because s < . O

Next, we prove Proposition 4.

Proof of Proposition 4. Fix row stochastic matrices K € thﬁ” and W € R;{’oxz. By definition of joint range, it suffices to
show that p(WK) = p(W)p(K). We have

(WK = 1 — z": mm WK] (:b) — Z min {[W]l1 [K]l’j + (1 — [W]“) [K]z,j}

16 m] = i€[m]
=1- ig&lﬁ]{[w]zl ([K]l,j - [K]2J)} i j é igﬁ‘f{ W]I 1 ([K]Z,j - [K]l,j)}’ (51
Jj=1 j=1 j=1

where (a) holds by definition of complementary Doeblin coefficient (6), (b) holds because W is row stochastic, and (c) holds
because K is row stochastic. Next, let S = {j € [n] : [K]2,; > [K]1 ;} akin to [61, Proposition 4.2]. Proceeding from (51), we
have

p(WK) = Z ([K]z,j - [K]l,]> max [W]z,l + Z ([K]Qy - [K]lj) min [W] (52)

j€s i€[m] jese i€[m]

Since K is row stochastic, it holds that

S|y K

j=1

> <[K]z,j - [K]Lj) =y ([K]Lj - [K]m)- (53)

JES jES®

Rearranging (a), we obtain

Combining (52) and (53),

p(WK) = (Z([Kb,j—[K]l,j)) (rn[nf] (W, — min [W), )
@ @

\jes

Next, we evaluate (I). We have

oCk (Z (1Kl — Kly,) + > (K, - [K]Q,j)> 23

JES jES®

n 2 n
(@ . (d)
- Z (Z 0~ 2m1n] [K]Ai) =1 Z?elgl] [K]Z,j = p(K),
j:
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where (a) holds by (53), (b) holds by definition of S, (c) holds because K is row stochastic, and (d) holds by definition of
complementary Doeblin coefficient (6). Next, we evaluate (2. We have

2

@ (1= min (W], ) - in W], = 1= 3 in [W],, 2 (W),
i€[m] ” i€[m] " — 1€[m] ’

where (a) holds because W is row stochastic and (b) holds by definition of complementary Doeblin coefficient (6). Hence,

p(WK) = p(W)p(K) as desired. O

Next, we prove Proposition 5. We begin by establishing an additional technical lemma used in the proof of Proposition 5.

Lemma 7 (Power Levels Under Affine Transformation). Let W : U x Fx — [0,1] be a Markov kernel. Let 0 € X denote the
element in the Banach space X such that ||0|| = 0. For any probability measure w : Fx — [0,1] and scalars A\, > 0 such
that W —am > 0 and 1 — A& > 0 (where we define & 21—« for convenience), the Markov kernel

W =AW —anr)+ (1 -\a)d
has power levels

W llua < MW llya (54)
W lllag < MWl ag (55)

where (55) holds if average extremal power is well-defined for W. Furthermore, if o = 0, the bounds in (54) and (55) hold
with equality.

Proof of Lemma 7. Fix a Markov kernel I, a probability measure 7, and scalars A and « satisfying the conditions in Lemma 7.
Firstly, the uniform average power of W is

17 loa ™ Asup / M{(je]) (W(dw | u) — an(dz)) + (1 - Aa) /X M(|2]) So(dz)

Asup/ M( IIxH W(dz | u) —aw(dm)> < /\Sllp/ M ([l2ll) W (da | w) & AWl (56)
ueU ueld J x
as desired, where (a) holds by definition of uniform average power (12) and linearity of Lebesgue integration with respect to
the measure, (b) holds because M (||0]|) = M (0) = 0, and (c) holds by definition of uniform average power (12).

Secondly, to compute the average extremal power of W, we consider the maximal coupling of random variables { X, }v,cu
with X, ~ W(- | u) for each u € U, defined in (34) as

X+, iflI=1
Vueld, X, 207 ! ’ (57)

Xy, if1=0,

where the random variables I, X*, and {Xu}uelxl are sampled independently from the probability measures
I ~ Bernoulli(t(W)), (58)
Nucu W(- | u)
X = - 59
(W) ; (59)
o W lu) = Ava W( )
Vuel, X, ~ u el . (60)
p(W)

For notational convenience, let v be the product measure

L2 W u) = Apey W)
= ® p(W) '

ueU

The average extremal power of W is

(a
19 llae B2 =175 [sup LX) | 1= 1] + P = 0B sup b1, 1) | 1=
ue ue

& (W) EM (| X7 )]+ p(W) E [iggM(”XuH)]

w) [ ey et B vy [ (sup aa(la) (2 )

= [ aray A weda® 14 pw) [ (sup b0 ) (i) 1)

ueU
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where all expectations are taken with respect to the maximal coupling (57), (a) holds by definition of average extremal power
(13) and the law of total expectation, (b) holds by (57) and (58), and (c) holds by (59) and (60).

Similarly, to compute the average extremal power of W, we consider the maximal coupling of random variables { X, },ecus
with X, ~ W (- | u) for each u € U, defined in (34) as

X , iflI=1
Vueld, X, 207 ! ’ (62)
X, ifI=0,
where the random variables I, X*, and {Xu}ueu are sampled independently from the probability measures
I~ Bernoulli<T(W)) , (63)
Wi
X* ~ /\’U.GZ/[ A( | U) ; (64)
(W)
- W u) ~ Ay W
vuet, X~ VW= Awa WE W) 65)
p(W)
By Lemmas 5 and 8 respectively, we have
p(W) = Ap(W), (66)
AW CTu) =2 (A W) =an() + (1= 2a) 8o(). (67)
ucl ucl

and so,

® W( | u) = Awea WC W) _ R AW ) = Awe W [u))

ueld p(W) ueld Ap(W) -
Thus, the average extremal power of W is
7 llae (T = 1Esup M1l | 7= 1] + (7 = 0B sup dr(15,1) | 7 =0]
ueU ueU
(W) EM (X )] + p(0F) E[supMOXunﬂ
R ueU
) [ oy Pest B iy [ (sup M) ) (2} (68)
I X T(W) |® . xU \ue |®

where all expectations are taken with respect to the maximal coupling (62), (a) holds by definition of average extremal power
(13) and the law of total expectation, (b) holds by (62) and (63), and (c) holds by (64) and (65). Next, we evaluate (1). We have

®(§))\/ M(||z*|)) (/\ W (dz* | u) —om(d:c*)) +(1—Ad)/ M([[z"[1) So(da”)
X uel o

@)\/XM(HJ:*H) (/\ W (dz* | w) —om'(dx*)) < )\/XM(||33*||) A\ W(da* | ), (69)
uel

ueU

where (a) holds by (67) and linearity of Lebesgue integration with respect to the measure, and (b) holds because M (||0]|) =
M(0) = 0. Next, we evaluate 2). By (66), we have

@= oW [ (supdr(lz)) dv((2dca) (70)
xu \ueld
Combining (61) and (68) to (70) yields |||I/T/|||AE < A[|[W]||ag as desired.
Lastly, if a = 0, the bounds in (56) and (69) hold with equality, as desired. O

Now, we are ready to prove Proposition 5.

Proof of Proposition 5. Fix a Markov kernel K : X x Fy — [0, 1]. Fix scalars t € [0,1], p € [0,00), and A > 0 such that

At < 1.7 Throughout this proof, let F s and |||-||| denote either FYA and |||-|||j5, or FAF and ||-||| g in general. We will consider
two cases.
Case 1: X < 1. We follow the argument from [25, Proposition 2]. First, we will show that
Fr(Xt; Ap) = AFk (t;p) - (71)

9The proposition trivially holds for A = 0, so we assume A > 0 throughout this proof.
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Fix any arbitrary e > 0. By definition of Doeblin curve, there exists a Markov kernel W* : U x Fx — [0,1] such that
p(W*) < &, IW*|l| < p, and p(W*K) > Fg(t;p) — e. Since X is a Banach space, there exists an element 0 € X’ such

that [|0[| = 0; we denote this element in bold font to distinguish it from the scalar 0 € R. Define another Markov kernel
W :UXFy—[0,1] as W(- | u) = AW*(- | u) + (1 — X) 8¢(-) for all u € U. By Lemmas 5 and 7, we have
p(W) = Xp(W*) < X, (72)
PIWE) = Ap(W"K) > A(F(t:p) =€), (73)
W= MWl < Ap. (74)
Hence,

a ® . @
Fre (A Ap) & sup {p(WK) : o(W) < X, [[W]| < Ap} > p(WK) 2 A(Fie(t:p) - ©),

where (a) holds by definition of Doeblin curve, (b) holds by (72) and (74), and (c) holds by (73). Since € > 0 was arbitrary,
this shows (71) as desired.
Next, we will show that
)\FK(t;p) > FK()\t; )\p) . (75)

Fix any arbitrary € > 0. By definition of Doeblin curve, there exists a Markov kernel W* : U x Fx — [0,1] such that
p(W*) < A, [[[W*||| < Ap, and p(W*K) > Fg(M;Ap) — €. Let « be any scalar such that 1 — A < o« < 7(W*).!° For
notational convenience, define @ = 1 — «. By definition of Doeblin coefficient, there exists a probability measure 7* such that
W* > ar*.!" Define another Markov kernel W : U x Fa — [0,1] as W (- | u) = L(W*(- | u) — ar*(-)) + (1 — £)8o(:) for
all uw € U. This is a valid Markov kernel because W* > an™, non—negative]2 linear combinations of measures are measures, and
for any u € U, W(X | u) = +(W*(X | u) — ar*(X)) + (1 — £)80(X) = L (1 —a) + (1 - ¢) = 1. By Lemmas 5 and 7,
we have

p(W) = p(‘f )<y, 7o
AWK — P(W)\*K) . FK<At;AAp) —e (77)
[EELEE ™

Hence,
a (b) A ()
Ak (t:p) Y Asup {p(WEK) : p(W) <, [[W]] < p} > Ap(WEK) > Fre(At; Ap) — e,

where (a) holds by definition of Doeblin curve, (b) holds by (76) and (78), and (c) holds by (77). Since ¢ > 0 was arbitrary,
this shows (75) as desired.

Finally, combining (71) and (75), we have F x (At; \p) = AF g (¢; p) as desired.

Case 2: X\ > 1. We have

1 a 1 1
F (A Ap) = A (A> Fre (A Ap) & AF i (<A> ; <A> /\p> — AFx(t;p)
as desired, where (a) holds by applying Case 1 with 1/\ < 1. O

Next, we prove Proposition 6.

Proof of Proposition 6. First, we define scalar multiplication of sets as AA = {\a : a € A} for any A € R and set A. Note
that for all A > 0, A € Fra <= AA € Fpa. Next, note that for all A € Fy and x € X = R4,

Ky(0A | ox) = /A Uldf(y — UX)dy = /Af(y' —x)dy’ = K1 (A | x). 79)

o g

Given any W : U x Fx — [0, 1], define W, such that W, (A | u) = W(A/o | u) (i.e., Wy (- | u) is the pushforward measure
of W(- | u) by g(x) = ox). Then,

2
Wallu = sup [ I Wadx | u) = sup [ |l Widx/or | u) =sup [ Jox'|*W(ax' | w) = 0% [W]Jun
ueld Jx ueld Jx ueld J x
In addition,
p(We)=1—sup{acR:Ine P VYucU VA€ Fx, W,(A|u) > ar(A)}
19Such an « exists because t < 1and A > 0,and s0 1 =A< 1 — Xt < 1 — p(W*) = 7(W*).

'This is true even for a = 7(TW*) because the supremum in (4) is always achieved, as per the discussion following (4).
2We have 1 — &/ > 0 because 1 — A < o
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=1l-sup{a€eR:3Ir€ P VuelU, VA € Fx,W(A" |u) > ar(cA’)}
=1-sup{aeR:3I7" € ZVueclU, VA € Fx,W(A" |u) > ar’(A")} = p(W),

and similarly p(K,W,) = p(Kw) since (K,Wy)(cA | u) = (K;W)(A | u) due to (79) and the definition of W,. Thus,
Fllj(’t (t;0%p) = FUK’? (t;p) for all p > 0, completing the proof. O

C. Proofs of Bounds on Power-Constrained Doeblin Curves

First, we prove Theorem 2.

Proof of Theorem 2. Fix an absolutely continuous Markov kernel K : X x Fy — [0,1] with common dominating measure
weFy = Ry,

Upper bound: Fix ¢ € (0,1] and p € [0,00). By definition of Doeblin curve, we want to show that for any Markov kernel
W U x Fx — [0,1] satisfying p(W) <t and ||[W|||,e < p, we have

p(WK) < t(:)<2q/ M1 (%)) . (80)
Fix a Polish space (U, Fy) and such a Markov kernel W. We have

(a)
WK)=1— inf f f WK(A _1— f f f K(A; d i),
p( ) 7lzrelN UL ,. lnuw €U n- part}nnon of y Z 711IEIN Uy ,. H,lun cU n- pan}trﬁ)n of )1 Z/ | SL’ ( v | Ui )
Aty A At A
(81)
where (a) holds by Theorem 1 and (b) holds by definition of composition of two kernels (8). Next, we lower-bound (1) for
any n € N and uq,...,u, € U. Let P be the maximal coupling of random variables { X, },cy with X,, ~ W (- | u) for each

u € U, as defined in (34). We have

(D( inf Z/KA|$IP’X(m)b inf ZE (4; | Xu,)]

n- paruuon of y n- paruuon of y

0 @l [ (min 2
= o ZKA | X ] n,ﬁn}&ﬁowzf{fl [ X)) E{/y (gg[gg o IXu,J) du}, (82)

A17 A7 1

©

where (a) holds by definition of a coupling, the expectations from (b) onwards are taken with respect to { X, }yecyy ~ P, (¢)
holds by linearity of expectation, and (d) holds by Proposition 2. Combining (81) and (82), we have

p(WK)<1— inf inf E[/ (min %( | Xu)> du] . (83)
y

neENuy,...,un €U i€[n] du
- @

Next, we lower-bound Q). For each k € N, let s, = {tk,1,- -, Ukn, } €U be a finite sequence such that

EUy <z‘Ien[7izri] %(' | wJ) du} < @+

where the existence of such a sequence is guaranteed by the definition of (2) as an infimum in (83). Construct an infinite
sequence {ay,as,...} €U by concatenating the finite sequences si in ascending order of k. Define a sequence of functions
Gn : XY — R (with respect to the cylinder o-algebra on X) as

dK
YneN, g,({zu}, /<min- a:ai>d .

By construction, it holds that
Jim Efg, ({(Xu}ie)] = @- (84)
Each g,, is non-negative, by the non-negativity of the Radon-Nikodym derivative. Hence, we may define h : XY — R, as the

infimum h £ inf,en gn, i€,

neN

dK
h({z, £ inf / o) | du. 85
((2)uc) = int, [ (omin G 0 ) 85
By construction, g, > h for all n € N. Proceeding from (84), we thus have
@ > E[h({Xu}yen)] - (86)
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Define the event £ = {Vu,v € U, X,, = X, }, which is measurable since ¢/ is Polish. Combining (83) and (86), we have

PWE) <1-E[h({Xu}uer)] @1~ PEE[R({Xu}uer) | €] — PEIER({Xu}yers) | €]

(b) c c C) c c

21— P(E) - PEE[(1X, ) | ] 2 PE) EL — h( X ) [, @
where (a) holds by the law of total expectation; (b) holds because, under the event &£, there exists some z* € X such that
X, = x* for all ©u € U and so

B(Xda) = [ (G157 ) = KV ]2%) =

given &; and (c) holds by the complement rule of probability and linearity of expectation. If P(£¢) = 0, we have p(WK) =0
and the desired upper bound (80) is trivially satisfied. Hence, assume P(£¢) > 0 for the remainder of this argument.
Next, we upper-bound (). Observe that for any bounded (multi)set S = {x, ey € XY (ie., [|S]|,, < 00) and any € > 0,

a ()
1—h(S) Wy s (mln %( | z )) dp <1—inf  inf / ( min %( | xu)> du
y

neN €[n] d,u, neENu,...,un €U i€[n] dﬂ
n

() () ©
=1— inf f K(A; = K) < " K

'rngN ul,..l.I,;lJn €U n- pdrtmon ofyz | xul) pS( ) = PB(a ,rad(8)+e)( )

1,- 1An

(f) (9) (h) (1) A
< sup PB(a,rad(8)+e) (K) < sup PB(a ISl +e) (EK) = O ISl +€) < O[Sl +€)

where (a) holds by definition of h (85); (b) holds by lower-bounding the integrand for the specific sequence {@y, ..., @, } with
the infimum over all length-n sequences; (c) holds by Proposition 2; (d) holds by Theorem 1 and the definition of complementary
Doeblin coefficient; (e) holds for some center a* € X which satisfies sup, s ||z — a*|| < rad(S) + ¢, because S’ — pgs/ (K) is
monotonically non-decreasing in its input set S’; (f) holds by upper-bounding the value for the specific center a* with the
supremum over all centers a € X’; (g) holds because rad(S) < 7 |||S|||,, by rearranging (14); (h) holds by definition of ©;
and (i) holds because © is the upper concave envelope (and hence an upper bound) of ©. Therefore, if S has strictly positive
diameter |[|S]||,, > 0,

(a) (b) (e) A
1 1(S) € 67 18]) 2 (7 supuuxu—xvn)se(mggnxun)

u,ve

D& (23 ot (suplal ) ) L6 (2007 (sup b)) ) (88)
ueld

where (a) holds because © is concave and thus continuous on its interior which contains ~[[|S]||, > 0, and because ¢ > 0
was arbitrary; (b) holds by definition of diameter (1); (c) holds by the triangle inequality, and because 0 is non-decreasing
by Lemma 9, Part 2; (d) holds because M is strictly increasing and hence invertible; and (e) holds because M is increasing.
For notational convemence define a function G : Ry — [0,1] as G(r) £ ©(2y M~'(r)). Since © is non-decreasing and
concave, and since M ™" is increasing and concave (being the inverse of an increasing convex function), it follows that G is
non-decreasing and concave. Combining (87) and (88), we have, akin to the argument of [25, Theorem 4], 13

® <5[6(sup (. ) \s] L) &) ) £ 6 ( g Bl i) ) Qo Tase) . 69

uel ueld
where (a) holds by Jensen’s inequality and the concavity of G, (b) holds by the law of total expectation because

B sup (1,00 = P& sup M1, | ] + P(E)  sup dr(1.1) ] &o| & Ple B sup M(IX.I) ] .

the division in (b) is well-defined because we assumed P(£¢) > 0, (c) holds by definition of average extremal power (13)
because P is the maximal coupling (34), and (d) holds because M is non-negative. Combining (87) and (89), we thus have

p(WK) < P(£°) G("%C’;E) : (90)

Observe that the perspective function H : (0,1] x Ry — [0,1] given by
H(s;a) = SG<9>
s

131t suffices to define G over Ry instead of Ry U {00}, because [[|W|||ag < 0o and so sup,,c;; M (|| Xu||) < oo almost surely. Hence, the expectation
E[G(sup, ey M (]| Xwl|))] is well-defined even if G is undefined at co.
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is non-decreasing in s for any a, because for any s,t € (0,1], s <t and a > 0,'* we have

)@ G(ac{}i - g:(()) . G(agi - OG(O) © b

t;a),

where (a) and (c) hold because G(0) = ©(0) = ©(0) = 0, where the second equality follows from Lemma 9, Part 1; and (b)
holds because G is concave and so the difference quotient (G(r) — G(q))/(r — q) is monotonically non-decreasing in r > ¢ for
any fixed ¢ by the first inequality in [70, Exercise 3.1.b]. (Alternatively, if G is differentiable, we may use the first derivative
test: for any s € (0,1] and a € R, we have

3 =o(2) - (D)) 2e()) - () e0a()) - (o(5) -om) 2.

where (a) holds for any & € [0,a/s] by concavity of G; (b) holds for some £ € [0,a/s] by the mean value theorem; and (c)
holds because G(0) = ©(0) = ©(0) = 0, where the second equality follows from Lemma 9, Part 1.) Next, observe that

P(E) Y p(W) < t, 1)

where (a) holds by Proposition 1 because P is the maximal coupling (34). Proceeding from (90), we have

a () c w (d) L
POV E) L HEER W llae) < 16 W) D162 0 (122 ) ) Lo (2t (B)) oo

as desired, where (a) holds by definition of H, (b) holds by (91) and because H is non-decreasing in s, (c) holds by definition
of H and G, and (d) holds by the power constraint |||,z < p and because © and M ~' are non-decreasing.

Lower bound: Fix ¢ € (0,1] and p € [0,00). By definition of Doeblin curve, we want to show that there exists a
Markov kernel W* : U x Fx — [0,1] satisfying p(W*) < ¢ and ||[W*|[,e < p such that p(W*K) > ¢6(0, M~*(2)).
Consider U = B(0, M~'(p/t)) C X, equipped with the Borel c-algebra induced on U by X. Let W : U x Fx — [0,1]
be the identity kernel W (- | u) = §,(-) for all u € U, and choose W* : U x Fx — [0,1] to be the Markov kernel
WH(- | u) £ tW(- | u) + (1 —t)8(-) for all u € U.

By inspection, the greatest common component of W is A, W (- | u) = 0. Thus, the complementary Doeblin coefficient of
W, by (5),is p(W) =1— A,y W(X | u) = 1, and the maximal coupling of random variables { X, }ucys with Xy, ~ W (- | u)
for each u € U, as defined in (34), reduces to

Yuel, X, ~d,(), (93)

where { X, } ey are independent. Hence, the average extremal power of W is

W e E[supwx ||>} & sup M(Jul) < 2o hH (F) = 2

where (a) holds by definition of average extremal power (13), (b) holds by (93), and (c) holds because U = B(0, M ~(p/t))
and M is increasing. By inspection, the composition of W with K is WK(- | u) = K(- | u) for all u € U, and so the
complementary Doeblin coefficient of W K is

pWE) = pu(K) @ 00,007 (%)),

where (a) holds by definition of 6 and because & = B(0, M ~!(p/t)). Thus, by Lemmas 5 and 7, we have p(W*) =t p(W) = ¢,
p(W*K) =tp(WK) =t60(0, M~ (2)), and ||[W*|[|\g =t [[W|[|ag = p as desired. O
Next, we prove Corollary 2.

Proof of Corollary 2. Throughout this proof, let K denote one of the kernels K;, Ko, or K3 in general. For each kernel,
consider the density function g5 (2) = gk (y — ) = %(y | ) with respect to the Lebesgue measure on R:

1 2 1 1

where gx depends only on the difference z = y — x because K is a convolution kernel. For any r > 0, we have

o) 200.0) Yo (8)21- \ KR |0 D1 [ (A Tlo)ar=1- [ (v oty —)) s 08

z€[—r,r| x€[—r,7] €[]

14The a = 0 case is obvious by inspection, since H(s;0) = s G(0) and G(0) is non-negative by the range of G.
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where (a) holds because K is a convolution kernel, (b) holds by definition of 6, (c) holds by the greatest common component
characterization of Doeblin coefficient (5), and (d) holds by Lemma 4. By inspection, gx is increasing on (—oo, 0] and
decreasing on [0, 00). Therefore, the minimum of g over any interval [a,b] C R is achieved at one of the endpoints, i.e.,

Je“[i%] 9k (2) = min {gx (a), gx (b)} . (95)

Proceeding from (94), we thus have (cf. [25, Eq. 40])

o @1 - / min {gxe(y — ), g5 (y + )} dy
flf/mm{m ) g (—ly + )} dy — /mm{gK(\y D) gxc(y + )} dy

0 o0
(—C)l_/gK(y—r)dy_/O grc(y+r)dy @1 -2 (~r), 0

where (a) holds by (95); (b) holds because gy is symmetric about z = 0 by inspection; (c) holds because y —r < —|y+7| <0
for y < 0 and gk is increasing on z < 0, and 0 < |y — 7| < y+r for y > 0 and gk is decreasing on z > 0; fx in (d) denotes
the CDF fx(y) = fi’oo 9k (2) dz; and (d) holds because gx is symmetric about z = 0. Also, © is concave because

0" (r) = —2g5%(-r) (i) 0 o7

for all » > 0, where (a) holds because gy is increasing on z < 0. Hence, by Corollary 1 and (96),

pifwn = ¢ (1-20(—2) ). ©8)

It remains to compute the closed-form CDFs for the Gaussian, Laplace, and g-Gaussian kernels. For the Gaussian kernel K,

y 52 y
fre, (y) = /OO p—ir exp< )dz @(;) : (99)
For the Laplace kernel K5, for all y < 0,
_ [ 1 || 1 y
fro(y) = /_OO op OXP <—b> dz = 5 eXp(g) : (100)

Lastly, for the g-Gaussian kernel K3,
v /B 1 1 1
fKB(”:/_OOw<1+522)d“ﬂ“aﬂ(ﬁy)+2- (10D
Combining Equations (98) to (101) completes the proof. O

Next, we prove Proposition 7.

Proof of Proposition 7. Fix an absolutely continuous Markov kernel K : X' x Fy — [0, 1]. By definition of Doeblin curve, we
want to show that for any Markov kernel W € G (i.e., satisfying the assumptions of Proposition 7) such that p(W) < ¢, we

have
- V21
p(WK) < t@(Q'y Mt <p—|—020ge|?/l>> ) 102)

t

By following the proof of the upper bound in Theorem 2 up to (92), step (c), we have

p(WK) < té(27M1<W;|”AE>). (103)

Next, we upper-bound |||[IV|||,e. For notational convenience, let Z, = M (|| X,||) for each v € . We have
W Il ag Wg {maxZ } <E {maxE[Zu] + max {Z, — E[Zu]}]
ueU ueU
®)
=maxE[Z,] + E|max{Z, — E[Z,]}| <p+ E|max{Z, — E[Z,]}], (104)
ueU u€U ueU
L I®
where (a) holds by definition of average extremal power (13) and we use max instead of sup because ¢/ is finite, and (b) holds
because any kernel W € G satisfies [||W|||;5 < p. Next, we upper-bound (D. For any A > 0, we have (cf. [71, Eq. 2])

_1 _ @ 1 Azo-ez.) | 1 NZu—E(Z.)
D= 3 E {loge exp <1;ILl€aZ/){{)\ (Z, IE[ZJ))} =5 E {loge maxe )\ log, E maxe

—~



27

( )1 (d) 1 _ (e) 1 a2 \? log, [U| o2
a3 ] e, e 200] 2 o (75) - 2

ueU ueU ueU

where (a) holds because exp is increasing, (b) holds by Jensen’s inequality, (c) holds by upper-bounding the maximum of a
collection of positive terms with their sum, (d) holds by linearity of expectation, and (e) holds by the sub-Gaussianity of .
Choosing the optimal value A = /2log, |U{|/o to balance the summands, we have

D <o/ 2log, U] (105)

Since © and M ! are non-decreasing (as established in the proof of Theorem 2), combining Equations (103) to (105) proves
(102) as desired. O]

Next, we prove Proposition 8.

Proof of Proposition 8. Fix an absolutely continuous Markov kernel K : X’ x Fy — [0, 1]. By definition of Doeblin curve, we
want to show that for any Markov kernel W € G (i.e., satisfying the assumptions of Proposition 8) such that p(W) < ¢, we
have

R el
p(WK) < t@<27M1 (p 329 [T flog. N(e. U, dy) de>> (106)

t

By following the proof of the upper bound in Theorem 2 up to (92), step (c), we have

p(WK) < té(mM—l(W;'”AE)). (107)

Next, we upper-bound |||IV||| ,e. For notational convenience, let Z, = M (]| X,]||) for each v € U. Observe that

(@) ®

sup Zu S SUP]E[Z ] + sup {Zu - [ u]} H|W”|UA + sup {Zu - ]E[Zu]} S p + sup {Zu - E[Zu]} ) (108)
ucl ucl ucl ucl ucl

where (a) holds by definition of uniform average power (12) and (b) holds because any kernel W € G satisfies ||W||[ o < p

Hence,

. ®)
W e LE [sup Zu} <p+E {sup (Zu — E[Zu}}] 9t E {sup (Zu —E[Z]} — (Zoe — E[Z0-])
ueU ueU ueU

(d) et o
<p+t E[ sup {(Zu — BIZ.) — (Zo - E[Zm}} Sprae [ lom Nl dgde,  (109)
u,veEU
where all the expectations are taken with respect to the maximal coupling {Xu}u,eu ~ P as defined in (34), (a) holds by
definition of average extremal power (13), (b) holds by (108), (c) holds for any fixed v* € Z:{ (i.e., v* is chosen independently
of {Zy}ueu), and (d) holds by Dudley’s entropy integral bound [72, Theorem 5.22]. Since © and M ~! are non-decreasing (as
established in the proof of Theorem 2), combining (107) and (109) proves (106) as desired. O]

Lastly, we prove Proposition 9.

Proof of Proposition 9. Fix an absolutely continuous Markov kernel K : X x Fy — [0, 1]. Fix t € (0, 1]. By following the
proof of the lower bound in Theorem 2, we obtain that the Markov kernel W* : U x Fx — [0,1] from U = B(0, M~ (p/t))
to X given by W*(A | u) £ (1 —1)80(A) +15,(A) for all u € U and A € Fx satisfies p(W*) = t, |[W*||,e = p, and
p(W*K) = t6(0, M~'(p/t)). By the discussion immediately following Definition 1, we have |[|[W*[[|;a < [[[W*||ag = p-
Hence, FY2A(t;p) = sup{p(WK) : p(W) < t, [[W]llya < p} = p(W*K) =t6(0, M~*(2)) as desired. O

V. PROOFS OF MAIN RESULTS ON APPLICATIONS

In this section, we prove the main results presented in Section III, pertaining to applications of Doeblin curves.

A. Proofs for Generalization Error

First, we prove Lemma 2.

Proof of Lemma 2. For each t € [T, define the following random variables representing intermediate computations within the
update rule:
U Wiy — 0= Y VoW1, Z5), Vi 2 U +muNy, Wi £ proj(Vi).

JEB:

\Bt
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Conditioned on the event that i € 3; (i.e., Z; is used in the tth iteration), the following Markov chain holds, because Z; will
not be used in any future iteration (cf. [41]):

Zi=»U =V, > Wy, U1 > Vie1 > Wiy — - =2 Upy > Vg = Wp_y = Up = Vp — Wp.

It follows that

(a)
Irvv(Wr; Zi) < Ivv(Vr; ') = ||PVT — Py, 9

E 1Pvrizi== = Pyl 1]
~Py,

@

Py z,=- * Normal(0, m%I) — Py, * Normal(0, m2.I
7| 1 1
z~P

o] (110)
where (a) holds by the data processing 1nequality for f-information [46, Theorem 7.16], (b) holds by definition of TV-information
(17), (c) holds because Py, z, = Pz, Py, |z, by the chain rule of probability, and (d) holds by definition of Vr. Next, observe
that for any z € Z, the power of the distribution P,.z,— is bounded as

2
E[HUTH; ‘ Z; = Z} (é)E|:HWT—1 - % Z VgWr_1,Z;) ) ‘ Z; = Z}
jEBr

(
QQE{HWTAH% } UM Z Vyg(Wr_1, )Hz ’ Z; = z}

—~

g {HWT 1||2 Zi = }+2E[(|B | Z |v9(WT172j)|2)2‘Zi:Z]

JEBT

(d) 9 5 0@
< 2E[|Wr_i | 2 = 2] + 20} L2 < mipr, (a1
where (a) holds by definition of Uz, (b) holds by the identity
2 2 2 2 2
lz+ylly < llz+ylly + lle —ylly = 2[lzlls + 2yl

and linearity of expectation, (c) holds by the triangle inequality, (d) holds by the bound on the loss gradient (15), and (e) holds
by definition of py (19). Similarly, the power of the distribution Py, is bounded as

Bflor2] € & [B[l0rlE|z=2]] < B [mipr] = minr,

z~Pgz, Zszl
where (a) holds by the tower rule of expectation and (b) holds by (111). Continuing from (110), we have

(a) (b) A
IvWr; Zi) < B [FeM(|[Popizi=- — Purllyyipr)] < I% {FgA(HPUﬂZi:z _PUTHTV;pT):|
zrv Z'i

ZNPZ,i

(f) A
e (ITV(UT; Zz');PT) < FQA (ITV(WT—l; Zi);PT) ) (112)

UA
F@

(e) A
S( 5 [1Porizi—s - Pl ior )

Ch

d) A
( )FUA(HPUT,Zi - PUT

where (a) holds by Proposition 6; (b) holds because is the upper concave envelope, and hence an upper bound, of FY*; (c)
holds by Jensen’s inequality; (d) holds by the chain rule of probability; (e) holds by definition of TV-information (17); and ®)
holds by the data processing inequality, and because ﬁgA is non-decreasing by Lemma 9, Part 2.

Finally, by recursively applying the arguments in (110) and (112) above, we obtain

Iv(Wr; Z;) < A ( S FOA (Fg’* (ITv(Wt; Zi)§pt+1)§pt+2) ;pT>

as desired, where the direction of the bound holds at each recursive step because each layer of FgA is non-decreasing by
Lemma 9, Part 2. L]

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Using the high-level argument of [41], we first bound the expected generalization error in terms of the
TV-information between model parameters and data samples. We have

(@ A b A
|E[G.(Wr) — Gs(Wr)]| < *ZITV (Wr; Z ( A Z > Iv(Wr Z +o > (Wi Zi)

t=14ieB; i¢Ul B,
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T T
PN LA S (R
s Wi Z) < 530S A B (v (W3 Z) ipea ) - spr) s (113)
t=1icB, i ien, —0
where (a) holds by Lemma 1; (b) holds by grouping the data indices i € [n] by the iteration ¢ € [T] in which they are used
(if any), since the mini-batches By, ..., By are disjoint; (c) holds because data samples which are unused during training are
statistically independent of the final parameters and thus have zero TV-information; and (d) holds by Lemma 2.
Next, we upper-bound (1. Define the following random variables representing intermediate steps in the update rule:

> V9Wiir, Zj), Vi 2 U +meNy, Wy 2 proj (V).
JEB:

Mt
U2 W,y — —
t t—1 By|

which form the Markov chain Z; — U, — V;, — W,. Following the argument in [4]1, Lemma 9], we have

(C) (4

(a)
@SITV(Vt;Zi)@HPVt, — Py, M[Hpv,,m:z _PVtHTV] :ZIEM["PUt+tht|Zi:z _PUtertNtHTV} , (114)

where (a) holds by the data processing inequality for f-information [46, Theorem 7.16], (b) holds by definition of TV-information
(17), (c) holds because Py, z, = Pz, Py, z, by the chain rule of probability and Pz, = p since the data samples are drawn
i.i.d., and (d) holds by definition of V;.

Next, we upper-bound ) for any fixed z € Z. For any two distributions P and Q, define the optimal transport cost

1 .
W(P,Q;m;) & — inf E X -Y,], (115)
2my Pxy: (X,Y)~Pxy
Px=P, Py=Q

where the infimum is taken over all couplings Px y of the random variables X and Y with respective marginals Py = P and
Py = Q. By [41, Lemma 6], it holds that

@ < W(Py, 7,22, Pu,smy) - (116)
Define two random variables
U AW, - |B|<Z Vg(We-r. Z;) + VoW1, 2 >>, Ut LW, - ‘B| N VeWer Z). (117
]Eff JEB:
VED)

These random variables have marginals U* ~ Py,|z,—. and U t Py, , by definition of U,. Hence, continuing from (116),

@<L S B0 Ut L o E[IV(Wir, 2) - Va(We, )] (118)
72mt 9 th|B| t—1, t—152)ll2| »
where (a) holds by upper-bounding the infimum in (115) with the specific instance (117), and (b) holds by definition of U* and
Ut.

Next, observe that W;_; and Z; are statistically independent, because i € B; by (113) and thus Z; is not used in any iteration
except t. Combining (114) and (118), we have

O< E

z~u

Mt

It E [V Wi_1,Z)) — Vg(Wi_1, 2 }

2 Bl B gy IVIWem1:2) = Vg (Wi >||2]
~Py, ,®pu

(@) T [ }

= E Vg(Wi_1,Z:) — Vg(Wi_y, 2

2mt‘Bt| (Wtfl,Zi,z) || g( t—1 ) g( t—1 )HQ
~Pw,_, Qulp

(b)

e (W, sz B mown 2l ]« B [[Fair & 9awi, 2] ])

2my ‘Bt| (We1,2:) (Wie_1,2) (Wt 1,2) (Wi-1,72) 2
NPWt 1 (%) NPWt71 97) NPWt 1 p NPWt*I @n

(c) NtoOt—1

g ’ (119)

mt|Bt|

where (a) holds by Tonelli’s theorem and linearity of expectation, (b) holds by the triangle inequality and linearity of expectation,
and (c) holds by definition of o,_;. Combining (113) and (119), we have

|E[G,(Wr)—Gs(Wr)]| < — ZZF ( (meBl',ptﬂ) ;pT) ii < Py (ntgt 1|7pt+1)"';pT)

my | B
tleBt t| t

as desired. O
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B. Proofs for Reliable Computation

First, we prove Lemma 3.

Proof of Lemma 3. Let W : U9 x F37 — [0,1] denote the Markov kernel from ¢ to V? such that for all u(}®) € ¢4,
(- | ut9) is the maximal coupling of ®(- | u(M),... , ®(- | u(@) defined in (34). Given my, construct the coupling

Ty :]_~§>q —10,1] as
/m \IJ(B ‘ u<1=q)) dry (u“"l)) (120)

E [\1/<B ‘ u(lzq))} . (121)

w(1:9) oy

(1>

VB € F3, mv(B)

This defines a valid coupling of P‘(/l), . 7P‘(,q), because for any ¢ € [¢] and any A € Fy,

(VT x A x Vet (2/ (Vo x A x vt [ dry (w9
ua

(:b)/u <I><A ‘ u<e>> dry (uu:q)) @A{@(A ‘ u(e)) P <u(z>) @ pO(4)

where (a) holds by the definition of 7y, (120), (b) holds because ¥(- | u(}9)) is a coupling of ®(- | u)),..., ®(- | ul®), (c)
holds because 7y is a coupling of P[(]l)7 ... 7P[(]q), and (d) holds by (20). Also, 7y satisfies

Vu? (ﬁ(v(l) e V(Q)))
)~y
(@) WE vumﬁ.wa:q))(ﬁ (Vm = V(q))) ® WE [p([cp(. UM, ..., | U@)])]

(¢)

E {p([éU(l);-..’éU(q)](b)} < E [F&iA(p([émn,---75U<q>]>;pﬂ

U:a) ~opryy UQ:a) gy

B B =) € w0 = =) o)

< fya (Uu:ll?w [1{~(v® = =v@)}]; p> ) ua (U(L P (@0 =—v)) p)

as desired, where (a) holds by (121), (b) holds by the maximal coupling characterization of Doeblin coefficients (Proposition 1),
(c) holds by definition of Doeblin curve (9) because the kernel of Dirac measures has uniform average power

Sprtys sty ® - M(||ul]) do - M( U<f>)< M —p,
| [ v@][llua I;é?;f/u (llell) ddy e (u) max IUN) < max M(Jjul)) = p
(d) holds because ﬁgA is the upper concave envelope (and hence an upper bound) of FgA, (e) holds by Jensen’s inequality, and
(f) holds because the probability of an event is the expectation of its indicator. [

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Define a function f : [0,1] — [0,1] as f(t) £ FYA(min{1,bt};p). As a prelude to our main argument,
we establish the following useful result concerning fixed point convergence of f. Observe that [0, 1] is a compact and totally
ordered set so that any decreasing sequence {ts}sen C [0, 1] has infsen ¢s € [0, 1]. Furthermore, ﬁ‘gA(- ;p) is non-decreasing
and continuous on [0, 1] by Lemma 9, Parts 2 and 3. Hence, f is non-decreasing and continuous on [0, 1] (being the composition
of two non-decreasing and continuous functions), and so f(infsents) = infgen f(ts5). Also, 1 > f(1) by the range of f. Hence,
applying Kleene’s fixed point theorem [73] on (][0, 1], >),

lim £(1) Y inf £&)(1) = max {t € [0,1] : f(t) = ¢},
5—r00 seN
where f(*) denotes the s-fold composition of £, and (a) holds because f(*)(1) is monotonically non-increasing in s.
With this groundwork established, we commence our main argument. Fix € > 0, and fix n sufficiently large such that for all
s > [logy(n)],
FO1) <max{te0,1]: f(t) =t} +e. (122)

Consider any n-input circuit of noisy gates where each gate has at most b inputs. Define the height of an input vertex X; as
the length of the shortest directed path from X; to the output vertex Y;,, where the existence of such a path is guaranteed for
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each X; by the formal model defined in Section III-B. Since the in-degree of each gate vertex is at most b, there must exist at
least one input vertex whose height is [log,(n)] or greater.!” Without loss of generality, let X; be such an input vertex.

Fix any values x3,...,z, € Q for the remaining inputs. We define some notation used throughout the remainder of our proof.
To refer to input and gate vertices in a unified manner, let Wy = X_, for all k € {—1,...,—n}, let W, £ Y}, for all k € [m)],
and let O; £ {—i: i € Nj} UM; for all j € [m]. Given a subset of indices S C {—1,...,—n} U [m], let ws = {wy }res

refer to the corresponding collection of subscripted variables. For any W, let P‘%) be the marginal distribution of W induced
by the circuit when setting X; = ¢ and X; = x; for all 4 > 1. Lastly, let a A b = min{a, b} for any scalars a,b € R.

Recall from Section III-B that we index the gate vertices in topological order, such that M; C [j — 1] for each j € [m].
We follow the strategy in [25, Section 5.3]. Consider the following algorithm for constructing a coupling of the marginal
distributions at each vertex in the circuit:

1) For each i € [n], let my_, be the maximal coupling of P)%_), . P)((qi).
2) For each j € [m]:

a) Let 7z, be the pushforward measure of ), 0, TWi through the function Ff’q : (R%)%5%4 — Q4 which accepts g copies

ey

of input variables and independently applies I'; on each copy to produce g outputs, i.e., Z ](_1:q) = F?Q(Wélqu)), where
for each ¢ € [g],
¢ (¢
70 =T, (Wo ) . (123)

J

Namely, 7z, is the coupling of Pg), ... ,Péj) induced by independently sampling nglzq) ~ T, for each k € O; and

then computing (123) for each ¢ € [q].
b) Construct a coupling myy, of Pg ), Pfg) by applying Lemma 3 with input space i/ £ Q, output space V £ R,
input coupling 7y £ Tz;, output coupling my = Tw;,, and ® being the circuit noise mechanism.

We analyze the coupling myy,, constructed by the algorithm above to upper-bound p([PX(/l), cee P}(,q)]) using the maximal
coupling characterization of Doeblin coefficients (Proposition 1). For notational convenience, for each k € {—1,...,—n} U [m],
let

tw, 2 P (ﬁ( Igl) — = é‘”)) ) (124)

W]il:Q)Nﬂ'Wk
The value of ¢y,_, for each input i € [n] is

tw_, =1, (125)
Vi>1, tw_, =0, (126)

where (125) holds because 7yy_, is a coupling of distinct Dirac measures P)(fl) = d¢, for ¢ € [g], and (126) holds because

mw_, for ¢ > 1 is a coupling of identical Dirac measures P)(é )= ... = P)((qi) = 0,,. For each gate j € [m], ty, satisfies the

recurrence (cf. [25, Eq. 149])

w2 p OO o) S 5 (=)o)

(1:q) (1:q)
Zj a ~TZ; W@,.q ~ ® TWy

J keO;
(c) .
gFgA(M > e (A(w- ...:W,gfn));p)
keo; Wi ~mw,
A (e) .
@F%“(M 3 twk;p> < F%“(Mbkné%xtwk;p) @f@%xtwk), (127)
J J

keO;

where (a) holds by (21); (b) holds by (123) because the gate operation is a deterministic function of its inputs, and because
13“511‘\ is non-decreasing by Lemma 9, Part 2; (c) holds by the union bound; (d) holds by (124); (e) holds because |O;| < b since
gates have at most b inputs; and (f) holds by definition of f.

For convenience, let D C [m] denote the set of gates which are descendants of X, i.e., there exists a directed path from X,
to any gate j € D. Next, we will construct a directed path from X; to Y;, by searching backwards starting at Y,,, following
the algorithm below (cf. [25, Section 5.3]):

I5To see this, consider all circuits where the in-degree of each gate is at most b and the height of each input vertex is at most hmax S ﬂogb(n) - 1], and
let C' be such a circuit with the greatest number of input vertices. We may assume that no vertex in C' has multiple outgoing edges, since we may equivalently
consider the tree generated by running breadth-first traversal starting from Y}, and following edges in reverse direction, which preserves the heights of all
input vertices. Furthermore, each gate vertex in C' must have exactly b incoming edges; otherwise, additional input vertices may be added to the gate and
hence to C'. Lastly, each vertex in C' with height less than hmax must be a gate, since if such a vertex was an input, replacing it with a gate taking b new
input vertices would add b — 1 input vertices to C' overall. Hence, C' is a perfect b-ary anti-arborescence where all input vertices have height Amax, and so C
has bhmax < plogs(n) = p inputs.
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1) Let j € [m] denote the current gate vertex. Start at j = m
2) If X, is an incoming neighbor of gate j (i.e., 1 € N;), move to X; and terminate.
3) Otherwise, find and move to any incoming gate neighbor j’ € M, such that

i e (argjgel% th,) nD. (128)
J

Set j £ 4/ and return to Step 2.

This algorithm is guaranteed to terminate at X, because the circuit has no directed cycles and the invariant 7 € D holds
throughout execution. (We start at the output gate m € D in Step 1, and move to some gate ;' € D on each iteration of
Step 3.) To establish well-definedness, it remains to show that the set in (128) is always non-empty if the algorithm did not
terminate in Step 2 (i.e., 1 ¢ A;). Since j € D and 1 ¢ N, we must have M; # (). By (126) and (127) and the fact that
£(0) = FYA(0; p) = FYA(0; p) = 0 (where the second equality holds by Lemma 9, Part 1), it follows that any gate j' ¢ D has
tw,, = 0. Hence, (arg max; e aq; tWJ,) ¢ D¢, and so the set in (128) is non-empty, as desired.

Let j; < --- < js = m be the sequence of gates from X; to Y,,, constructed above, where s is the path length. We have
maxkeo,, tw, = 1, because 1 € Nj, and tw_, = 1 by (125). For any r € {2,...,s}, we have

—

a (b)

klél(‘c%x Wi ]IélaX W, Wiy
where (a) holds because 1 ¢ N;, and so ty_, = 0 for all i € N by (126), and (b) holds by Step 3 of the algorithm (128).
Therefore,

=

a (b) c (6)
p([PX(’wln)’aP}(’q)])(:)l_ sup P<Y7$7/1)::Y77('Lq)) <1l- P (YTS})::Y#))QIJ" Wi —f( Wi, _ 1)ng(5)(1)7

m .
PO~ P VD o,

where (a) holds by Proposition 1, where the supremum is taken over all couplings of PX(, ), .. Pl(/q ; (b) holds by lower-bounding
the supremum with a specific coupling myy,,; (c) holds by definition of tyy, (124); and (d) and (e) hold by repeatedly applying
the recurrence (127) along with the above characterizations of maxieo, . Since the height of X is [log,(n)] or greater,

s > [log,(n)]. By (122), we have p([P)(,g, ce Pffg]) < max{t € [0,1] : f(t) =t} + € as desired. O

We remark on an alternative way to guarantee that starting from Y;,, and repeatedly moving to the gate maximizing ty,
leads to a path terminating at X;. For each j ¢ D, let N, represent the randomness in the noise mechanism which produces Y;
from Z; [74, Lemma 4.22]. Then,

(a) (b)
p([sz3”P§(/Z3]) ; ( E |:[P1(/713|NDC—LPDC""’P§(/33NDC—SODC]:|> < E |:p<[P)(/,,1”)‘NDC:4/;DC7"' ’PS(/?INDc:chc])}

Ppe P Pped

where (a) holds by the law of total probability, and (b) holds by convexity of complementary Doeblin coefficients [19, Theorem
1, Part 3] and Jensen’s inequality. The marginal distributions in (b) correspond to analyzing the circuit where all gate vertices
which are not descendants of X are deterministic (after conditioning on Npe), and so may be removed from the circuit before
proceeding with the coupling constructions. Since all directed paths in the circuit now start with X, the search algorithm is
guaranteed to build a path back to X;.

C. Proofs for Differential Privacy
In this section, we prove Theorems 5 and 6.
Proof of Theorem 5. Fix an absolutely continuous Markov kernel K : X x Fy — [0,1] with common dominating measure

p:Fy =Ry Fixn>2and €= (e1,...,6,) € R} with e; =0 and ¢; < ¢; for all i < j.
Part 1: Fix a Markov kernel W : U x Fy — [0, 1] from a Polish space (U, F;). We have

n

pe(WK, n) @, mf inf Z e“WHK(A; | u;) Oy uf / <min e dI;VK(‘ \ ul)) dp,  (129)
Y

UL yeeey Uy EU M- lj:it,monAo,f Y4 — UL yeenyUpn EU | 1€[n] 17 |®
where (a) holds by definition of p. (26) and (b) holds by Proposition 2.
Next, we lower-bound (D. Let v : Fy — R, given by v(-) £ Niepy €W (- | ui) be the weighted greatest common
component of W restricted to {uy,...,u,}. Let 79 = v(X) (for convenience, we elide the dependence of v and 7y on

u1,...,u, when denoting them). Notice that

(a) . ®) .
To < mine“W(X | u;) = mine“ =1, (130)
i€[n] i€[n]
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where (a) holds by definition of greatest common component (3), (b) holds because W is a Markov kernel, and (c) holds
because €; = 0 and ¢; > ¢ for all 7 > 1. We consider two cases based on the value of 7.
Case 1: 19 = 1. Proceeding from (129), we have

(D@/ (di N EWE )du— N CWED | w), (131)
Yy

i€[n] 1€[n]

where (a) holds by Lemma 4 and because the lattice infimum of a finite family is the minimum, and (b) holds by the
Radon-Nikodym theorem. For notational convenience, let w; : Fx — [0, 1] be the probability measure w;(-) = W (- | u;).
Observe that for any i € [n],

eEWK( | u;) = e“w; K(-) = (e“"w; —v) K(-) + vK ("),

and so by Lemma 8§,
N\ EWEC ) = N\ (w =) K() +vE(). (132)

i€[n] i€[n]
Furthermore, it holds that v = w;. To see this, first observe that v < w;, because

(@)
VA € Fr, v(A) < ewi(A) Lw, (4),
where (a) holds by definition of greatest common component and (b) holds because ¢; = 0. Next, suppose for the sake of
contradiction that v(A) # w;(A) for some A € Fx. Then,
1 (@)

() ()

() D 0(4) + (4 D w (A) + (A) D w1 (A) + 11 (A9) Qo () L1

and we obtain the contradiction 1 < 1, where (a) holds by the assumption that 79 = 1, (b) holds by additivity of measures, (c)
holds by combining the supposition v(A) # wi(A) with the fact that v < wy, (d) holds because v < w1, (e) holds by additivity
of measures, and (f) holds because w; is a probability measure. Finally, combining (132) with the fact that v = wy, we have

N eEWE( ) =vK(), (133)
i1€[n]
and combining (131) and (133), we have
D =vE) 2 (1 = o) 7e(K,n) + vE (D), (134)

where (a) holds by the assumption that 7y = 1.
Case 2: 79 < 1. Define a Markov kernel V' : {uq,...,un} x Fx — [0,1] given by

o W] w) = o)
eci — 1 '

Vi€ [n], V(| u) (135)

This is a valid Markov kernel because for any i € [n], V(X | u;) = < iW(;leqf) yX) ‘éi::g = 1. By rearranging (135), W
may be written in terms of V and v as e“W (- | u;) = (e% — 70) V(- | us) + VZ ), and therefore the composition WK may be
written as

WK | u) = (€% —10) VK (- | ug) + vK(+) . (136)

Proceeding from (129), we have
(a) . . dVK dvK (b) ) _ dVK dvK
@:/ mln{ et — T | ug) + du = min (e — 7y s ug) ) dp + du , (137)
i e =) S+ T (i (e =) S Y

where (a) holds by differentiating both sides of (136) and (b) holds by linearity of integration. Next, we lower-bound 2. We
have

n n

DY inf Z( “ _r)VE(A |uw)Y it Z(eei—To)/XK(Ai|x)V(daz|ui)

n-partition of ) 4 n-partition of )

Ay, A, =1 Ay, A, =1

(©) LA , () N
> inf Z (e —79) inf K(A;|x;)=  inf inf Z (e —70) K(4; | x;)

n-partition of ) r; €EX x1,...,Tn €X n-partition of Y

1y An =1 Ay, A, =1
n .

© . efi — () . .

(1—-79) inf inf Z K(A; |z;) > (1—1) inf Ze iK(A; | )

T1,...,Ty €X n-partition of Y 1-— 70 L1,y Ty E€EX N~ parutlon of Y 4
ArnA, =1 Aty An
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D (1 - ) re(K,m), (138)
where (a) holds by Proposition 2, (b) holds by definition of kernel composition (8), (c) holds by replacing a weighted average
with an inﬁmum, (d) holds by interchanging the order of infimums, (e) holds because 1 — 79 > 0, () holds because ¢; > 0 and
so &= > €120 — e for each ¢ € [n], and (g) holds by definition of 7¢ (25). Combining (137) and (138), we have

1—79 1—79

WE DA r) (K n) 4 vK(Y) (139)

®2(1—7’0)TS(K,n)+/y m

where (a) holds by the Radon-Nikodym theorem.
Proceeding from both cases: Now, by (134) and (139), we have the same lower bound for (D in both cases. For notational
convenience, let 7 : Fx» — R be the measure given by

v(+) .
ﬁ()é o %f7-0>0,
0 s if T0 = 0.
Proceeding onwards,

D> (1= 70) 7e(K,n) + 70 0K (V) Y (1 = 70) 7e (K, ) + 70, (140)

where (a) holds in the case 79 > 0 because ¥ is a probability measure on Fx in this case and so 7K is a probability measure
on Fy. Combining (129) and (140), we have

pe(WK,n) <1— inf {(1-19)7e(K,n)+ 710} = (1— inf 7'0> (1 —7e(K,n)). (141)
UL,y Upn € UL,..., Un €
Next, we evaluate 3. Given any u1,...,u, € U, let £ : Fx — R, be the measure £(-) £ S0 W(- | u;), where we elide

the dependence on uy, ..., u, in the notation ¢ for convenience. We have

@ NG LA Wi
@®= inf y /\ e W(X|uz)—u17”1.1,1ufn€u/2((dg /\ e“W( |uz)>d§

UL gy Uy €
T en) i€[n]

© AW @ , ~ ©
- inf /X <1H61[1£l]e Tf( | UZ)> d§ o u1,..1.17gn61/{ n—partiltri?(l)ﬁ ofX;€ W(Al ‘ uz) o TE(VV, n)’ (142)

17--<7An

where (a) holds by definition of 7, (b) holds by the Radon-Nikodym theorem because /\ie[n] e W(- | u;) <&, (c) holds by
Lemma 4 and because the lattice infimum of a finite family is the minimum, (d) holds by Proposition 2, and (e) holds by
definition of 7 (25). Combining (141) and (142), we have

pe(WK,n) < (1= 7e(W,n)) (1 — 7e(K, 1)) Y pe (W, n) pe (K, m)

as desired, where (a) holds by definition of pe (26).
Part 2: First, observe that

K is (¢,6,n)-LDP &2  inf inf ST K (A | 2) 2 1-6 45 r(Kon) 2 18 4D p(Kon) <5, (143)
=1

T1,...,Tn €X n-partition of Y

1y An

where (a) holds by definition of (€, d,n)-LDP (24), (b) holds by definition of 7. (25), and (c) holds by subtracting both sides
of the inequality from 1. We note that (143) generalizes [42, Theorem 1].
With (143) in mind, observe also that

pe(K,n) <0 = YW, pe(WK,n) < dpe(W,n), (144)
because for any Markov kernel W : U x Fx — [0, 1] from any Polish space (U, Fy;), we have
peWE.m) € po(Wim) pe(I.m) < 0pe(Won).
where (a) follows by Part 1 and (b) follows by the antecedent in (144). Next, we will show that the converse

(YW, pe(WE,n) < 6pe(W,n)) = pe(K,n) <6 (145)
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also holds. Note that if 7.(K,n) = 1, the consequent in (145) is trivially satisfied, because pc(K,n) =1 — 7.(K,n) =0 < 6.
Hence, we assume 7.(K,n) < 1 for the remainder of this argument. By definition of 7¢ as an infimum in (25), for any arbitrary
0 <v<1—r7(K,n), there exists x7, ...,z € X (possibly depending on =) such that

ZeﬁK A; | 2)) < 7e(K,n) + (146)
n- partmon of Y 4
1o An
Furthermore, there must be at least two distinct values within (7, ..., ), because if we suppose the contrary that 3 = --- =

xy, = x* for some z* € X, we obtain the contradiction

n n

i ; (@)
f S K(A: * ‘zK A; 1K
n—part%tiri)n of Y z; € ( ‘ | i ) n- pdl’llthH of Y 4 Z € | x ) (y |

1,..4,An = A17 aAn

where (a) holds because €; > ¢; for all ¢ > 1, and (b) holds because ¢; = 0 and K is a Markov kernel. Let W* : [n] x Fx — [0, 1]

be a Markov kernel such that W*(- | i) £ 8- (-) for all i € [n]. Then,

VL1 > 1 (K,n) +7,

(@) ® ©
Kn=1-—71(K,n)<1-— f “K(A; =1-— f “W*K
( 7’L) Te( ’I’L) npan}lrl})n otyze | i )+’Y npart}tIli)n ofyze WK )

At ,A Aty
(d)
gl— 1nf ZeEZW* (A; \ul)—l—fy—pe(W Kn)+’y<(5pe(W n)+ v, (147)
Un €[N] v E)qarlltlonAot Y 4 L |®
1y dn

where (a) holds by definition of p. (26), (b) holds by (146), (c) holds by definition of W* and because each {x}} is measurable
(since X is Polish), (d) holds by lower-bounding the value of a particular instance with an infimum, (e) holds by definition of
pe (26), and (f) holds by the antecedent in (145). Next, we evaluate (D. Let s,t € [n] be indices such that 2% # 7. We have

(a) _ € ( ) _ €1 * _ * €o * *
@ -1 UL ,- lgifnelxlnpdrtgg) of)(ze W ) (6 w (X {xb} | 3) +e=W ({xa} | t))
Aq,...
(é) 1-— (661 51; (X - {1’:}) + 662530: ({1‘:})) (i) 1 (148)

where (a) holds by definition of pe (26); the events X — {2%} and {z%} in (b) are measurable because X is Polish, and so
{z} is measurable for any = € X; (b) follows by replacing the infima with a specific instance, and equality holds because
S e W*(A; | w;) >0 for all uy,...,u, and Aj,..., A,; (c) holds by definition of W*; and (d) holds by definition of
Dirac measure. Since v > 0 was arbitrary, combining (147) and (148) shows that pe(K,n) < J, thus proving (145).

Finally, combining Equations (143) to (145), we have

K is (€,0,n)-LDP <= VYW, p(WK,n) < dpe(W,n)

as desired.
Part 3: Fix a Markov kernel W : U x Fx — [0, 1]. Following the argument from (129), we have

pe(WK,n) Wy inf / <min e AWK
Y

WY yeenyUy EU 1€[n]
L

C1u) o (149)
@

Note that if inf,, . ., cu (D = 1, the result (28) trivially follows because

(a)
pe(WK,n) =0 < Fif(pe(W,n);p) ,
where (a) holds by the range of Fl]J(A. Hence, assume inf,, un€u® < 1 for the remainder of this argument. Next, we

lower-bound (D. Let v : Fx — R, given by v(-) & Niemy €W (- | u;) be the weighted greatest common component of 1

restricted to {ug,...,u,}. Let g = v(X) (as before, we elide the dependence of v and 7y on w1, ..., u, when denoting them).
Following the argument from (130), we have 79 < 1. We consider two cases based on the value of 7.
Case 1: 1o = 1. We have

OYrr) Y1, (150)
where (a) holds by following the arguments from (131) and (133), and (b) holds because v is a probability measure on Fy

(since v(X) = 19 = 1) and so vK is a probability measure on Fy.
Case 2: 79 < 1. Define a Markov kernel V' : {uq,...,un} x Fx — [0,1] given by

o W)= v()

efi — 1o

Vien], V(| u) (151)
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Following the argument from (137), we have

dVK
O = / (min (e — 19) (-] ul)) dpu + vK(Y). (152)
y \i€[n] d/L
1)
Next, we lower-bound (2). We have
(a) . dVK (b)
@ >(1- 7'0)/3; (g[ﬂ m (| uz)> dp=(1- To)npdrt}urtanofyZVK (A; ] ul) > (1 —10)T(VK), (153)
1 s4in,

where (a) holds because ¢; > 0 for all ¢ € [n], (b) holds by Proposition 2, and (c) holds by Theorem 1. For notational
convenience, let 7 : Fx — R, be the measure given by

v(+) .
I}(.)é TO’ ?f7-0>0,
0, if T0 = 0.
Combining (152) and (153),

®2(1—T0) (VK)-l—Tol/K(y) (1—7’0) (VK)—FT(), (154)

where (a) holds in the case 79 > 0 because ¥ is a probability measure on Fx in this case and so 7K is a probability measure
on Fy.

Proceeding from both cases: Now, by (150) and (154), we have lower bounds on D for any value of 7. Proceeding from
(149), we have

a ()
pe(WK,n) Wy ®< 1— inf ” {1=7m)7(VK)+ 7} <1— inf u{(l—T())T(VK)+T()}
u177_0ﬂéri€ uhﬂ)ﬂérie U yeeryUpy €
(@) UA (e) UA
= sup eM{(l —70)p(VK)} < sup eu{(l —10) F (p(V)i IIVIllya) } < sup _ {1 =m)FR (L [IVIlya) }»  (155)
UL yeny Uy UL yeeyUpy UL yeenyUn

where (a) holds because the infimum inf,, .. cu (D < 1 is not achieved by any (uq,...,u,) for which 7o = 1, by (150); (b)
holds by (154); (c) holds because an infimum does not increase when taken over a larger feasible set; (d) holds by definition of
Doeblin curve (9); and (e) holds because Doeblin curves are non-decreasing in their first argument. The uniform average power
of V may be bounded as

Va2 e / M)V | ) @ e [ oy ST ) =1

efi — 1o

© e @ p
d i < = )
Wldz [w) < p?el%i](esl—ro 1—m79

< max (156)

where (a) holds by definition of uniform average power (12); (b) holds by definition of V' (151); (c) holds because W satisfies
IW]llua < p; and (d) holds because s — s/(s — 79) is decreasing for s > 79, and e“ > 1 > 7y for each i € [n]. Combining
(155) and (156),

pe(WK,n) < sup {(1—TO>F5’<A<1; P )}@ sup  FYA(L — 70 p)
1_T0 UL yeeny Unp €U

b J d
QF“KA( sup {170} ;p) © YA — 7 (W, n): p) L FYA (pe (W, m): )

1yeenyUpy €U

as desired, where (a) holds by Proposition 5, (b) holds because Doeblin curves are non-decreasing in their first argument, (c)
holds by following the argument in (142), and (d) holds by definition of p. (26). O

Next, we prove Theorem 6.

Proof of Theorem 6. For each ¢t € [T'] and each initialization ¢ € [n], define the following random variables representing
intermediate computations within the update rule:

v 2w — v (W), V2 U £ mN,, W 2 proj(vi?) .
w
Clearly, the random variables form the Markov chain (similar to the proof of Lemma 2 and [41], [67])

Wo(i) — Ul(i) — Vl(i) — Wl(i) = U}i) — Vq(f) — W}i)
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for each ¢ € [n]. We have

(@
pe([PE, . PGn) < pe([PY, ., PO n) L pe ([PEY 5 Normal(0, m3.1), . .., PS + Normal(0, m3.1)],n) , (157)

where (a) holds by the data processing inequality for pe (29), and (b) holds by definition of V. The power of the input
distributions is bounded as

’H (1) Pl(;; ‘H (i)maxIE [HU( 12 }(b) |:HWT 1 UTVQT( T 1 H ]

i€[n]
(c) i i (e)
< rgﬁ{ZlE{W§ 12 } +2E[H7]TVQT(W:(r ) H ” < ZHé[a»XE{HWé 12 } + 207 L% = mipr,
where (a) holds by definition of uniform average power (12), (b) holds by definition of Ur, (c) holds by the identity
|z +yl2 < llz+yls+ |z —yl3 = 2|3 + 2||y|/; and linearity of expectation, (d) holds by the bound on the objective
gradients (31), and (e) holds by definition of pr (32). Continuing from (157), we have

pe([PS). . PO, )<F Ape([PY, ., PS)on)ior) < FSM(pe([PS) o PS) Tin)ipr),  (158)

where (a) holds by Theorem 5 and Proposition 6, and (b) holds by the data processing inequality for p (29). Finally, by
recursively applying the arguments in (157) and (158) above, we obtain

pe([Pi) o Pl m) EQ( F8Xpe ([P, Pg]om)imn) -+ sor)
as desired. O

VI. CONCLUSION

In closing, we review our main contributions and propose some directions for follow-up work. In this paper, we formulated
the notion of a Doeblin curve to quantify information contraction of Markov kernels on collections of arbitrarily many input
distributions with specific divergence and power levels, building upon existing literature on Doeblin coefficients and nonlinear
information contraction. After introducing a new variational characterization of Doeblin coefficients, we established several
properties of Doeblin curves and derived bounds on Doeblin curves under canonical power constraints and regularity conditions.
With this more nuanced measure of information contraction in place, we presented three theoretical applications in noisy
iterative optimization, reliable computation, and differential privacy, leveraging Doeblin curves to generalize results in these
areas to multi-way or unbounded settings where Doeblin coefficients fail to capture information contraction.

We suggest two potential extensions of our present work. Firstly, our current understanding of Doeblin curves may be further
enriched by establishing precise conditions for concavity and by studying examples of closed-form uniform average Doeblin
curves. Secondly, future research may explore and broaden our proposed definition of group differential privacy (24), since the
standard definition of differential privacy is sometimes considered very stringent for many applications [75], [76].

APPENDIX A
TECHNICAL LEMMATA

In this appendix, we state and prove two miscellaneous results used throughout our paper.

Lemma 8 (Greatest Common Component Under Affine Transformation). For any kernel W : U x Fx — Ry and signed
measure m : Fx — R, the greatest common component of the kernel W : U x Fxr — R, given by

Vueld, W(-|u)2aW(-|u)+n(), (159)
where o« > 0 and © are such that 0% >0, is
AWClu)=a \ W(|u)+r(). (160)
ueU ueU

Proof. The lemma trivially holds for o = 0, so assume a > 0 henceforth. For notational convenience, let u* denote the measure
given by the right-hand side of (160). By definition of greatest common component as a supremum in (3), we seek to verify
two properties of p*.

Firstly, p* satisfies the condition of the supremum W > w*, because for any v € U,

2 a ®) c
W w)Zaw( [u)+7()=a A W u)+x() Lur(),
ueU

where (a) holds by definition of 1474 (159), (b) holds because the greatest common component of a kernel is a lower bound on
the kernel, and (c) holds by definition of p* as the right-hand side of (160).
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Secondly, we will prove that for any measure p satisfying W > u, we have p* > p. Fix a measure p such that W > b
Observe that
p() — ()

> : (161)
(0% (0%

Yueu, W(-|u) (;) W( | w) — (")

where (a) holds by rearranging (159). Consider a Hahn-Jordan decomposition of y — m, i.e.,
VA€ Fx, (n—m)" (A) & (p—m) (ANP), (n—7) (A) £ —(u—m) (ANN), (162)
where P C X and N = P¢ are the supports (modulo null sets) of the positive and negative parts of p — m, respectively. Then,

~m(ANP) @ u-m"(4)

WA EQWANP | )+ WANN [u) 2 +0

(163)

for all u € U and A € Fy, where (a) holds by additivity of measures because N = P¢, (b) holds because W > (u — )/« (by
(161)) and W > 0, and (c) holds by (162). Now, suppose for the sake of contradiction that there exists A € Fy such that
w*(A) < u(A). Then,

p(A) = w(4) _ p*(4) = (A

A WA u)Ysup {p(A): W 20} = - > . > . )(2/\W(A|u)

ueU ueU

and we obtain the contradiction A, ., W(A | u) > A,c,y W(A | u), where (a) holds by definition of greatest common
component (3), (b) holds because W > (u — 7)* /a by (163) and so we may lower-bound the supremum by this specific
instance, and (c) holds because p* is the right-hand side of (160). O

Lemma 9 (Properties of Upper Concave Envelope). Let f : Z — [0, 1] be a function defined on a (possibly infinite) interval
I C Ry. The upper concave envelope f :Z —[0,1] of f satisfies the following properties:

1) For all boundary points t of I, we have f(t) = f(¢).

2) If f is non-decreasing, then f is non-decreasing.

3) If f is non-decreasing, T = [0,1], and f(t) <t for all t € T, then [ is continuous on T.

Proof.
Part 1: Consider a boundary point a € Z. Suppose for the sake of contradiction that f (a) # f(a). Since f > f everywhere
on Z by definition of upper concave envelope, we must have f(a) > f(a). Consider the function g : Z — [0, 1] given by

fla), ift=a,
f@), ift#a.

Clearly, f < g < f everywhere on Z. Moreover, g is concave, because for all distinct s,¢ € Z and all 6 € (0, 1),

VteZ, g(t)2 { (164)

905+ (1 0) )L F(0s + (1L—0)1) 2 0 f(s) + (1— 0) F(t) S 0g(s) + (1 - 0) g(1)

where (a) holds by the second case in (164) because 0s + (1 — )t is an interior point of Z, (b) holds because f is concave,
and (c) holds because g < f everywhere, as mentioned above. This contradicts the fact that f is the pointwise infimum of all
concave upper bounds of f.

Part 2: Let f : 7 — R be the closed upper concave envelope (or “closed convex hull”) of f [44, Chapter B, Proposition
2.5.2, Definition 2.5.3], i.e.,

VteZ, f(t)2inf{at+B:a>0,3 € Rsuchthat Vs € Z, as+ > f(s)}, (165)

where it suffices to consider only v > 0 because f is non-decreasing. Fix s,¢ € Z such that s < ¢. By definition of f as an
infimum (165), there exist sequences of coefficients {an}tneny C Ry and {6, }nen C R, satisfying au, s + 5, > f(s) for all
s€Z and n € N, such that f(t) = lim,_,o0{ant + B} It follows that

NOR _ ®) _
f(s) < inf {ans + B} < lim {ans + B} < lim {ant +Ba} = f(1),

where (a) holds by taking the infimum in (165) over a smaller set, and (b) holds because s < t and «,, > 0 for all n € N. This
establishes that f is non-decreasing on Z. Since f is the closure of f 144, Chapter B, Proposition 2.5.2], f and f agree on
the interior of Z [44, Chapter B, Proposition 1.2.6] and f<fon any boundary points of Z. Hence, f is non- decreasing on
T — {supZ}. If Z is finite and includes its right boundary point b € Z, then f(b) < f(b) < f(b), where the second inequality
holds by upper-bounding the infimum in (165) with the specific majorant v = 0 and 8 = f(b). By Part 1, f(b) = f(b), and so
f(b) = f(b). Thus, f is non-decreasing on all of Z, as desired.

Part 3: By concavity, f is continuous on the interior of Z. To establish the continuity of f at 0, observe that

@ .

vie, f(t) > F(0) 2 £0) 2o,
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where (a) holds by Part 2, (b) holds by Part 1, and (c) holds by the assumption f(¢) <t and the range of f. Furthermore,

viet, fit) < i) 2,

where (a) holds by upper-bounding the infimum in (165) with the specific majorant o = 1 and B =0 due to the assumption
f(t) < t. Hence, we have lim;_, o+ f( )=0= f(()) as desired. To establish the continuity of f at 1, observe that lim; ;- f(t) <
f(1) because f is non-decreasing by Part 2, and lim,_,,~ f(t) > lim,_,,—{t f(1)+ (1 — t) f(0)} = f(1) because f is concave.
Hence, lim;_,;- f(t) = f(1) as desired. O

APPENDIX B
VARIATIONAL CHARACTERIZATION UNDER EQUICONTINUITY

In this appendix, we provide an alternative statement and proof of Theorem 1 without the use of lattice infima, under the
assumption of equicontinuity of the kernel K.

Theorem 7 (Variational Characterization of Doeblin Coefficient). Let (X,dy) and (), Fy) be Polish spaces, where X is
endowed with the metric dy : X x X — Ry. Let K : X x Fy — [0,1] be an absolutely continuous Markov kernel with
respect to the o-finite measure p : Fy — R. Assume the family of functions {x s 4K (y | z) : y € Y} is equicontinuous [77,
Definition 7.22], i.e.,

dK dK
Ve >0,30 >0,Ve,2’ € X,Vye Y, dy(z,2') <6 = ’du(y | ) — @(y | 2')| < e. (166)
Then, the Doeblin coefficient of K admits the characterization
K) = inf f f K(A; | x;). 167
T( ) élelel, lg’neanartllilon of:)iZ ‘ l’ ( )
1, ’ n

Proof. Fix a Markov kernel K : X x Fy — [0, 1] satisfying the assumptions in Theorem 7. For notational convenience, denote
the right-hand side of (167) as
2 inf f f K(A;
C>£M;agw$mw2 =)
A17 LX) n

First, we will show that 7(K) < (D. By definition of Doeblin coefficient as a supremum (4) which is achieved as per the
discussion following (4), there exists some probability measure 7* : Fy — [0, 1] such that K > 7(K)7*. For any n € N, any
Z1,...,T, € X, and any partition Ay,..., A, of ), we have

() D (1) w*(0) L7 (1) 3 7 (A) € 3K (A; | 22).
=1 =1

where (a) holds because 7* is a probability measure, (b) holds because A1, ..., A, is a partition of ), and (c) holds because
K > 7(K)7*. Since n, x1,...,T,, and Aj, ..., A, were arbitrary, it follows that 7(K) < (D as desired.

Next, we will show that (D < 7(K). Since X’ is Polish and thus separable, there exists a countable dense net {z7, z5,...} C X,
ie.,

Ve e X, V0 >0,Fi €N, dy(z,z]) <9. (168)

For notational convenience, define a sequence of functions g, : ) — R, as

K
Vn N, gu(y) 2 min Ky | at).

ie[n] du
We have I »
(a) . . © ;.
= inf f — (| x < inf =1 1
@ gmﬁaaéégm¢lmywﬁgﬁ%w i [ om e, (169)
where (a) holds by Proposition 2, (b) holds by upper-bounding the inner infimum with the specific instance {«7,...,x}}, and

(c) holds because {g, }nen is a non-increasing sequence, since each successive g, is the minimum over a larger set of 7. Next,
define a function g : V) — R as

s L JdK
9(y) = lim gn(y) = inf 70 | 7). (170)

Observe that g is measurable, because it is the countable infimum of measurable functions. Furthermore, observe that g,, < g1
foralln e N, g < g, and fy qgrdu = K(Y | 7)) = 1 < oco. Hence, proceeding from (169) and applying the dominated

convergence theorem, we have
©< [ (tm gu)du= [ gd, a7
y n— oo y .
| E— |

=
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where we define a* € [0, 1] above for convenience hereafter. If a* = 0, we trivially have (D = 0 < 7(K) as desired. Hence,
assume o > 0 for the remainder of this argument. Define a probability measure 7* : Fy, — [0,1] as 7*(A4) £ L [, gdp for
all A € Fy. Fix an arbitrary € > 0. Consider 6 > 0 (possibly depending on €) such that (166) holds. Observe that for any
r € X and y € ), we have

®) dK
gy) < =y lzj) < 0 —(y|x)+ (172)

where (a) holds for all ¢« € N by definition of g (170), and (b) holds for some ¢ € N (possibly depending on z) such that
dx(x,z}) < J, by equicontinuity (166); we remark that the existence of such an 4 is guaranteed by (168). Hence, for any
re X and A € Fy,

(a) dK
ww @)= [gan? [ (Fe10) =40, (73)

where (a) holds by (172) because € > 0 was arbitrary. Proceeding from (171), we have

(a)
DO<a*<sup{acR:3rc 2, KZOHT}@T(K)
as desired, where (a) holds because K > a*n* by (173), and (b) holds by definition of Doeblin coefficient (4). O

We remark that the equicontinuity assumption on K allows us to circumvent measurability issues in the proof by defining g
as the pointwise infimum over a countable dense subset of X', which is guaranteed to be measurable while approximating the
infimum over all of general uncountable X to any € > 0 accuracy. Otherwise, g would have to be defined as the lattice or
essential infimum, as was done in the proof of Theorem 1 in Section IV-A.

APPENDIX C
MARKOV KERNEL EXAMPLES

In this appendix, we provide examples of non-trivial Markov kernels satisfying the preconditions for various results in our
paper. Throughout this appendix, let ® : R — (0,1) denote the standard Gaussian CDF ®(z) £ [“_ (1/v/27)exp(—t?/2) dt.

First, we present a Markov kernel W : U x Fx — [0,1] with a countably infinite source space U/, unbounded support on the
target space X, and finite average extremal power.

Proposition 10 (Average Extremal Power Example). Let U be countable (without loss of generality, U = N) and X £ R. Let
W U x Fx — [0,1] be a Markov kernel such that for each i € U, X; ~ W (- | i) is sub-Gaussian with mean 0 and variance
factor o2 < ¢/log, (i + 1), i.e.,

aZ\?
VA € R, E{eA(Xi*E[Xi])} < exp< 12 ) ,
where ¢ > 0 is a fixed constant. Then, under the norm ||z|| = |z| and power function M(z) = 22, the average extremal power
of W satisfies ||W||| s < 4c(1 4 72/6).

Proof. Let IP be any coupling of random variables { X; };cn with X; ~ W (- | ¢) for each ¢ € N. In the following, all expectations
are taken with respect to {X;};en ~ P. We have

Wl ag (i)E[supM(XiU} @E[sup|Xi|2] = [hm max | X;| } 9 Jim E{maX|X| ] (174)
€N

n—00 {€[n] n—00 i€[n]
@®
where (a) holds by definition of average extremal power (13), (b) holds by definition of ||-|| and M, and (c) holds by the monotone

convergence theorem because the sequence of functions {g, }nen given by g, ({xi}ieN) = maXie[, |x,| is monotonically
non-decreasing in n. Next, we upper-bound (D) by adapting the result in [78, Lemma 2.3]. For any ¢, 2 0, we have

(a) o0
®</ P(maXX| >t>dt(b)/ P(maxX| >t>dt+/ P(max|X| >t)dt
i€[n] 0 i€[n] to i€[n]
(c) o0 1
§t0+/ P m[aX|X\ > dt<t0—|—/ ZIP’ bk >t)dt—t0+2/ P(|Xi|2t2)dt
to 1677 to
<t0+2/w2€Xp . dt@to+4za?exp _to (175)
to 202 — ' 202 )"

where (a) holds by the layer cake representation [79, Lemma 1.2.1], (b) holds for any tq € [0, o] by splitting the region of
integration into two intervals, (c) holds because probability values are bounded by 1, (d) holds by the union bound, (e) holds
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by [72, Eq. 2.9] because X; is sub-Gaussian with mean 0 and variance factor o7, and (f) holds by evaluating the integral.
Choosing to £ 4 max;e[, {o?log, (i + 1)} and continuing from (175), we have

(a) - 402 log, (i + 1
(D<4max{a§10ge(z'+1)}+4Za§exp<—W)
i€[n]

2
i=1 20,
4max {02 1o (z’+1)}+4§n: idi @4c+4§n: ¢ (176)
= X0 RN — R
i) 71 08e 2 (iv1)? = 2 i+ 1)?log (i + 1)
where (a) holds by the choice of ¢y and (b) holds because a,? < c¢/log.(i+ 1) for each i € N. Combining (174) and (176), we
have
> 1 =1 w2
w <4cf1 <d4cl1 = | =4dec(1+ —
Wl < 4 +§<z’+1>2loge<z'+1>>— o *;) (1+5)
as desired. O

Next, we present a Markov kernel W : U x Fx — [0,1] with an uncountable source space U, unbounded support on the
target space X, and finite average extremal power.

Proposition 11 (Average Extremal Power Example). Let U = (0,00) and X = R. Let W : U x Fx — [0,1] be the Markov
kernel such that for each uw € U, X,, ~ W (- | u) is given by

X Normal(0,1), ifJy=1,
“ 2Beta(u,u) -1, ifJ, =0,

where J,, ~ Bernoulli(1/2) is independent of the Beta and Gaussian random variables. Namely, the cumulative distribution
Sfunction fx, :R — (0,1) is

1 Oa lfx<—1,
T u—1 u—1 .
Fro() = 2 0@) 4 { gty 5 (59" (1= 5", <<,

%a lf$>1,

where B(c, 3) denotes the Beta function B(a, 3) £ j;)l ot (1 — t)ﬁ_l dt, and the probability density function px, is

1 1\u—1 1\yu—1 1 2 .
4B(u,u) (%) (1 - %) + 22 exp(—%) ’ lf |.’I}| < 1’

2 .
Qx/lﬁexp(—‘%» if |x| > 1.

px, (r) = (177)

Then, under the norm ||| £ |z| and power function M (z) £ 2%, the average extremal power of W satisfies ||W ||, < L.
Proof. First, we compute the pointwise infimum of the probability densities {px, }ueczr- We have

(a) 2

inf px. ()2 —— exp( =L ) + 1{Jz] < 1} inf —— (1 e (178)
11 ) = ———€X —_— xr ml ———— —_—
uel PXu 22 or P 2 uelt 4B (u, u) 2 2 7®

where (a) holds by (177). For any = € (—1,1),

(a) 1 r+I\"/1—2\" 1 1 e+ I\ 1—a\“!
<lm-— | — =1 — Ui
®u1£a4B(u,u>( 2 ) ( 2 ) 431{13()}31{( 2 ) ( 5 ) }

w1/ 4 . 1 © 1 . Tew@w 1 . 22 'T(u+i) 1
1— 22 ) us0 B(

1
= = = li =0 179
U, u) 1— 22 ulgb [ (u)? 1— 22 ulir%] V7 T(u) 2(1—=x2?) ulir%) [(u) » (79)

where (a) holds because u = 0 is a limit point of U/, (b) holds because z € (—1,1) and so ((z+1)/2) ! and ((1—x)/2) " are well-
defined, (c) holds by the identity B(cv, 3) = I'(a) I'(8)/T' (v + ), where I denotes the Gamma function I'(er) £ [* t*~te~tdt,
and (d) holds by the Legendre duplication formula T'(2a) = 22°7'T(a) T' (o + §) /+/7. Also, clearly (D > 0 by inspection.
Hence, combining (178) and (179) yields

f (2) 1 x?

in T) = exp| —— ).

ueld PXu 2N 2 P 2
Following from the above, the greatest common component of W is

A W(A ) @/A (irelzf/{pxu(x)) dz = /A 2\/1%exp(x;> dz |

ueU
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where (a) holds by Lemma 4 and because the lattice infimum reduces to the pointwise infimum when the latter is measurable.
Hence, the maximal coupling of random variables { X, }neys with X, ~ W(- | u) for each u € U, defined in (34), is

Vueld, X, 2 X%, fl=1, (180)
X,., ifI=0,

where the random variables I, X*, and {Xu}ueu are sampled independently from the distributions

1
I~B il =
ernou |<2>,

X" ~ Normal(0,1), (181)
VYuel, X, ~2Beta(u,u)—1. (182)
Therefore, the average extremal power of W is

W llpe £B(T = 1)E[21615M(||Xu||) ’ - 1] LU= om[igg M(IXal) ‘ - 0} ®

—~
=

1 -
]E{(X*ﬂ + E[sup Xj} <1
L ] 2 ueU

:% (181) S% (182)

DN =

as desired, where all expectations are taken with respect to the maximal coupling (180), (a) holds by definition of average
extremal power (13) and the law of total expectation, and (b) holds by definitions of ||-||, M, and X,. O

Next, we present a Markov kernel W : U x Fx — [0, 1] with unbounded support on the target space X which satisfies the
preconditions for Proposition 7.

Proposition 12 (Upper Bound Example). Let n € N and s > 0 be fixed constants. Let U = [n] and let X = R be equipped
with the norm ||-|| £ | - |. Let W : U x Fx — [0, 1] be the Markov kernel such that for each i € U, X; ~ W (- | i) is given by

X A& Xm ~ p; + HalfNormal(s), if J; =1,
" | Xijo ~ Uniform(i, ;). if J; =0,

where J; ~ Bernoulli(1/2), X;),, and X;|o are independent, and p; £ i+ 2¢+/2/m. Namely, the cumulative distribution function
in R — [0,1) is
0, ifex<u,
sz(x): I4:~i\/§7 lf’LSx<,ul7

and the probability density function px, is
0, ifex<u,
TACOEREIVER ifi<a <,
s 12weXp(_%)v ifa>p;.

Then, under the definition of G in Proposition 7 with power function M (z) £ 2z, p £ u,, and o 2 \/2 (4s/7), we have W € G.
Proof. Throughout this proof, for notational convenience, let Z; = M (|| X;|)) @ X; for all i € U, where (a) holds because
Uniform average power constraint: Observe that for each i € U/, we have

E[Z;] = E[Xi] @p(]i = O)E[XiIO] +P(Ji = 1)E[Xi|1] = %E[Xuo] + *E[Xm] © 1 (l h M) + %(Nz + C\/2/7) = Hi,

(183)

—~
=

where (a) holds by the law of total expectation, (b) holds because J; ~ Bernoulli(1/2), and (c) holds because Xijo ~
Uniform(i, u1;) and Xj); ~ p; + HalfNormal(s). Therefore,

(a) )
W lllya = supE[Zi] = pn = p
€U

as desired, where (a) holds by definition of uniform average power (12) and (b) holds from (183) because U = [n].
Sub-Gaussianity: Fix ¢ € . For any ¢t > 0, we have

P(1Z; — B[Z]| > t) = P(|X; — E[Xi]| > £) D P(J; = 0)P(| Xy — E[Xi]| > t) + P(J; = 1) P(| Xip — E[X,]| > ¢)
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—~

o) 1
P(| X — BIX| > 6) 2 SB( X0 — ul 2 ) + 5 P(|Xis — il 2)

P(|Xio — ELX][ 2 1) +

DN =

P(X;0 < pi — t) P(X;p > pi+t), (184)

=
'[\pm—ul\JM—*

where (a) holds by the law of total probability, (b) holds because J; ~ Bernoulli(1/2), (c) holds by (183), and (d) holds because
Xjjo < pi and X1 > p;. Next, we upper-bound (D and Q). Let N; ~ Normal(0, (4s/7)?) be an independent Gaussian random

variable. Then,
(@1 ° 1 1 E |
D= = max 0,1—/ ————dx ) =max<0,=- — ———dz
2 —t 26\/2/7 2 Jide2/m

¢ {01 /01 (ﬁ)d}@P(N»< £) (185)
=2 T L aemvar TP\ 20z ) T T ST

where (a) holds by the PDF of a uniform random variable supported on an interval of length p; — ¢ = 2¢4/2/m, (b) holds by
lower-bounding the integrand pointwise, and (c) holds by the PDF of N; ~ Normal(0, (4/7)?). Similarly, we also have

(a) 1 > V2 x2 B t\ () ¢ B |
@—§/t C\/Eexp(—%Q)da:—l—(I)(g)§1—<I><4§/7T>_[P(szt), (186)

where (a) holds by the PDF of a HalfNormal() random variable and (b) holds because CDFs are non-decreasing. Combining
Equations (184) to (186), we thus have P(|Z; — E[Z;]| > t) < IP(|N;| > t), and so by [72, Theorem 2.6] we have sub-Gaussianity
with variance factor o = /2 (4s/m) as desired, i.e., E[e’\(zi*E[Zi])] < exp(m;#) for all A € R. O

Finally, we present a Markov kernel W : U x Fy — [0, 1] with an uncountable source space & and unbounded support on
the target space X which satisfies the preconditions for Proposition 8.

Proposition 13 (Upper Bound Example). Let a > 0 and ¢ > 0 be fixed constants. Let U = [—a, a] be equipped with the metric
dy(u,v) = |u — v|. Let X = R be equipped with the norm ||-|| £ | - |. Let W : U x Fx — [0,1] be the Markov kernel such
that for each uw € U, X,, ~ W (- | u) is given by

x 2 X1 ~ Normal(0,¢2), if J, =1,
| Xujo ~ 8u s if Ju=0,

where J,, ~ Bernoulli(1/2), X1, and X9 are independent. Namely, the probability measure W (- | u) : Fx — [0,1] is

22
VAG}"X,WAU:/ ep< >dx+ S, (A
(A w) vr (4),
and the cumulative distribution function fx, : R — (0,1) is

1@(?), ifz<wu,
_ 2 S
qu(x)_{é¢(f)+é7 ifrx>u.

Then, under the definition of G in Proposition 8 with power function M(z) = 22, p £ (a® +<2)/2, and o = a, we have W € G.

This example resembles an erasure channel wherein erasures are replaced by independent Gaussian variables, akin to the
construction of symmetric channels using erasure channels on finite alphabets (cf. [80], [81]).

Proof. Throughout this proof, for notational convenience, let Z, = M (|| X,||) = X2 for all u € U.
Uniform average power constraint: Observe that for each u € U, we have
a 1 ¢ 2 2
El7.) = E[x2] @P(, = O E[X2,] + P = DE[x2,) ¥ JE[x%] + sE[x3,] 2T as)
where (a) holds by the law of total expectation, (b) holds because J,, ~ Bernoulli(1/2), and (c) holds because X,o ~ &, and

X, 1 ~ Normal(0,<?). Therefore, ||W][|ya @ sup,cy E[Z.] = © (a® +6?)/2 = p as desired, where (a) holds by definition of
uniform average power (12) and (b) holds from (187) because U = [—a, a].

Sub-Gaussian increments: Let { X, }, ¢, be distributed according to the maximal coupling defined in (34). Fix u,v € U.
Since

]EI:ek((Zu—Zu)—]E[Zu_Z'U])} — E[ek(zu_zv)] eA(E[ZU]_]E[ZU]) s (188)
@ @
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we separately consider () and (2). To evaluate (1), notice that the greatest common component of W is

A WA|u (“’/ L. ( xQ)da:—i— A 8u(A / ( mg)dm
X
4 20v2r P\ T2 2ev/2m

ueU ueU

where (a) holds by Lemma 8, and so Ao, W(X |u) = [ ﬁ exp(—%) dx = 3. Thus, the maximal coupling { X, }ueu
such that X,, ~ W(- | u) for all w € U is
¥ 2 )~(* , ifl=1,
“ X., ifI=0,
where the random variables I, X*, and {Xu}uelxl are sampled independently from the probability measures
1 -
I~ Bernoul|i<2> , X'~ NormaI(O,Uz) , Xy~ 0y

Hence,
D= E{ex(xg_xg)} @ P(I =1) E[BA(X*Q—X”)} +P(I =0) ]E[e*(fﬁ—??ﬁ)]
2 2
wl 1 { /\()?375(5)} w0l 1 [ /\Xi} { qxg] @1 1 e e 1e (PR
f2+2Ee 72+ Ele Ele —2+26 e = 5 , (189)

where (a) holds by the law of total expectation, (b) holds because I ~ Bernoulli(1/2), (c) holds because X, and X, are
independent, and (d) holds because X, ~ §, and X, ~ &,. Next, we evaluate 2) and obtain

@(ﬂ>exp<,\ (” £ W >> = ! (190)

2 2 exp(, (v?;u?)A) ’

where (a) holds by (187). Combining Equations (188) to (190), we have

" 2 2) A\ () 2_22/\2 2 (0 — )2 A2
E[ex((zu,fz,,)fzﬁ[zu72,,])] (:)Cosh<(“ 2“ ) ) < exp<(“ ;) ) ) :exp<(u+v) (g v) )

(c) 2 o212 2 212
<exp<a (u 21}) A >(i)exp<a dys(u,v)% A >

2

as desired, where (a) holds by the identity cosh(z) = (1 + e~2%)/(2e=%), (b) holds by the inequality cosh(z) < exp(x?/2),
(c) holds because U = [—a, a], and (d) holds by definition of dy; and o.
Measurability: Observe that if / = 1, we have

2 2 2
sup {Zu — ]E[Zu]} = sup {X*2 — UH} - X*2 _ S” 7
ueu u€l-a,a] 2 2
and if I = 0, we have

2 2 2 2 2 2
sup{Z, — E[Z,]} = sup {XZ—U t }: sup {uz—u t }:a S
ueU u€[—a,al 2 u€[—a,al 2 2

Hence, the pre-image of any measurable set A C R under sup,,¢;,{Z, —E[Z,]} is the measurable event ({I = 1} N {X* € Sa})
U {I =0} if (a® +%)/2 € A, and the measurable event {I =1} N {X* € Sa} otherwise, where S4 C R is the set
Sa={-V2+2/2,\/2+2/2:2€ A, 2> —¢?/2}. O

APPENDIX D
DOEBLIN CURVES AND MARKOV CHAINS

Lastly, we conclude with a discussion relating Doeblin curves back to the classic setting of Markov chain ergodicity. As a
minor departure from our previous exclusive focus on Doeblin curves, we will also discuss contraction properties of Doeblin
coefficients here. Throughout this appendix, we focus on the special case of discrete-time finite-state time-homogeneous Markov
chains, which we represent as a row stochastic matrix K € RZX? whose entries [K];,; denote the probability of transitioning
from state ¢ to state ;7 (which, by homogeneity, is the same at any time). We assume that norms operate on row vectors
analogously to their usual behavior on column vectors.

Below, we present an overview of pertinent results on Markov chain convergence from the literature and add new results

discussing how Doeblin curves relate to these existing characterizations.

Proposition 14 (Markov Chain Properties). Given a discrete-time finite-state time-homogeneous Markov chain represented as a

row stochastic matrix K € ng . the following statements are equivalent:
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a) (Positive spectral gap [82]) |A2(K)| < 1.

b) (Aperiodic unichain [82]) The Markov chain represented by K has exactly one recurrent class, and its recurrent class is
aperiodic.

¢) (Strong ergodicity [82], [83]) The Markov chain represented by K converges to a fixed steady-state distribution 7w* € Py_q
regardless of the initial distribution, i.e., lim, ., moK"™ = 7* for all wo € P4_1. Furthermore, the convergence is
exponentially fast, i.e., there exist constants C > 0 and 0 < o < 1 independent of y such that |woK" — 7*||; < Ca”
forall m € N.

d) (Weak ergodicity [83], [84]) The rows of K™ equalize as time n — oo, i.e., 1imn_>oo||[K"]<i> — [K"]<j>||oo =0 for all
i,7 € [d].

e) (Doeblin characterization of weak ergodicity) For all n > d?, 7(K") > 0.

/) (Doeblin curves) Fxn (t;R%:?) < t for all n > d? and t € (0,1].

Proof. The equivalences a) through f) hold because:

e b) = a) by [82, Theorem 4.4.2]

e 7b) = —a) by [82, Section 4.4.2, p. 178]

¢ b) = c) by [82, Theorem 4.3.7]

e 7b) = —¢) by [82, Section 4.3.5, p. 175]

e c) < d) by [83, p. 867]

e ¢) —> d) by [28, Eq. 6] or [84, Theorem 4.8]

Proof of d) — e): By [84, Theorem 4.8], d) implies that there exists some N € N such that T(KN ) > 0 (i.e., a weaker
version of e) that lacks an explicit threshold), but the threshold d? is not usually explicitly derived in the literature. To remedy
this, we supply a proof of the threshold below.

Lemma 10 (Threshold For Positivity of 7(K™)). If there exists some N € N such that T(KY) > 0, 7(K") > 0 for all n > d°.

Proof. If 7(K¥) > 0, there must exist some state i in the Markov chain represented by K that can be reached in exactly N
steps from any state including itself. Thus, ¢ must be a part of some cycle of length p < d in the graph representation of K.

We argue that unless p = 1, there must exist another cycle that includes state ¢ with length ¢ < d such that pLq (i.e., p and
q are coprime). If this is not the case, every cycle that includes state + must have a length that is a multiple of some integer
k > 2. Let j be the predecessor state of i in one or more of these cycles. Then, all paths from j to ¢ must have length = 1
mod k. However, all paths from ¢ to ¢ must have length = 0 mod £, thus no path from j to ¢ can have the same length as
any path from ¢ to ¢, which is a contradiction.

Thus, state 7 is included in two (possibly equal) cycles of coprime lengths p and g. From the solution of the Frobenius
coin problem with two coins [85], it is known that any integer > (p — 1)(¢ — 1) can be represented as ap + bg where
a,b are nonnegative integers. Given any state [, let d(I) < d be the distance from [ to ¢ ( must be reachable from [ by
assumption). Then, for any integer m > d(I) + (p — 1)(¢ — 1), there must exist a trajectory of exactly length m from [ to
i. Since d(I) + (p—1)(g—1) < (d— 1)+ (d —1)(d —2) = d* — 2d + 1 < d? since p,q < d and pLq, 7(K") > 0 for all
n > d>. O

Note that this result bears a strong resemblance to [86, Corollary 8.5.8] which states a similar threshold for primitive matrices.
Furthermore, kernels represented by primitive matrices are ergodic with no transient states (i.e., every state is in the recurrent
class), thus the class of primitive matrices is a subset of the class of ergodic Markov chains.

Although ¢) <= d) is known in the literature [83, p. 867], this equivalence is seldom directly argued for homogeneous
Markov chains, since the distinction between strong and weak forms of ergodicity is traditionally only made in the context of
inhomogeneous chains. So, for completeness, we provide a proof of ¢) <= d) from first principles below.

Proof of ¢) < d): Fix a time-homogeneous Markov chain K € R%X?. First, we will prove the forward direction; the
argument is straightforward and standard. Assume K is strongly ergodic, with w* denoting its steady-state distribution. Then,
for any 7,5 € [d],

lim H[K”] . — K", H ~ lim oK — ;K" 2 Tim [e:K" — %] + lim [le;K" — %] 20

n—00 (3) () 00 n—oo ¢ J © = et o0 n—oo ' J o ’
where (a) holds by the triangle inequality and additivity of limits, and (b) holds by strong ergodicity. Hence, K is weakly
ergodic, as desired.

Next, we will prove the reverse direction. Assume K is weakly ergodic. Consider the sequence of powers {K"}52 ;. Since

the set of all row stochastic matrices REX? is compact (e.g., under the Frobenius norm), there exists a subsequence {K™}%°,

which converges to a limit K* € Riﬁd, ie.,

: ne _ J&* —
Jim K" — K"l = 0. (191)
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Furthermore, for any 4, j € [d], we have

(a)
[y - ||, = i iy = g | o im0 - [K*]<j>Hoo = H[K"W K"l

H (d)
<J
where (a) holds by the triangle inequality and additivity of limits, (b) holds by (191), (c) holds because the limit of any
subsequence of a convergent sequence is equal to the limit of the entire sequence, and (d) holds by weak ergodicity. Hence,
K* has all identical rows, and so rank(K*) = 1. Therefore, |A; (K*)| > 0 and \y(K*) = --- = \4(K*) = 0.

Moreover, by the Perron-Frobenius theorem [84, Chapter 1], we have A;(K*) = 1 and A\;(K") = 1 for every n € N.
This, along with the continuity of eigenvalues with respect to the entries of a matrix [87, Chapter IV, Theorem 1.1], yields
limy_s 0o A (K™) = X;(K*) =0 for all i € {2,...,d}. Since \;(K™) = X\;(K)™ for all i € [d], it follows that |X;(K)| < 1
for all 4 € {2,...,d}. Hence, consider the Jordan canonical form K = X~1JX [86, Chapter 3], where the Jordan matrix J is
lower triangular with [J]; ; = 1 and all other diagonal entries strictly less than 1 in magnitude, and the rows of X contain the
generalized eigenvectors of K, scaled such that ||[X]1y|l; = 1. For any initial distribution ¢y = cX € &, 1, we have

l— 00 n—o00

(b) . n n (C) . n
O Jim H[K % K e}mHm 9 Jim H[K iy —

(

lim K" = lim {(cX) (X J"X)} = ¢ ( lim J”) XY celerX = [c], [X] )

n—oo n— oo
where (a) holds because the powers of Jordan blocks corresponding to eigenvalues with magnitude less than 1 vanish entry-wise
in the limit. Finally, since ||woK"||; = 1 for each n € N, we have [c]; = 1 for any choice of w9 € Z;_1,'° and thus,
lim,, 500 WK™ = [X]<1>. Hence, K is strongly ergodic, as desired.

Proof of ¢) <= f): The set of all d x d row stochastic matrices R%X? is convex, contains the identity kernel (i.e., the d x d
identity matrix), and contains a constant kernel (e.g., the d x d matrix where each row is e;). Thus, by Proposition 3, Part 2,

Fin (5RESY) = p(K™)t. (192)
Hence, Fxn (t; Riﬁd) < t holds iff p(K™) < 1, or equivalently 7(K™) > 0, as desired. O

Proposition 14 states that any Markov chain K € R%X¢ has positive spectral gap (i.e., |\2(K)| < 1) iff Fgn (¢ Riﬁd) <t

holds for sufficiently large n. We note that taking into account whether the inequality holds for sufficiently high power K",
not necessarily K itself, is crucial to this equivalence, as |A2(K)| < 1 does not imply in general that the inequality holds for
n = 1. As a counterexample, consider a directed cycle on d > 4 vertices with self-loops at each vertex:

%, if j=1,
Vi,jeld, K|, ;=13, ifj=i+1or(i,j)=(d1),
0, otherwise.

Clearly, K has positive spectral gap because it is a unichain (by virtue of its cycle structure) and aperiodic (by virtue of its self-
loops). Now, let w and v be point mass distributions at vertices at least distance 2 apart on the cycle, e.g., w = e; and v = es.
Then, by matrix multiplication, the distributions after one step of K are wK = (1/2)e; +(1/2)e; and vK = (1/2)es+(1/2)ey.
It follows that

—~

P(K) 2 p([w,v]) p(K) 2 p([wi,vEK]) €1,
where (a) holds because w = e; and v = e3 have disjoint support and thus p([w,v]) = 1, (b) holds by submultiplicativity
of complementary Doeblin coefficients, and (c) holds because wK and vK have disjoint support. By (192), it follows that
Fi (t;REX?) = ¢, even though K has positive spectral gap.

Next, we present the following proposition which exactly characterizes when contraction occurs between two input distributions
after one step of the Markov chain K.

Proposition 15 (Strict Contraction of Doeblin Coefficient). Let K € Rféd be a Markov chain. For any subset of states S C [d],
let Nk (S) denote the set of states reachable from S in one time step, i.e.,

Nk (S) = {j €ld:3ied, K], > 0}. (193)

Then, for any pair of distributions w,v € Pq_1, we have p([w,v]K) < p([w,V]) iff Nk (Swsv) NNk (Sw<v) is non-empty,
where we define

Swoy = {i € [d): [W], > [V],}, Swev={i€d:[w], <[]} (194)

16This occurs because [X]<1> is a point on #;_1, and the remaining rows of X span the direction space associated with Z2;_ 1.
17Since we consider two input distributions, the Doeblin coefficient p reduces to TV distance.
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Proof. Fix a Markov chain K € REX? and distributions w,v € %;_1. We have

p([w v = 1 — Zmln{ WK ,[VK } ® 1— Zmln{z [w]; [K]” ’Z [vl; [K]”}
. d
Sl—ZZmin{[w]i[ i vl (K )7}—1—me{ Z}Z

9y Zmln{ } ([W,v]) , (195)
where (a) holds by definition of Doeblin coefficient (6), (b) holds by matrix algebra, (c) holds by the identity
min{thqu} > min{a;, y;}, (196)

(d) holds by factoring [K]; ; outside the minimum (because [K]; ; > 0) and interchanging the order of summation, (e) holds
because K is row stochastic, and (f) holds by definition of Doeblin coefficient (6). The inequality in (196) is strict iff x; > y;

and x;; < y; for some i and ¢’. Hence, the inequality in step (c) of (195) is strict iff there exist ¢,4’, j € [d] such that [w], > [v],
and [K]; ; >0 (e, j € Nk(Sw>v)), and [w];, < [v];, and [K];, ; >0 (i.e., j € Nk( w<v)) 18 Clearly, this is equivalent to
the condition that NK( Swsv) NNk (Swev) # 0, as desired. O

Proposition 15 exactly characterizes the condition on K, w, v such that strict contraction occurs in one step. We remark that
two natural corollaries of this result give intuitive conditions on K under which strict contraction occurs for entire classes of w
and v.

Corollary 3 (Strict Contraction and Gramian). Let K € defgd be a Markov chain. The joint range of K satisfies § (K; th(x)d) C
{(t,y) € [0,1])* : y < t} U{(0,0)}, or, equivalently, we have p([w,v]K) < p([w,V]) for all pairs of distinct distributions
w,v € Py_1, iff the Gramian matrix KK is entry-wise strictly positive.

Proof. Fix K € REX4,

First, we will prove the forward direction. Assume KK7 is entry-wise strictly positive. Fix any distinct distributions
w,v € &, 1. Recall the definitions of Sy~ and Sw<v from (194). Since probability distributions sum to 1, both Sy ~+ and
Sw<v are non- empty Consider any i € Sy~y and i’ € Sy<y. By assumption, we have [KKT]; ;; = Z 71[K] ii Kl j >0,
so there exists j* € [d] such that [K]; ;+ > 0 and [K];» j« > 0. By (193), it holds that j* € Nk (Sw>v) and J* € Nk(Swev)s
and s0 Nk (Swsv) NNk (Sw<v) # 0. By Proposition 15 we have p([w, v]K) < p([w, v]) as desired.

Next, we will prove the reverse direction. Assume that p([w, v] K) < p([w,v]) for any distinct distributions w,v € P;_.
Fix unspecified distinct 7, ¢ € [d]. Choosing w = e; and v = e, and applying Proposition 15, we have Nk ({i}) NNk ({i'}) # 0
Consider any j* € Nk ({i}) N Nk ({i'}). We have

d
(@)
T
[KK'],, =) [K vg 2 [Kli g Ky je >0,
Jj=1

where (a) holds by definition of Nk from (193), and so the off-diagonal entries of KK are positive. Furthermore, for any
i € [d], we have [KKT]; ; = 2% [K]?; > 0, where the final inequality holds because K is row stochastic, and so the diagonal

Jj=1
entries of KK are positive. Hence, KK is entry-wise strictly positive, as desired. O

Corollary 4 (Strict Contraction and Laziness). Ler K € REX? be a lazy Markov chain (i.e., [K]i; > 0 for all i € [d]) with

positive spectral gap (i.e., |\2(K)| < 1). Then, for all pairs of distributions w,v € P,_1 which differ at each entry (i.e.,
[w]; # [v]; for all i € [d]), we have p([w,v]K) < p([w,v]).

Proof. Fix a Markov chain K € REX? and distributions w,v € 2,_; satisfying the conditions in Corollary 4. Since w and
v differ at each entry, we have S, = Sw<v. Since K has positive spectral gap, K has exactly one recurrent class (by
Proposition 14, Part (b)), and so the directed graph representation of K is connected (in an undirected sense). Hence, there
exists an edge between Sw>v and S -, i.e., for some i € Sy»y and ¢ € Sy, we have [K]; v > 0 or [K];/ ; > 0. Without

loss of generality, assume [K]; » > 0. Since K is lazy, we have [K]; » > 0. By (193), it holds that ' € Nk (Sw>v) and
i" € Nk(Sw<v), and s0 Nk (Sw>v) N Nk (Sw<v) # 0. By Proposition 15, we have p([w,v]K) < p([w,v]) as desired. O

18This condition for equality can also be verified by using the £'-norm characterization of TV distance in (a), applying the triangle inequality to deduce (e),
and then using known conditions for equality in the triangle inequality.
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