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Doeblin Curves
Dongmin Lee, William Lu, Anuran Makur, and Japneet Singh

Abstract

Recent research on Doeblin coefficients has shed light on their usefulness as a multi-way generalization of the Dobrushin
contraction coefficient for TV distance, in a separate vein from their classic role in the theory of Markov chain ergodicity. However,
strong conditions, such as being bounded away from 0, are typically necessary for Doeblin coefficients to establish the existence
of information contraction. Building on the recently formulated concept of Dobrushin curves, we aim to propose a finer-grained
Doeblin-based characterization of multi-way contraction behavior which yields non-vacuous contraction guarantees even for
channels whose Doeblin coefficient is 0. To this end, we introduce the notion of a Doeblin curve—a nonlinear function which
quantifies the contraction behavior of a Markov kernel on collections of input distributions at specific levels of divergence and
power. Through the course of our analysis, we develop a new variational characterization of Doeblin coefficients, present several
properties of Doeblin curves, define several versions of power-constrained Doeblin curves, and derive upper and lower bounds
using our aforementioned variational characterization. We then utilize these results in diverse areas, including generalization bounds
for noisy iterative optimization, error bounds for reliable computation with noisy circuits, and differential privacy guarantees for
online iterative algorithms. In particular, we extend results in these areas to broader domains or group settings, leveraging Doeblin
curves to reveal finer-grained contraction phenomena than Doeblin coefficients.

Index Terms

Doeblin coefficient, Markov kernel, information contraction.

I. INTRODUCTION

Analyzing the contraction properties of channels or Markov kernels is a fundamental problem in information theory stemming
back to the celebrated data processing inequality, which states that the f -divergence between two distributions does not increase
after they are passed through a Markov kernel [2], [3]. Data processing inequalities can be strengthened using contraction
coefficients [4]–[9], which quantify the degree to which two distributions contract after being pushed forward through a Markov
kernel (also see more recent work [10]–[18] and the references therein). In some cases, the quantification of this contraction
behavior can be extended to an arbitrary collection of distributions represented by another Markov kernel, e.g., using Doeblin
coefficients [19].

Historically, such contraction analyses were closely tied to investigating the convergence rate of a Markov chain to its
steady-state distribution. Initial work in this vein by Doeblin [20], [21] established exponential convergence rates for all Markov
matrices with strictly positive Doeblin coefficients, while more general weak ergodicity results for inhomogeneous Markov
chains have been obtained using similar ideas, e.g., [22, Lemma 3]. Furthermore, [19] recently showed that Doeblin coefficients
may be perceived as an n-way generalization of total variation (TV) distance, a view in which the submultiplicativity of Doeblin
coefficients corresponds to the data processing inequality for n input distributions.

However, the utility of Doeblin coefficients remains limited in the regime of channels whose Doeblin coefficient is 0, for
which information contraction properties cannot be easily established using existing Doeblin-based techniques. For example,
prior work has demonstrated that Markov chains exhibit convergence to stationarity even under much weaker conditions such
as drift and local minorization, cf. [23], and a strictly positive Doeblin coefficient may be considered a strong assumption.
Consequently, contemporary results in Markov process analysis often shed the dependence on Doeblin coefficients altogether,
instead being rooted in alternative methods such as spectral gap (or Poincaré) and logarithmic Sobolev inequalities [24].

The issue of contraction coefficients taking on trivial values exists in broader information-theoretic settings too [14], [25].
For example, Dobrushin’s contraction coefficient for TV distance often takes the value 1 which does not demonstrate any
meaningful information contraction [25]. To circumvent this issue, [25] develops nonlinear functions called Dobrushin curves
that capture TV contraction even if the contraction coefficient is 1. Propelled by this line of inquiry, we seek to understand
Doeblin-based information contraction properties of Markov kernels under general conditions, including the case of zero Doeblin
coefficient. To this end, we introduce the notion of a Doeblin curve in this work. This nonlinear function quantifies the degree
of contraction exhibited by its associated Markov kernel K, when applied to an arbitrary collection of input distributions
represented by another kernel W . In contrast to conventional Doeblin coefficients, the nonlinearity of the Doeblin curve captures
a more nuanced view of the contraction behavior of K.
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A. Main Contributions and Outline
We briefly outline the structure of our paper and list our main contributions. Following a discussion of preliminaries, in

Section II-A, we present a new variational characterization of Doeblin coefficients as an infimum over arbitrary partitions of
the output space. Next, we introduce and formally define the Doeblin curve of a general Markov kernel and enumerate basic
properties in Section II-B. We discuss power-constrained versions in Section II-C, derive upper and lower bounds using the
aforementioned variational characterization in Section II-D, and present examples of kernels with closed-form Doeblin curves.
Notably, in contrast to much of the literature on information contraction and Doeblin coefficients, this work is developed in the
context of Markov kernels over general Polish spaces (as opposed to Markov matrices over finite sets).

Building on these theoretical results, we discuss several applications of Doeblin curves in Section III. In Section III-A, we
employ Doeblin curves to derive generalization error bounds for noisy iterative algorithms operating on feasible sets with
infinite diameter, a situation in which Doeblin coefficients fail to produce non-trivial contraction bounds. In Section III-B,
we discuss lower bounds for reliable computation using circuits of noisy q-ary gates. Lastly, in Section III-C, we utilize our
variational characterization of Doeblin coefficients to extend the definition of (ϵ, δ)-local differential privacy (LDP) to a group
setting, and provide differential privacy guarantees for noisy iterative algorithms in terms of the Doeblin curve of the privacy
mechanism.

We provide proofs of our main results in Section IV and proofs for the aforementioned applications in Section V. We defer
further technical miscellany to Appendices A to C and relate Doeblin curves back to the classic setting of Markov chain
ergodicity in Appendix D.

B. Related Literature
We summarize the prior literature on Doeblin coefficients, multi-way divergence metrics, and strong data processing inequalities

(SDPIs). At the outset, Doeblin’s seminal work [20], [21] introduced coupling as a technique for establishing uniform exponential
convergence rates of Markov chains with respect to TV distance (also see [26]–[28]), and minorization as a technique to
prove the weak ergodicity of inhomogeneous Markov chains (also see [22]). Notably, Doeblin coefficients were extremal
minorization constants in such techniques. Subsequent results [27, Theorem 3.1], [29, Lemma 5], [30, Section IV-D] established
the equivalence between Doeblin minorization and degradation by erasure channels, akin to the view of contraction coefficients
for Kullback-Leibler (KL) divergence as domination by erasure channels under the less noisy preorder [13]. Doeblin coefficients
also find relevance in various machine learning and applied probability problems, such as change detection algorithms [31],
regret bounds in multi-armed bandit problems [32], Markov chain Monte Carlo methods [33], analysis of mixing times [34],
and estimation of entropy rates [35]. Previous work on strong data processing inequalities [12, Remark 3.2], [36, Section I-D]
has also shown how the Doeblin minorization condition yields upper bounds on contraction coefficients for f -divergences.

Extending the notion of f -divergence to compare three or more distributions simultaneously is another key avenue of research.
For example, [37], [38] develop some general approaches for such extensions. Moreover, [19] established several properties
of Doeblin coefficients (including geometric aspects, simultaneous and maximal coupling characterizations, and contraction
properties over Bayesian networks), and noted that Doeblin coefficients may be perceived as a multi-way generalization of TV
distance. (Interestingly, max-Doeblin coefficients [19], or maximal leakage [39], also share many of these properties [40].)

Much like Doeblin coefficients, the Dobrushin contraction coefficient for TV distance also plays a seminal role in the analysis
of Markov kernels. Both the Doeblin and Dobrushin coefficients share key properties such as submultiplicativity [13], [19],
and the latter enjoys utility in applications such as generalization error bounds [41], differential privacy guarantees [42], and
analysis of reinforcement learning algorithms [43]. As noted earlier, [25] introduced Dobrushin curves to quantify information
dissipation in channels with average input cost constraint even when their Dobrushin coefficient is trivially 1. Akin to this
nonlinear perspective, other studies [13], [14] developed strong data processing inequalities which capture similar fine-grained
contraction behavior. In this paper, we extend these ideas to the realm of Doeblin coefficients, demonstrating that analogous
nonlinear enhancements can be devised to broaden the efficacy of Doeblin-based approaches for characterizing contraction
behavior in general settings.

C. Preliminaries
We define relevant notation, review technical preliminaries, and provide several pertinent characterizations of Doeblin

coefficients used in our paper. Let N ≜ {1, 2, . . .} denote the natural numbers starting from 1. Let R+ denote the non-negative
real numbers. Let [n] ≜ {1, . . . , n} denote integer intervals. Given a function f : X → R defined on a convex domain X ⊆ R,
let “f : X → R denote its upper concave envelope (i.e., the pointwise infimum of all its concave upper bounds, or the “convex
hull of f” [44, Chapter B, Proposition 2.5.1, Definition 2.5.3]). Given a Banach space (X , ∥·∥), denote the diameter and
Chebyshev radius of a (multi-)subset S ⊆ X as

|||S|||∞ ≜ sup
x,y∈S

∥x− y∥ , rad(S) ≜ inf
a∈X

sup
x∈S

∥x− a∥ . (1)

All measures considered in this paper are finite. Let (X ,FX ) and (Y,FY) be (measurable) Polish spaces equipped with
Borel σ-algebras, and let P denote the set of probability measures on (Y,FY). (Throughout this paper, all Polish spaces
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considered are assumed to have cardinality at least 2.) A Markov kernel (or channel) K acting from X to Y is a mapping
K : X × FY → [0, 1] such that K(· | x) is a probability measure for each x ∈ X and K(A | ·) is a measurable function for
each A ∈ FY . For any scalar α ∈ R, kernel K, and measure π, we write K ≥ απ to denote that

∀x ∈ X , ∀A ∈ FY , K(A | x) ≥ α · π(A) .

Given probability distributions P and Q, let P ⊗Q denote their product distribution and let P ∗Q denote their convolution.
Given σ-algebras FX and FY , let FX ⊗ FY denote their product σ-algebra. Given measures Pi : FY → R+ for i ∈ [n], let
[P1, . . . , Pn] : [n]×FY → R+ denote the kernel formed by collecting these measures, i.e.,

∀i ∈ [n], ∀A ∈ FY , [P1, . . . , Pn] (A | i) ≜ Pi(A) .

Let δx denote the Dirac measure (i.e., point mass) concentrated at x. Let Ξ denote the identity kernel, i.e.,

∀x ∈ X , Ξ(· | x) ≜ δx(·) .

Given measures π, µ : FY → R+, we write π ≪ µ to indicate that π is dominated by (or absolutely continuous with
respect to) µ, i.e., µ(A) = 0 ⇒ π(A) = 0 for all A ∈ FY . When π ≪ µ and µ is σ-finite, we let dπ

dµ : Y → R+ denote
the Radon-Nikodym derivative of π with respect to µ. We say that a Markov kernel K : X × FY → [0, 1] is absolutely
continuous if there exists a σ-finite measure µ : FY → R+ such that K(· | x) ≪ µ for all x ∈ X .1 For example, note that if
X = {x1, x2, . . .} is countably infinite, one such dominating finite measure µ is

µ(·) =
∞∑
i=1

K(· | xi)

2i
. (2)

By Doob’s variant of the Radon-Nikodym theorem [45, Chapter V, Theorem 4.44], absolute continuity of K implies the
existence of a kernel function of Radon-Nikodym derivatives dK

dµ (y | x) : Y × X → R+, such that

∀x ∈ X , ∀A ∈ FY , K(A | x) =
∫
A

dK

dµ
(· | x) dµ

and dK
dµ is jointly measurable with respect to the product σ-algebra FY ⊗FX . We impose this mild regularity condition on

K as a precondition for several of our results; it is standard in measure-theoretic treatments of information theory (cf. [46,
Theorem 2.12]).

Given a collection of measures {πi}i∈I on a Polish space (Y,FY), where I is an arbitrary index set, define their greatest
common component

∧
i∈I πi [47, Chapter 3, Section 7.1] as the unique measure on (Y,FY) given by

∀A ∈ FY ,
∧
i∈I

πi(A) ≜ sup {ν(A) : ∀i ∈ I, πi ≥ ν} , (3)

where the supremum is taken over all measures ν : FY → R+ such that πi ≥ ν for each i ∈ I . We remark that
∧

i∈I πi(A) ̸=
infi∈I πi(A) in general, because the pointwise infimum of measures is not a measure in general (as it may fail to satisfy
countable additivity). We refer readers to [47, Chapter 3, Theorem 7.1] for a proof that the pointwise supremum in (3) defines
a valid measure.

When we want to emphasize the discrete, finite-dimensional nature of a setting, we denote vectors and matrices with lowercase
and uppercase bold letters, respectively. Let Pd−1 ⊂ Rd be the (d− 1)-dimensional probability simplex of row pmf vectors,
and let Rd×d

sto be the set of all d × d row stochastic matrices. Let ei ∈ Pd−1 be the ith standard basis row vector. Given a
matrix A, let [A]i,j denote its entry at row i and column j, and let [A]⟨i⟩ = eiA denote its ith row, represented as a row vector.
If A is square, let λi(A) denote its ith eigenvalue (counting algebraic multiplicity and ordered by descending magnitude). Let
∥·∥p denote the ℓp-norm in Euclidean space.

Given a Markov kernel K, define its Doeblin coefficient τ(K) ∈ [0, 1] and complementary Doeblin coefficient ρ(K) ∈ [0, 1]
as

τ(K) ≜ sup {α ∈ R : ∃π ∈ P, K ≥ απ} , (4)

ρ(K) ≜ 1− τ(K) .

The Doeblin coefficient of K may be characterized in terms of its greatest common component as

τ(K) =
∧
x∈X

K(Y | x) , (5)

1Note that such a common dominating measure µ always exists for any K, but we additionally require σ-finiteness of µ so that [45, Chapter V, Theorem
4.44] can be invoked.
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because the scalar α =
∧

x∈X K(Y | x) and the measure π(·) = (1/α)
∧

x∈X K(· | x) achieve the supremum in (4) by [22,
Theorem 1].2 For finite spaces (i.e., row stochastic matrices K ∈ Rm×n

sto ), τ(K) reduces to Doeblin’s coefficient of ergodicity
[48], [19, Definition 1], [22, Eq. 11], defined as

τ(K) =

n∑
j=1

min
i∈[m]

[K]i,j . (6)

II. MAIN RESULTS ON DOEBLIN CURVES

We begin by recalling the maximal coupling characterization of Doeblin coefficients [19, Theorem 2] defined as follows.
Consider a collection of probability measures {Pi}i∈I where I is a Polish index set and each probability measure Pi is on a
respective Polish space (Yi,FYi

). A coupling of probability measures {Pi}i∈I is a collection {Yi}i∈I of random variables all
defined on the common measure space ⊗i∈I(Yi,FYi), equipped with a (joint) probability measure P such that for all i ∈ I,
the marginal probability law of Yi on (Yi,FYi) is equal to Pi. (Since each (Yi,FYi) is Polish, results such as the Kolmogorov
extension theorem guarantee the existence of measures P on the infinite collection of random variables {Yi}i∈I which are
consistent with finite dimensional distributions [49].) With this groundwork established, the following proposition states the
desired maximal coupling characterization for Polish spaces.

Proposition 1 (Maximal Coupling Characterization of Doeblin Coefficients). Let K : X × FY → [0, 1] be a Markov kernel
defined over Polish spaces (X ,FX ) and (Y,FY). Then,

τ(K) = sup
P:Yx∼K(·|x)

P(∀x, x′ ∈ X , Yx = Yx′) , (7)

where the supremum is taken over all couplings {Yx}x∈X of the probability measures {K(· | x)}x∈X .

Proposition 1 is proved in Section IV-A for completeness. We remark that for any Markov kernel K, the supremum in (7) is
achieved by the construction in (34), which we refer to as the “maximal coupling” for the remainder of this paper. Next, we
present our main results, beginning with a new variational characterization of Doeblin coefficients.

A. Variational Characterization of Doeblin Coefficients

Our first main result is a new variational characterization of Doeblin coefficients, expressed as an infimum over arbitrary
partitions of the underlying space. In this sense, our result is comparable to the Gel’fand-Yaglom-Peres variational characterization
of KL divergence [50] or the extensions to f -divergences in [51], [46, Theorem 7.6].

Theorem 1 (Variational Characterization of Doeblin Coefficient). Let K : X ×FY → [0, 1] be an absolutely continuous Markov
kernel defined over Polish spaces (X ,FX ) and (Y,FY). Then,

τ(K) = inf
n∈N

inf
x1,...,xn∈X

inf
n-partition of Y

A1,...,An

n∑
i=1

K(Ai | xi) ,

where the innermost infimum is taken with respect to all measurable n-partitions A1, . . . , An ∈ FY , i.e., Ai ∩Aj = ∅ for all
i ̸= j and

⋃n
i=1 Ai = Y .

Theorem 1 is proved in Section IV-A. The proof uses the characterization of Doeblin coefficients in (5) and the Radon-
Nikodym theorem to express τ(K) in terms of the density of the greatest common component of K. To relate this quantity to
the individual densities dK

dµ (· | x) for x ∈ X , we utilize the notion of lattice infimum as a measurable analogue of pointwise
infimum, so that the lattice infimum of uncountably many measurable functions dK

dµ (· | x) (indexed by x ∈ X ) remains
measurable. Approximating this uncountable lattice infimum with a countable sequence gives rise to the infima over n ∈ N and
x1, . . . , xn ∈ X in Theorem 1, and we complete the proof by leveraging the following proposition to convert the integral of the
pointwise minimum of finitely many densities into an infimum over partitions.

Proposition 2 (Integral Characterization of Infimum). Let K : X × FY → [0, 1] be an absolutely continuous Markov kernel
defined over Polish spaces (X ,FX ) and (Y,FY). For any fixed x1, . . . , xn ∈ X and any fixed constants γ1, . . . , γn ≥ 0, we
have

inf
n-partition of Y

A1,...,An

n∑
i=1

γiK(Ai | xi) =

∫
Y

(
min
i∈[n]

γi
dK

dµ
(· | xi)

)
dµ .

Proposition 2 is proved in Section IV-A and is also used in the proofs of subsequent results. We remark that Proposition 2
may be interpreted as a special case of Theorem 1 where X is finite. To see this, observe that whereas the infima over n ∈ N
and x1, . . . , xn ∈ X in Theorem 1 define the finite subset of X included in the sum (and thus the infinite subset of X omitted

2If α = 0, we may take π to be any probability measure on Y .
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from the sum), they are unnecessary when X is finite, as any xi ∈ X may be “omitted” from the sum by simply taking the
respective Ai to be ∅. We note that by imposing stronger regularity conditions on K, we may prove Theorem 1 without the
use of lattice infima; we refer interested readers to Appendix B for an analytically simpler argument under equicontinuity
assumptions on dK

dµ .
Throughout the rest of the paper, we find it helpful to define a notion of constrained Doeblin coefficient3 for a Markov kernel

K : X × FY → [0, 1] and a measurable set S ∈ FX as

τS(K) ≜ sup
{
α ∈ R : ∃π ∈ P, ∀x ∈ S, K(· | x) ≥ απ

}
,

ρS(K) ≜ 1− τS(K) .

We remark that ρS(K) is monotonically non-decreasing in S, i.e., for any two sets R,S ∈ FX such that R ⊆ S, we have
ρR(K) ≤ ρS(K).

B. Doeblin Curves

As our centerpiece contribution, we introduce the notion of a Doeblin curve to capture contraction properties of Markov
kernels whose Doeblin coefficient is 0. For any Polish space (U ,FU ), define the composition of two kernels W : U ×FX → R+

and K : X × FY → R+ as the kernel WK : U × FY → R+ given by

∀u ∈ U , ∀A ∈ FY , WK(A | u) ≜
∫
X
K(A | x)W (dx | u) . (8)

Now, we define the Doeblin curve of a Markov kernel K : X ×FY → [0, 1] as the function FK(· ;G) : [0, 1] → [0, 1] given by

FK(t;G) ≜ sup {ρ(WK) : ρ(W ) ≤ t, W ∈ G} , (9)

where the supremum is taken over all Markov kernels W : U×FX → [0, 1] from all Polish spaces (U ,FU ), such that W belongs
to some non-empty constraint set G. We define the joint range of the input and output complementary Doeblin coefficients as
F(K;G) ≜ cl {(ρ(W ), ρ(WK)) : W ∈ G} ⊆ [0, 1]2, where cl denotes closure. Specifically, the joint range F(K;G) is contained
within the set {(t, y) ∈ [0, 1]2 : y ≤ FK(t;G)}. For any kernel K, the Doeblin curve FK(t;G) is monotonically non-decreasing
in t for any fixed constraint set G. Also, the Doeblin curve FK(t;G) and joint range F(K;G) are monotonically non-decreasing
in G, i.e., for any two sets of kernels G,H such that G ⊆ H, we have FK(· ;G) ≤ FK(· ;H) and F(K;G) ⊆ F(K;H).

By submultiplicativity of complementary Doeblin coefficients [22, Section 4], [19, Theorem 1], we have ρ(WK) ≤ ρ(W )ρ(K).
Hence, the Doeblin curve and joint range satisfy the outer bounds

FK(t;G) ≤ ρ(K) t , F(K;G) ⊆
{
(t, y) ∈ [0, 1]2 : y ≤ ρ(K) t

}
, (10)

and since ρ(K) ≤ 1, we have
FK(t;G) ≤ t , F(K;G) ⊆

{
(t, y) ∈ [0, 1]2 : y ≤ t

}
. (11)

Figure 1 presents the numerically simulated joint range for a discrete memoryless channel K ∈ R5×5
sto , comprising 1 million

instances of W sampled uniformly from the set of 5×5 row stochastic matrices. The blue dashed line depicts the Doeblin curve
of K obtained analytically from Proposition 3, Part 2. The blue dots represent numerically sampled points (ρ(W), ρ(WK)) ∈
F(K;R5×5

sto ) in the joint range of K. The figure shows that when W is uniformly sampled, such as in settings where channel
inputs do not inherently tend towards degenerate regions of the probability simplex, the corresponding points in the joint range
indicate noticeably more information contraction than the worst-case bound given by the Doeblin curve would suggest.

We enumerate several additional properties of Doeblin curves in the following proposition. For brevity, we call a Markov kernel
W : U × FX → [0, 1] a constant kernel if there exists a fixed probability measure π : FX → [0, 1] such that W (· | u) = π(·)
for all u ∈ U .

Proposition 3 (Properties of Doeblin Curves). The Doeblin curve defined in (9) satisfies the following properties:

1) (Data processing property) Given Markov kernels K1 and K2 and constraint sets G1 and G2, the Doeblin curve of the
composite channel represented by the diagram X1

K1−→ Y1 = X2
K2−→ Y2 , with constraint set G consisting of all kernels

W such that W ∈ G1 and WK1 ∈ G2, satisfies FK1K2(t;G) ≤ FK2(FK1(t;G1);G2).
2) (Sharpness) For any Markov kernel K : X × FY → [0, 1] and any convex constraint set G containing the identity kernel

Ξ : X × FX → [0, 1] from X to X , i.e., Ξ(· | u) = δu(·) for all u ∈ X , and a constant kernel W̄ : X × FX → [0, 1], i.e.,
W̄ (· | u) = π(·) for all u ∈ X for some fixed probability measure π : FX → [0, 1], the Doeblin curve FK(t;G) achieves
the bound in (10) with equality, i.e., FK(t;G) = ρ(K) t.

3The constrained Doeblin coefficient τS(K) is essentially the (unconstrained) Doeblin coefficient τ(K′) of the kernel K′ obtained by restricting the input
space of K to S. Hence, Theorem 1 also holds for constrained Doeblin coefficients by taking the middle infimum over x1, . . . , xn ∈ S instead of X .
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Fig. 1. Randomly sampled joint range F(K;R5×5
sto ) for a 5× 5 Markov matrix K, shaded in blue.

3) (Super-homogeneity) For any Markov kernel K : X × FY → [0, 1] and any convex constraint set G containing a constant
kernel W̄ : U ×FX → [0, 1], the Doeblin curve FK(t;G) satisfies FK(λt;G) ≥ λFK(t;G) for all λ ∈ [0, 1] and t ∈ [0, 1],
or equivalently, the function t 7→ FK(t;G)/t is non-increasing.

4) (Lipschitz continuity) For any Markov kernel K : X ×FY → [0, 1] and any convex constraint set G containing a constant
kernel W̄ : U × FX → [0, 1], the Doeblin curve FK(t;G) is 1-Lipschitz continuous in t.

Proposition 3 is proved in Section IV-B, primarily by using the fact that convex combinations of any Markov kernel
with a constant kernel linearly interpolate ρ. We remark that Doeblin curves generalize the notion of Dobrushin curves in
[25], just as Doeblin coefficients generalize contraction coefficients for TV distance. When G only contains Markov kernels
W : U × FX → [0, 1] where |U| = 2, the Doeblin curve FK(· ;G) reduces to the Dobrushin curve of K. We emphasize that
the super-homogeneity property (Proposition 3, Part 3) does not necessarily imply that FK is concave, and the concavity of
FK is also unknown in the Dobrushin case [25, Remark 1].

Although the joint range F(K;G) is contained within the area under the Doeblin curve FK(· ;G) due to the definition of FK

as a supremum, it is not necessarily the entire area under FK , as shown by the following counterexample.

Proposition 4 (Joint Range of 2 × n Discrete Channels). The joint range of any discrete memoryless channel K ∈ R2×n
sto ,

considering inputs W ∈ Rm×2
sto with any number of rows m ≥ 2, is the line F

(
K;
⋃

m≥2 R
m×2
sto

)
= {(t, ρ(K) t) : t ∈ [0, 1]}.

Proposition 4 is proved in Section IV-B.

C. Power-Constrained Doeblin Curves

Inspired by earlier developments of nonlinear information contraction [25], we note that the amount by which input distributions
contract after passing through a channel depends on the power level of the input distributions. Hence, power constraints on
the input kernel W admit natural and useful classes of constraint sets G which we consider in our subsequent analysis. To
commence this discussion, we define two notions of power level for W taking values in a normed output space.

Definition 1 (Power Level). Let (X , ∥·∥) be a separable Banach space equipped with the Borel σ-algebra FX induced by
the norm topology. Given some convex and strictly increasing power function M : R+ → R+ with M(0) = 0, we define the
following notions of power level for a Markov kernel W : U × FX → [0, 1].

• Uniform average power:

|||W |||UA ≜ sup
u∈U

∫
X
M(∥x∥)W (dx | u) . (12)

• Average extremal power: Let P be the maximal coupling of random variables {Xu}u∈U with Xu ∼ W (· | u) for each
u ∈ U , as defined in (34). Then,

|||W |||AE ≜ E
[
sup
u∈U

M(∥Xu∥)
]
, (13)

where the expectation is taken with respect to the maximal coupling {Xu}u∈U ∼ P, and we only define this notion of
power for kernels W such that supu∈U M(∥Xu∥) is measurable.
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Note that the uniform average power is an extremal special case of the average power |||W |||A ≜ E
[∫

X M(∥x∥)W (dx | U)
]

where the expectation is taken over some marginal distribution of U ∈ U . The three power levels satisfy the relations
|||W |||A ≤ |||W |||UA ≤ |||W |||AE. Since the marginal distribution of U is usually unknown, we hereafter consider only the uniform
average (12) and average extremal (13) formalizations in our analysis. Note that the canonical notion of power (cf. [46, Section
20.1]) corresponds to taking |||W |||UA with M(z) = z2. We provide examples of non-trivial kernels satisfying the average
extremal power constraint in Appendix C.

We write FUA
K (t; p) and FAE

K (t; p) to denote the Doeblin curves where the set G in (9) consists of all kernels satisfying the
respective power constraints |||W |||UA ≤ p and |||W |||AE ≤ p for some p ∈ [0,∞). Since Doeblin curves are monotonically
non-decreasing in the constraint set, we have FUA

K (t; p) ≥ FAE
K (t; p). Furthermore, we note that each of the power-constrained

Doeblin curves satisfies the following homogeneity property (akin to Dobrushin curves).

Proposition 5 (Homogeneity of Power-Constrained Doeblin Curves). For any Markov kernel K : X × FY → [0, 1], the
power-constrained Doeblin curves FUA

K and FAE
K satisfy FUA

K (λt;λp) = λFUA
K (t; p) and FAE

K (λt;λp) = λFAE
K (t; p) for all

λ ∈ R+ such that λt ≤ 1.

Proposition 5 is proved in Section IV-B using similar arguments based on convex combinations with constant kernels as
those used in the proof of Proposition 3. In addition, the Doeblin curves of certain classes of kernels such as additive noise
channels are invariant under scaling (when the power constraint is scaled accordingly) as the following proposition shows.

Proposition 6 (Scale Invariance of Power-Constrained Doeblin Curves for Additive Noise Channels). Let X = Y = Rd.
Suppose Kσ : X × FY → [0, 1] is an additive noise channel parameterized by σ such that Kσ(A | x) =

∫
A

1
σd f

(
y−x
σ

)
dy

where f : Rd → R+ is a probability density function. Then, if the power function is M(z) = z2, FUA
Kσ

(t; p) = FUA
K1

(t; p/σ2) for
all σ > 0 and p ≥ 0.

Proposition 6 is proved in Section IV-B.

D. Bounds on Power-Constrained Doeblin Curves

In this subsection, we present upper and lower bounds on the power-constrained Doeblin curves for a general kernel and
provide examples of kernels whose Doeblin curves may be computed in closed form. Throughout this analysis, let (X , ∥·∥) be
a separable Banach space equipped with the Borel σ-algebra FX induced by the norm topology, let (Y,FY) be an arbitrary
Polish space, and let K : X × FY → [0, 1] be an absolutely continuous Markov kernel. Let B(a, r) ⊂ X denote the closed
ball centered at a ∈ X with radius r in the ∥ · ∥-norm. Define functions θ : X × R+ → [0, 1] and Θ : R+ → [0, 1] as
θ(a, r) = ρB(a,r)(K) and Θ(r) = supa∈X θ(a, r). We remark that Θ (and hence “Θ, by Lemma 9, Part 2) are non-decreasing,
because ρS is non-decreasing in S as previously mentioned. Since X is a Banach space, there exists an element 0 ∈ X such
that ∥0∥ = 0; we denote this element in bold font to distinguish it from the scalar 0 ∈ R. Let

γ ≜ sup

{
rad(S)
|||S|||∞

: S ⊂ X , 0 < |||S|||∞ < ∞
}

(14)

denote the Jung constant of X [52], [53], i.e., the tightest multiplicative factor between the Chebyshev radius and diameter of
any bounded subset of X . In Euclidean space X = Rd, we have γ ≤ d/(d+ 1) for a general norm ∥·∥ [54, Theorem 6], and
γ = 1/2 for the ℓ∞-norm [46, Section 5.3].

First, we present upper and lower bounds on the average extremal power-constrained Doeblin curve of K (similar to [25]).

Theorem 2 (Bounds on Average Extremal Doeblin Curve). The power-constrained Doeblin curve FAE
K satisfies the upper and

lower bounds t θ
(
0,M−1

(
p
t

))
≤ FAE

K (t; p) ≤ t “Θ
(
2γM−1

(
p
t

))
for all t ∈ (0, 1].

The proof is provided in Section IV-C, utilizing the variational characterization of Doeblin coefficients from Theorem 1 and
the maximal coupling characterization from Proposition 1.

If K acts as a convolution operator on Rd (e.g., additive noise), then θ(a, s) is independent of a, namely θ(a, s) = Θ(s) for
all a ∈ X . This immediately leads to the following counterpart to [25, Corollary 5].

Corollary 1 (Average Extremal Doeblin Curves of Convolution Kernels). For any kernel K which acts as a convolution operator
on X = Y = Rd, and for which Θ is concave, we have tΘ

(
M−1

(
p
t

))
≤ FAE

K (t; p) ≤ tΘ
(

2d
d+1 M

−1
(
p
t

))
. Furthermore, if

d = 1 or ∥·∥ is the ℓ∞-norm, then FAE
K (t; p) = tΘ

(
M−1

(
p
t

))
.

The equality in the d = 1 or ℓ∞-norm case trivially follows, since the upper and lower bounds from Theorem 2 match. The
next corollary provides three examples of closed-form Doeblin curves for convolution kernels on R.

Corollary 2 (Examples of Average Extremal Doeblin Curves). Consider the Gaussian, Laplace, and q-Gaussian [55, Section
2.3] (q = 2) additive noise kernels on X = Y = R, given by K1(A |x ; σ2) =

∫
A

1
σ
√
2π

exp
(
− (y−x)2

2σ2

)
dy, K2(A |x ; b) =∫

A
1
2b exp

(
− |y−x|

b

)
dy, and K3(A |x ; β) =

∫
A

√
β
π

(
1

1+β(y−x)2

)
dy, respectively. Then, under the norm ∥·∥ = | · | and power
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Fig. 2. Average extremal power-constrained Doeblin curves for the Gaussian, Laplace, and q-Gaussian (q = 2) additive noise kernels on R.

function M(z) = z2, the average extremal power-constrained Doeblin curves for these kernels are FAE
K1

(t; p, σ2) = t(1 −
2Φ(− 1

σ

√
p/t)), FAE

K2
(t; p, b) = t(1 − exp(− 1

b

√
p/t)), and FAE

K3
(t; p, β) = 2t

π arctan(
√
βp/t), where Φ : R → (0, 1) denotes

the standard Gaussian CDF Φ(y) =
∫ y

−∞
1√
2π

exp
(
− t2

2

)
dt.

Corollary 2 is proved in Section IV-C. By following the steps in this proof up to (97), we obtain that Θ is concave for any
convolution kernel on R whose density function g(z) = g(x− y) = dK

dy (y | x) is symmetric about z = 0 and non-increasing on
z ∈ [0,∞). For such convolution kernels, the Doeblin curve FAE

K is concave in t, since Corollary 1 establishes that FAE
K is the

perspective of the composition of a concave function Θ and a concave non-decreasing function M−1 (cf. [25, Remark 4]).
Figure 2 presents Doeblin curves for the convolution kernels in Corollary 2 with σ2 = 1, b = 1, and β = 1. The trivial

upper bound (11) due to submultiplicativity of ρ is depicted by all three curves remaining below the gray dotted line y = t.
Since the derivatives of all three curves approach 1 as t → 0, the complementary Doeblin coefficients for all three kernels
are ρ(K1) = ρ(K2) = ρ(K3) = 1. Hence, the contraction behavior of these kernels is only captured by their Doeblin curves
through the analysis in Theorem 2 and the ensuing corollaries.

Lastly, we present bounds on the uniform average power-constrained Doeblin curve of a general kernel K. To do so, we
impose additional regularity structure by requiring all input kernels W to have a fixed source space U with finiteness or
boundedness assumptions. We also impose sub-Gaussianity assumptions on W as required.

Proposition 7 (Upper Bound on Uniform Average Doeblin Curve). Let U be a finite set. Let G be the set of all Markov kernels
W : U × FX → [0, 1] satisfying the following assumptions:

a) (Uniform average power constraint) |||W |||UA ≤ p.
b) (Sub-Gaussianity) Consider the set of random variables {Zu}u∈U given by Zu = M(∥Xu∥), Xu ∼ W (· | u) for each

u ∈ U . Then, there exists σ > 0 such that for any u ∈ U , E
[
eλ(Zu−E[Zu])

]
≤ exp(σ

2λ2

2 ) for all λ ∈ R.
Then, the constrained Doeblin curve FK(t;G) satisfies the upper bound FK(t;G) ≤ t “Θ(2γM−1((p+ σ

√
2 loge |U|)/t)) for

all t ∈ (0, 1].

Proposition 8 (Upper Bound on Uniform Average Doeblin Curve). Let (U , dU ) be a Polish space endowed with a metric
dU : U×U → R+ such that (U , dU ) is totally bounded, i.e., the ϵ-covering number N(ϵ,U , dU ) ≜ min{n ∈ N : ∃{u∗

1, . . . , u
∗
n} ⊆

U , ∀u ∈ U , ∃i ∈ [n], dU (u, u
∗
i ) ≤ ϵ} is finite for all ϵ > 0. Let G be the set of all Markov kernels W : U × FX → [0, 1]

satisfying the following assumptions:
a) (Uniform average power constraint) |||W |||UA ≤ p.
b) (Sub-Gaussian increments) Consider the random process {Zu}u∈U given by Zu = M(∥Xu∥), where {Xu}u∈U ∼ P is the

maximal coupling of random variables with Xu ∼ W (· | u) for each u ∈ U , as defined in (34). Then, there exists σ > 0

such that for any u, v ∈ U , E
[
eλ((Zu−Zv)−E[Zu−Zv])

]
≤ exp

(σ2dU (u,v)2λ2

2

)
for all λ ∈ R.

c) (Measurability) Under the above definition of {Zu}u∈U , the quantity supu∈U{Zu − E[Zu]} is measurable.
Then, the constrained Doeblin curve FK(t;G) satisfies the upper bound

FK(t;G) ≤ t “Θ

(
2γM−1

(
p

t
+

32σ

t

∫ |||U|||∞

0

√
loge N(ϵ,U , dU ) dϵ

))
for all t ∈ (0, 1], where |||U|||∞ ≜ supu,v∈U dU (u, v) denotes the diameter of (U , dU ).
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Proposition 9 (Lower Bound on Uniform Average Doeblin Curve). The power-constrained Doeblin curve FUA
K satisfies the

lower bound FUA
K (t; p) ≥ t θ(0,M−1(pt )) for all t ∈ (0, 1].

Propositions 7 to 9 are proved in Section IV-C by adapting the arguments from the proof of Theorem 2. We emphasize that
Proposition 9 does not apply to the constrained Doeblin curves FK(t;G) from Propositions 7 and 8, which are upper-bounded
by FUA

K in general due to the stricter constraints imposed on the input kernels W when defining the former. We provide
examples of non-trivial kernels satisfying the preconditions of Propositions 7 and 8 in Appendix C.

III. MAIN RESULTS ON APPLICATIONS

In this section, we present three illustrative applications of Doeblin curves to other areas of information theory and learning
theory. Firstly, we derive generalization error bounds for iterative optimization algorithms operating over unbounded feasible
sets. Secondly, we establish lower bounds for reliable computation using circuits of noisy q-ary gates. Lastly, we introduce
a new definition of (ϵ, δ)-differential privacy based on our variational characterization of Doeblin coefficients, and provide
improved privacy bounds for online iterative optimization.

A. Bounds on Generalization Error

In this subsection, we use Doeblin curves to extend existing information-theoretic generalization error bounds for noisy
iterative optimization algorithms in [41] to settings where the feasible set has infinite diameter or the optimization problem is
unconstrained altogether (also see [56]). We utilize the information-theoretic framework introduced in [41], which provides
generalization error bounds for compact feasible sets by leveraging the Dobrushin contraction coefficient of additive noise
channels. Their results indicate that data points used in earlier iterations have a decaying contribution to the generalization
error due to the cumulative effect of noise injection, with the rate of decay governed by the Dobrushin coefficient of the
underlying noise channel. This analysis yields a non-trivial bound only when the feasible set has finite diameter, since the
Dobrushin coefficient trivially equals 1 otherwise. To address feasible sets with infinite diameter, we utilize Doeblin4 curves as
a finer-grained tool to capture information decay for data points used in earlier iterations even when Dobrushin coefficients fail
to do so, thereby yielding non-trivial generalization error bounds despite the absence of coarser coefficient-based contraction.

Formally, following [41], we begin by considering a general (possibly non-convex) stochastic optimization problem,

min
w∈W

Gµ(w) , where Gµ(w) ≜ E
Z∼µ

[g(w,Z)] =

∫
Z
g(w, ·) dµ ,

where w ∈ W ⊆ Rd are the model parameters constrained to the (potentially unbounded) feasible set W , µ is the underlying
data distribution over the samples Z belonging to the sample space Z , and g : W ×Z → R+ is the loss function. In practice,
the true data distribution µ is usually unknown, and only a dataset S ≜ (Z1, . . . , Zn) consisting of n independent and identically
distributed samples Zi ∼ µ is available. Thus, we instead consider the empirical risk minimization (ERM) problem

min
w∈W

GS(w) , where GS(w) ≜
1

n

n∑
i=1

g(w,Zi) ,

with the aim of finding a solution which generalizes well to the original problem of minimizing Gµ. To this end, we consider the
following noisy iterative algorithm. The algorithm is initialized with an arbitrary parameter W0 ∈ W . Before the optimization
process, T disjoint mini-batch index sets B1, . . . ,BT are chosen deterministically and fixed, where Bt ⊆ [n] contains the indices
of the samples comprising the mini-batch at iteration t. Next, the algorithm performs T iterations by updating the parameters
Wt according to the rule

Wt ≜ proj
W

(
Wt−1 −

ηt
|Bt|

∑
i∈Bt

∇g(Wt−1, Zi) +mtNt

)
for each iteration t ∈ [T ], where the projection operator projW ensures that the parameters remain within the feasible set W ,
ηt is the learning rate, ∇g represents the partial gradient of g with respect to its first argument (i.e., the model parameters),
Nt ∼ Normal(0, I) represents independent additive standard Gaussian noise (where I is the identity matrix of appropriate
dimension),5 and mt controls the noise magnitude. We remark that several algorithms can be expressed in this form, such as
Stochastic Gradient Langevin Dynamics (SGLD) and Differentially-Private Stochastic Gradient Descent (DP-SGD).

4In all applications of Doeblin curves, suitable constraints may be placed on the Doeblin curve to obtain tighter bounds by incorporating prior knowledge
about the input distributions. For example, when deriving our results on generalization error, we only utilize the Doeblin curve FUA

Φ of the additive noise
mechanism to quantify the contraction between two distributions pushed through the mechanism. Hence, we may instead consider the constrained curve which
only includes input kernels with |U| = 2, which reduces to the Dobrushin curve of the noise mechanism. Nonetheless, we present all results in this paper in
terms of the more general Doeblin curve FUA

Φ for conceptual simplicity.
5We focus on Gaussian noise for conceptual simplicity, although our results can be easily extended to other noise distributions such as Laplace.
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We assume that the loss function is bounded above by a constant A > 0, i.e., g(w, z) ≤ A for all w ∈ W and z ∈ Z , and
that the gradient of the loss is bounded in magnitude, i.e.,

∀w ∈ W, ∀z ∈ Z, ∥∇g(w, z)∥2 ≤ L . (15)

Our objective is to upper-bound the expected generalization error at the final model parameters WT after T iterations, i.e.,
|E[Gµ(WT )−GS(WT )]|, where the expectation is taken with respect to the randomness in the dataset S and the noise
N1, . . . , NT throughout the optimization process.

Let FUA
Φ denote the uniform average power-constrained Doeblin curve of the Normal(0, I) additive noise channel under the

power function M(z) = z2. Our main result is formally stated as follows.

Theorem 3 (Expected Generalization Error). The expected generalization error satisfies

|E[Gµ(WT )−GS(WT )]| ≤ A

T∑
t=1

|Bt|
n

“FUA
Φ

(
· · · “FUA

Φ

(
ηtσt−1

mt |Bt|
; pt+1

)
· · · ; pT

)
, (16)

where for each t ∈ {0, . . . , T − 1} we define

σt ≜ E
(Wt,Z)

∼PWt⊗µ

[∥∥∥∇g(Wt, Z)− E
(Wt,Z)

∼PWt⊗µ

[∇g(Wt, Z)]
∥∥∥
2

]
,

for each t ∈ {2, . . . , T} we define

pt ≜
1

m2
t

(
2 max

i∈
t−1⋃
s=1

Bs

sup
z∈Z

E
[
∥Wt−1∥22

∣∣∣ Zi = z
]
+ 2η2tL

2

)
,

and the composition of Doeblin curves in (16) reduces to the identity function (i.e., no Doeblin curves are applied) for the
t = T term of the sum.

Theorem 3 is proved in Section V-A. The argument utilizes the following lemma to express the expected generalization error
in terms of the TV-information between the model parameter WT and each data sample Zi.

Lemma 1 (Generalization Error and TV-Information [41, Lemma 1]). Define the TV-information between two random variables
X and Y as

ITV(X;Y ) ≜ ∥PX,Y − PX ⊗ PY ∥TV , (17)

where PX,Y is the joint distribution of (X,Y ), and PX and PY are the marginal distributions of X and Y , respectively. Then,
the expected generalization error satisfies

|E[Gµ(WT )−GS(WT )]| ≤
A

n

n∑
i=1

ITV(WT ;Zi) .

Our principal contribution is to bound the TV-information between the output WT of the learning algorithm and the data
samples Zi by utilizing properties of the Gaussian noise channel’s Doeblin curve, as formalized in the following lemma which
holds for possibly non-compact W .

Lemma 2 (Recursive Bound on TV-Information). The TV-information between the final model parameter WT and a data
sample Zi satisfies

ITV(WT ;Zi) ≤ “FUA
Φ

(
· · · “FUA

Φ

(
“FUA
Φ

(
ITV(Wt;Zi); pt+1

)
; pt+2

)
· · · ; pT

)
, (18)

where t is the iteration on which Zi is used in the update rule (i.e., t ∈ Bi), for each s ∈ {t+ 1, . . . , T} we define

ps ≜
1

m2
s

(
2 max

i∈
s−1⋃
r=1

Br

sup
z∈Z

E
[
∥Ws−1∥22

∣∣∣ Zi = z
]
+ 2η2sL

2

)
, (19)

and the composition of Doeblin curves in (18) reduces to the identity function if t = T (in which case (18) trivially holds with
equality).

Lemma 2 is proved in Section V-A. We remark that bounds on the second moment E[∥Wt∥22] of the iterates Wt have been
derived in the literature, e.g., under additive Gaussian noise [56]. These results can often be directly translated into bounds on
pt. In principle, tighter bounds can be obtained by considering the second moment E[∥Wt − w̃∥22] of the iterates with respect
to a reference point w̃ ∈ W chosen as the center of the feasible set or, ideally, the optimal solution w∗. However, since w∗ is
unknown in practice, we use the worst-case bounds on the second moment of the iterates instead.
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B. Reliable Computation Using Noisy q-ary Gates

In this subsection, we use Doeblin curves to establish information-theoretic bounds on the expressive power of circuits of
noisy gates for the computation of q-ary functions. This builds on results for Boolean functions in [25]. We consider n-input
circuits which compute a single output value using b-input gates, where the result of each gate is perturbed by independent
noise. Historically, the study of such architectures began with von Neumann’s pioneering work on fault-tolerant Boolean circuits
[57]–[59], and has been largely limited to binary operations. We expand this line of study to multivalued logic systems, as
motivated by recent advancements in classical and quantum information processing [60].

Formally, we model a noisy circuit over a q-ary alphabet Q = {ξ1, . . . , ξq} ⊂ Rd as a directed acyclic graph with n
input vertices X1, . . . , Xn ∈ Q indexed by i ∈ [n]. The inputs are processed by a collection of m gate vertices indexed by
j ∈ [m], each of which takes bj ≤ b Rd-valued arguments and computes a Q-valued result Zj ∈ Q, which is then corrupted by
independent noise from some arbitrary fixed kernel Φ to produce Yj ∈ Rd. Formally, letting Nj and Mj denote the incoming
edge sets of input vertices and gate vertices feeding into gate j, respectively, we have

Zj ≜ Γj

(
{Xi}i∈Nj

, {Yj′}j′∈Mj

)
, Yj ∼ Φ(· | Zj)

for some deterministic gate function Γj : (Rd)bj → Q, where bj = |Nj |+ |Mj | ≤ b. Without loss of generality, we assume
the gates are indexed in topological order, i.e., Mj ⊆ [j − 1] for each j ∈ [m]. At the end, the circuit produces a single output
vertex Ym with no outgoing edges. We assume there exists a directed path from each Xi to Ym, so none of the circuit inputs
are discarded. We note that this model can be seen as a q-ary generalization of the setup considered in [25, Section 5.3].

One goal of such a circuit is to compute a function G : Qn → Q with error probability at most Perror > 0. Namely,
there must exist some fixed decoding function Ĝ : Rd → Q such that for any input vector (x1, . . . , xn) ∈ Qn, P(Ĝ(Ym) =
G(x1, . . . , xn)) ≥ 1 − Perror, where the probability is taken with respect to all the noise in the circuit. In the binary case
(q = |Q| = 2), by Le Cam’s relation, the error probability of the optimal decoder can be controlled by the TV distance between
the marginal distributions of Ym induced by setting some “initial” input vertex to 0 or 1, respectively, while fixing all other
input values [25, Eq. 146]. So, several works study the question of how information measures contract over fault-tolerant
circuits, e.g., [25] recursively upper-bounds TV distance while [9] bounds mutual information. Propelled by such analyses, and
in light of the interpretation of complementary Doeblin coefficients as a multi-way generalization of TV distance [19, Theorem
2], we analyze the complementary Doeblin coefficient of the q induced marginal distributions of Ym as a first step towards
understanding information propagation in noisy q-ary circuits. (Intuitively, perceiving a circuit as a Markov chain, the analysis
of TV distance in [25] is related to the coupling time of two copies of the chain with two different values at the “initial” vertex
[61]. On the other hand, our analysis of Doeblin coefficients is related to the coupling time of q copies of the chain initiated
at all q possible values.) Our main contribution is the following theorem, which relates the Doeblin coefficient to the noise
mechanism’s Doeblin curve.

Theorem 4 (Upper Bound on Circuit Output Divergence). Fix ϵ > 0. For all n-input circuits of noisy b-input gates with
sufficiently large n, there exists some input vertex, which we take to be X1 without loss of generality, such that for any fixed
values x2, . . . , xn ∈ Q of the remaining inputs,

ρ
([

P
(1)
Ym

, . . . , P
(q)
Ym

])
≤ max

{
t ∈ [0, 1] : “FUA

Φ (min{1, bt}; p) = t
}
+ ϵ ,

where P
(ℓ)
Ym

is the marginal distribution of Ym induced by the circuit when setting X1 = ℓ and Xi = xi for all i > 1, FUA
Φ is

the uniform average power-constrained Doeblin curve of the noise kernel Φ for some norm ∥·∥ on Rd and power function
M : R+ → R+, and p ≜ maxξ∈Q M(∥ξ∥).

Theorem 4 represents an information-theoretic limit on the quality of any output decoder, since decoding performance
improves as output divergence increases. We defer the proof to Section V-B. The proof constructs a coupling of the induced
marginal distributions at each gate output Yj , using the maximal coupling characterization of Doeblin coefficients (34) to refine
the couplings from earlier gates. This is formalized in the following lemma. For notational convenience, we denote collections
of superscripted variables as w(1:q) = (w(1), . . . , w(q)).

Lemma 3 (Stepwise Coupling Construction). Let U be a finite subset of a separable Banach space. Let (V,FV) be a Polish
space and let Φ : U ×FV → [0, 1] be a Markov kernel from U to V . Let P (1)

U , . . . , P
(q)
U be a collection of probability measures

on U , and let P (1)
V , . . . , P

(q)
V be the respective probability measures on V induced by pushing P

(ℓ)
U through Φ for each ℓ ∈ [q],

i.e.,

∀A ∈ FV , P
(ℓ)
V (A) ≜

∫
U
Φ(A | u) dP (ℓ)

U (u) . (20)

Then, given any coupling πU of P (1)
U , . . . , P

(q)
U , there exists a coupling πV of P (1)

V , . . . , P
(q)
V satisfying

P
V (1:q)∼πV

(
¬
(
V (1) = · · · = V (q)

))
≤ “FUA

Φ

(
P

U(1:q)∼πU

(
¬
(
U (1) = · · · = U (q)

))
; p

)
, (21)



12

where we define p ≜ maxu∈U M(∥u∥).

Lemma 3 is proved in Section V-B by constructing πV as the weighted average (with respect to U (1:q) ∼ πU ) of the maximal
coupling (34) of Φ(· | U (1)), . . . ,Φ(· | U (q)). Iterating this construction for each gate leads to repeated application of the
Doeblin curve FUA

Φ , which converges to the greatest fixed point of a transformed version of FUA
Φ .

C. Relation to Differential Privacy and Online Algorithms

In this subsection, we utilize our variational characterization of Doeblin coefficients to motivate a new definition of group local
differential privacy (LDP). The standard information-theoretic6 definition of LDP asserts that a mechanism K : X ×FY → [0, 1],
which is nothing but a Markov kernel, is (ϵ, δ)-LDP if for any inputs x, x′ ∈ X , both K(· | x) and K(· | x′) exhibit similar
distributions [42], [63]–[65], i.e.,

∀x, x′ ∈ X , ∀A ∈ FY , K(A | x)− eϵK(A | x′) ≤ δ . (22)

Subtracting both sides from 1, this is equivalent to

∀x, x′ ∈ X , ∀A ∈ FY , K(Ac | x) + eϵK(A | x′) ≥ 1− δ . (23)

This rearrangement has an interesting interpretation: Consider a binary hypothesis testing scenario that aims to distinguish
whether the output Y of a mechanism is derived from the distribution K(· | x) versus K(· | x′) for any fixed x and x′. Let
A ⊆ Y be any possible choice of the rejection region for the hypothesis Y ∼ K(· | x′). The reformulated version in (23)
essentially highlights the impossibility of achieving a very low weighted sum of type-I and type-II errors from the data Y
derived from a differentially private mechanism K (see [66, Theorem 2.1] for more details).

Motivated by our variational characterization of Doeblin coefficients from Theorem 1, we extend the standard definition of
LDP to a group setting.7 Consider any group size n ≥ 2 and any ϵ = (ϵ1, . . . , ϵn) ∈ Rn

+ such that ϵ1 = 0 and ϵi ≤ ϵj for all
i < j. A mechanism K is said to be (ϵ, δ, n)-LDP if for any x1, . . . , xn ∈ X and any FY -measurable n-partition A1, . . . , An

of Y ,
n∑

i=1

eϵiK(Ai | xi) ≥ 1− δ . (24)

This definition may be interpreted in the context of an n-ary hypothesis testing problem. Given a set of n hypotheses
Hi : Y ∼ K(· | xi) indexed by i ∈ [n], where Y is the observed variable, the generalized definition in (24) states that the
problem of identifying a single false hypothesis has a large weighted sum error for any possible choices of rejection regions.
Any reasonable test for this hypothesis testing problem would partition the space Y into n rejection regions A1, . . . , An, and
the test rejects hypothesis Hi if Y takes on a value in Ai. Therefore, K(Ai | xi) represents the conditional probability of error
given Hi in this scenario. For n = 2, the notion of (ϵ, δ, 2)-LDP reduces to the standard definition in (22). Furthermore, K
being (ϵ, δ, n)-LDP for n ≥ 2 is a stronger condition, as it implies that K is also ([ϵ1, . . . , ϵm], δ,m)-LDP for all 2 ≤ m ≤ n.

Motivated by this formulation, we define weighted analogues of the Doeblin and complementary Doeblin coefficients for a
Markov kernel K : X × FY → [0, 1]:

τϵ(K,n) ≜ inf
x1,...,xn∈X

inf
n-partition of Y

A1,...,An

n∑
i=1

eϵiK(Ai | xi) , (25)

ρϵ(K,n) ≜ 1− τϵ(K,n) . (26)

We remark that τϵ(K,n) ∈ [0, 1] (and so ρϵ(K,n) ∈ [0, 1]), because for any x1, . . . , xn ∈ X , we have

τϵ(K,n)
(a)

≤ eϵ1K(Y | x1) +

n∑
i=2

eϵiK(∅ | xi)
(b)
= K(Y | x1)

(c)
= 1 ,

where (a) holds by upper-bounding the infima in (25) with a specific instance, (b) holds because ϵ1 = 0, and (c) holds because
K is a Markov kernel. Moreover, akin to how [42], [67] reformulated local differential privacy in terms of the Eγ contraction
coefficient,8 ρϵ(K,n) captures (ϵ, δ, n)-LDP exactly: ρϵ(K,n) ≤ δ if and only if K is (ϵ, δ, n)-LDP (see proof of Theorem 5
in Section V-C).

In addition, we note a connection between ρϵ and the concept of min-DeGroot distance from [19], which is construed as a
generalization of Bayes statistical information. In this context, a hidden random variable X ∈ X (where X = {x1, . . . , xn} has
cardinality |X | = n) follows a prior distribution λ ∈ Rn, and a random variable Y ∈ Y is observed according to an observation

6This differs slightly from the learning-theoretic definition, which considers input datasets of multiple users differing by only one user [62, Definition 2.4].
7Accordingly, this is different from learning-theoretic definitions of group differential privacy based on distance between the input datasets [62, Theorem 2.2].
8We note that the Eγ -divergence is a weighted version of TV distance, which is equivalent (when appropriately scaled) to Bayes statistical information or

DeGroot distance [68].
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model denoted by K. Let X̂ ∈ X be any (possibly randomized) estimator of X based on Y , such that X → Y → X̂ forms a
Markov chain. [19] defines the min-DeGroot distance τmin(λ,K) as the reduction in Bayes risk when observing the data Y
compared to not observing Y . Specifically,

τmin(λ,K) ≜ min
i∈[n]

λi −
∫
Y

(
min
i∈[n]

λi
dK

dµ
(· | xi)

)
dµ ,

where µ is the common dominating measure for K(· | x1), . . . ,K(· | xn) from (2). By setting λi = eϵi/
∑n

i=1 e
ϵi and applying

Proposition 2, the min-DeGroot distance can be interpreted as a rescaled version of ρϵ(K,n), namely,

ρϵ(K,n) =

(
n∑

i=1

eϵi

)
τmin(λ,K) . (27)

Therefore, the definition of (ϵ, δ, n)-LDP is essentially a rescaled version of the generalized notion of Bayes statistical information
obtained from the set {x1, . . . , xn}. Our proposed definition of an (ϵ, δ, n)-LDP mechanism underscores that, given the processed
data of the entire group, obtaining any substantial “information” (quantified in the Bayes statistical information sense) about
any individual member is “hard.”

In the following theorem, we prove contraction properties of ρϵ(K,n). By (27), these results translate to contraction properties
of τmin(λ,K).

Theorem 5 (Contraction of ρϵ(K,n)). Let K : X × FY → [0, 1] be an absolutely continuous Markov kernel. For any group
size n ≥ 2 and any ϵ = (ϵ1, . . . , ϵn) ∈ Rn

+ such that ϵ1 = 0 and ϵi ≤ ϵj for all i < j, we have the following properties:
1) (Submultiplicativity) For any Markov kernel W : U × FX → [0, 1],

ρϵ(WK,n) ≤ ρϵ(W,n) ρϵ(K,n) .

2) (Contraction behavior) K is (ϵ, δ, n)-LDP iff for any Markov kernel W : U × FX → [0, 1],

ρϵ(WK,n) ≤ δρϵ(W,n) .

3) (Doeblin curves) For any Markov kernel W : U × FX → [0, 1] satisfying |||W |||UA ≤ p,

ρϵ(WK,n) ≤ FUA
K (ρϵ(W,n); p) . (28)

Theorem 5 is proved in Section V-C. Parts 1 and 2 imply that ρϵ exhibits contraction-coefficient-like properties akin to ρ,
with Part 1 acting as a meta-SDPI for ρϵ (cf. [16, Proposition 3]) and Part 2 characterizing δ as the contraction coefficient of
this meta-SDPI. In particular, the data processing inequality for ρϵ, i.e.,

ρϵ(WK,n) ≤ ρϵ(W,n) , (29)

is an immediate consequence due to ρϵ(K,n) ∈ [0, 1]. In addition, considering the connection between ρϵ and the min-
DeGroot distance highlighted above, Part 1 can be restated as an SDPI for min-DeGroot distances, i.e., for any Markov kernel
W : U × FX → [0, 1] with finite U , τmin(λ,WK) ≤ ρϵ(K, |U|) τmin(λ,W ).

Equation (28) and the techniques developed above provide tools for tighter privacy guarantees for various mechanisms. Using
these results, we now derive differential privacy guarantees for online iterative algorithms using Doeblin curves. While prior
works such as [67] rely on compactness assumptions, our focus is on extending such analyses to potentially unbounded spaces
where it can be difficult to capture privacy using classical contraction-coefficient-based techniques. To this end, we consider and
build on the online learning framework presented in [67, Section IV-B], where the learner sequentially minimizes a sequence of
convex objectives {gt}nt=1 over a parameter space W ⊆ Rd. The protocol proceeds as follows. The learner initializes with a
random parameter W0 ∈ W , and at each iteration t ∈ [T ], the cost function gt is revealed. The learner then performs the update

Wt ≜ proj
W

(Wt−1 − ηt∇gt(Wt−1) +mtNt) , (30)

where the projection operator projW ensures that the parameters remain within the feasible set W , ηt > 0 is the learning rate,
and mt scales the standard Gaussian noise Nt ∼ Normal(0, I) (where I is the identity matrix of appropriate dimension). By
taking gt(w) ≜ ℓ(w,Zt) where ℓ : W×Z → R+ is a loss function, this framework subsumes one-pass ERM, where the learner
approximates the solution of minw∈W

1
T

∑T
t=1 ℓ(w,Zt) with data points Z1, . . . , ZT ∈ Z revealed sequentially. The goal is to

ensure that the final iterate WT satisfies a privacy guarantee. We assume the gradient of each objective gt is uniformly bounded,
i.e.,

∀t ∈ [T ], ∀w ∈ W, ∥∇gt(w)∥2 ≤ L . (31)

Existing LDP guarantees for online algorithms [67] rely on the contraction coefficient of Eγ-divergence, which quantifies the
decay of information due to additive noise. However, for W with infinite diameter, the contraction coefficient for Eγ-divergence
degenerates to 1. Below, we utilize the contraction bound on ρϵ in terms of Doeblin curves FUA

Φ from Theorem 5 to quantify
the contraction induced by the noise Nt.
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Theorem 6 (Differential Privacy for Unconstrained Online Learning). Let W
(i)
0 ∼ P

(i)
W0

for i ∈ [n] denote n different
initializations of the online learning process. Let W (i)

T ∼ P
(i)
WT

be the respective output parameters after T iterations of the
update rule (30). Let FUA

Φ be the uniform average power-constrained Doeblin curve (with power function M(z) = z2) of the
Normal(0, I) additive noise channel. Then,

ρϵ

([
P

(1)
WT

, . . . , P
(n)
WT

]
, n
)
≤ FUA

Φ

(
· · ·FUA

Φ

(
ρϵ

([
P

(1)
W0

, . . . , P
(n)
W0

]
, n
)
; p1

)
· · · ; pT

)
,

where for each t ∈ [T ] we define

pt ≜
1

m2
t

(
2max

i∈[n]
E
[∥∥∥W (i)

t−1

∥∥∥2
2

]
+ 2η2tL

2

)
. (32)

Theorem 6 is proved in Section V-C using Theorem 5, Part 3. We note that the above result can also be used to derive
privacy amplification bounds for online learning algorithms as in [67] for more general W . In addition, Theorem 6 can also be
perceived as a variation of Lemma 2 that bounds an n-way divergence instead of TV-information.

IV. PROOFS OF MAIN RESULTS ON DOEBLIN CURVES

In this section, we prove the main results presented in Section II, pertaining to fundamental properties of Doeblin coefficients
and curves.

A. Proofs of Doeblin Characterizations

In this subsection, we first prove Propositions 1 and 2. Next, we introduce essential preliminaries (such as lattice infimum)
required for generalizing the argument to Polish spaces. Finally, we present a detailed step-by-step proof of Theorem 1.

Proof of Proposition 1. We have

τ(K)
(a)
=
∧
x∈X

K(Y | x) (b)
= sup

P:Yx∼K(·|x)
P(∀x, x′ ∈ X , Yx = Yx′) , (33)

where (a) holds by the greatest common component characterization of Doeblin coefficient (5) and (b) holds by [19, Theorem
2], [47, Chapter 3, Theorem 7.3, p. 107].

We remark that for any kernel K, the supremum in (33) is achieved by the maximal coupling given by (cf. [19, Eq. 34], [47,
Chapter 3, Theorem 7.3, p. 107])

∀x ∈ X , Yx ≜

{
Y ∗ , if I = 1 ,

Ỹx , if I = 0 ,
(34)

where α =
∧

x∈X K(Y | x) and the random variables I , Y ∗, and {Ỹx}x∈X are sampled independently from the probability
measures

I ∼ Bernoulli(α) , Y ∗ ∼
∧

x∈X K(· | x)
α

, ∀x ∈ X , Ỹx ∼
K(· | x)−

∧
x′∈X K(· | x′)

1− α
.

(Note that Y ∗ and Ỹx are unused in the case that their respective probability measures are undefined, i.e., α = 0 or α = 1.)

Proof of Proposition 2. Fix an absolutely continuous Markov kernel K : X × FY → [0, 1] with common dominating measure
µ : FY → R+. Fix x1, . . . , xn ∈ X and γ1, . . . , γn ≥ 0.

First, we will show that

inf
n-partition of Y

A1,...,An

n∑
i=1

γiK(Ai | xi) ≤
∫
Y

(
min
i∈[n]

γi
dK

dµ
(· | xi)

)
dµ .

Let A∗
1, . . . , A

∗
n be the specific partition of Y given by

A∗
i ≜

{
y ∈ Y : min

(
arg min

j∈[n]
γj

dK

dµ
(y | xj)

)
= i

}
for each i ∈ [n], where the min operator is added to break ties. We have

inf
n-partition of Y

A1,...,An

n∑
i=1

γiK(Ai | xi)
(a)

≤
n∑

i=1

γiK(A∗
i | xi)

(b)
=

n∑
i=1

∫
A∗

i

(
γi
dK

dµ
(· | xi)

)
dµ

(c)
=

n∑
i=1

∫
A∗

i

(
min
j∈[n]

γj
dK

dµ
(· | xj)

)
dµ

(d)
=

∫
Y

(
min
i∈[n]

γi
dK

dµ
(· | xi)

)
dµ
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as desired, where (a) holds by upper-bounding the infimum with a particular instance, (b) holds by definition of Radon-Nikodym
derivative, (c) holds by definition of A∗

i , and (d) holds because A∗
1, . . . , A

∗
n is a partition of Y .

Next, we will show that

inf
n-partition of Y

A1,...,An

n∑
i=1

γiK(Ai | xi) ≥
∫
Y

(
min
i∈[n]

γi
dK

dµ
(· | xi)

)
dµ . (35)

For any partition A1, . . . , An of Y , we have
n∑

i=1

γiK(Ai | xi)
(a)

≥
n∑

i=1

∧
j∈[n]

γjK(Ai | xj)
(b)
=
∧

j∈[n]

γjK(Y | xj)
(c)
= sup {ν(Y) : ∀j ∈ [n], γjK(· | xj) ≥ ν}

(d)

≥
∫
Y

(
min
i∈[n]

γi
dK

dµ
(· | xi)

)
dµ ,

where (a) holds because the greatest common component of a collection of measures is a lower bound on each individual
measure, (b) holds because A1, . . . , An is a partition of Y , (c) holds by definition of greatest common component (3), and (d)
holds by lower-bounding the supremum with the specific measure

∀A ∈ FY , ν∗(A) ≜
∫
A

(
min
i∈[n]

γi
dK

dµ
(· | xi)

)
dµ ,

which satisfies γjK(· | xj) ≥ ν∗ for each j ∈ [n]. Lastly, since A1, . . . , An was arbitrary, taking the infimum over all
n-partitions of Y proves (35) as desired.

Next, we present some preliminaries before carrying out the proof in the general setting of Polish spaces.

Definition 2 (Lattice Infimum [69, Section 2, p. 253]). Let X be a Polish domain, and let F be the set of all bounded
measurable functions f : X → R. Given a measure µ : X → R+, the lattice infimum of an arbitrary subset of functions G ⊆ F ,
denoted

∧̃
g∈G g, is the function in F such that:

1) For each h ∈ G, ∧̃
g∈G

g ≤ h (µ-a.e.) (36)

2) For each f ∈ F , if
∀h ∈ G,

(
f ≤ h (µ-a.e.)

)
, (37)

then
f ≤

∧̃
g∈G

g (µ-a.e.) (38)

For any G, the lattice infimum is µ-a.e. unique. To see this, consider any two functions f1, f2 ∈ F satisfying Definition 2.
Since both functions satisfy the first condition (36), both functions satisfy the antecedent in the second condition (37), and so
by the consequent in the second condition (38), we have f1 ≤ f2 (µ-a.e.) and f2 ≤ f1 (µ-a.e.) Moreover, if G is countable,
the lattice infimum is simply the pointwise infimum of functions in G, i.e.,

∧̃
g∈G g(x) = inf {g(x) : g ∈ G}. However, when

G is uncountable, the lattice infimum and pointwise infimum are different in general. We remark that the notion of lattice
infimum serves primarily to avoid measurability issues, and the proof of Theorem 1 can be carried out without such notions for
“well-behaved” kernels as shown in Appendix B for completeness.

The following lemma shows that the density of the greatest common component of a collection of measures is the lattice
infimum of the individual measures’ densities.

Lemma 4 (Density of Greatest Common Component). Let {πi}i∈I be a collection of measures on a Polish space (Y,FY),
where I is an arbitrary index set. Assume each πi is dominated by a common σ-finite measure µ (i.e., πi ≪ µ for all i ∈ I).
Then, we have the following properties:

1) The greatest common component
∧

i∈I πi is dominated by µ, i.e.,
∧

i∈I πi ≪ µ.
2) The lattice infimum

∧̃
i∈I

dπi

dµ exists.
3) The density of the greatest common component is d

dµ

∧
i∈I πi =

∧̃
i∈I

dπi

dµ (µ-a.e.).

Proof of Lemma 4. Fix measures {πi}i∈I on (Y,FY) satisfying πi ≪ µ for each i ∈ I.
Part 1: For any set A ∈ FY with µ(A) = 0, we have∧

i∈I
πi(A)

(a)

≤ πi∗(A)
(b)
= 0
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as desired, where (a) holds for any i∗ ∈ I because the greatest common component of a collection of measures is a lower
bound on each measure, and (b) holds because πi∗ ≪ µ.

Part 2: We refer readers to the analogous argument in [69, Lemma 2.6].
Part 3: For notational convenience, define a measure ν∗ : FY → R+ as

∀A ∈ FY , ν∗(A) ≜
∫
A

(∧̃
i∈I

dπi

dµ

)
dµ . (39)

First, observe that for any i ∈ I and A ∈ FY , we have

ν∗(A)
(a)

≤
∫
A

dπi

dµ
dµ

(b)
= πi(A) ,

where (a) holds by Definition 2, Part 1 and (b) holds by definition of Radon-Nikodym derivative. Since ν∗ ≤ πi for each i ∈ I ,
it follows that for each A ∈ FY ,

ν∗(A) ≤ sup {ν(A) : ∀i ∈ I, ν ≤ πi} . (40)

Next, observe that any measure ν satisfying ν ≤ πi for each i ∈ I is itself dominated by µ (i.e., ν ≪ µ), because

ν(A) ≤ πi(A)
(a)
= 0

for any set A ∈ FY with µ(A) = 0, where (a) holds because πi ≪ µ. Hence, by the Radon-Nikodym theorem, dν
dµ is well-defined.

Moreover, we have
dν

dµ
≤ dπi

dµ
(µ-a.e.) (41)

for each i ∈ I. To see this, suppose the contrary: Assume that for some i∗ ∈ I, we have dν
dµ > dπi∗

dµ on some set A∗ ∈ FY
with µ(A∗) > 0. Then,

ν(A∗) =

∫
A∗

dν

dµ
dµ >

∫
A∗

dπi∗

dµ
dµ = πi∗(A

∗) ,

which contradicts the fact that ν ≤ πi∗ . Following from (41), we have

dν

dµ
≤
∧̃
i∈I

dπi

dµ
(µ-a.e.)

by Definition 2, Part 2, and therefore ν ≤ ν∗ by (39). Since ν was arbitrary, it follows that for each A ∈ FY ,

ν∗(A) ≥ sup {ν(A) : ∀i ∈ I, ν ≤ πi} . (42)

Proceeding onwards, for each A ∈ FY , we have∫
A

(∧̃
i∈I

dπi

dµ

)
dµ

(a)
= sup {ν(A) : ∀i ∈ I, ν ≤ πi}

(b)
=
∧
i∈I

πi(A) ,

where (a) holds by combining (39), (40), and (42) and (b) holds by (3). Hence, by definition of Radon-Nikodym derivative,
d
dµ

∧
i∈I πi =

∧̃
i∈I

dπi

dµ as desired.

Finally, we prove Theorem 1.

Proof of Theorem 1. Fix an absolutely continuous Markov kernel K : X × FY → [0, 1] with common dominating measure
µ : FY → R+. We have

τ(K)
(a)
=
∧
x∈X

K(Y | x) (b)
=

∫
Y

(
d

dµ

∧
x∈X

K(· | x)
)
dµ

(c)
=

∫
Y

( ∧̃
x∈X

dK

dµ
(· | x)

)
dµ , (43)

where (a) holds by the greatest common component characterization of Doeblin coefficient (5), (b) holds by definition of
Radon-Nikodym derivative, and (c) holds by Lemma 4, Part 3.

Next, we compute the lattice infimum
∧̃

x∈X
dK
dµ (· | x). For notational convenience, let

1 ≜ inf
n∈N

inf
x1,...,xn∈X

∫
Y

(
min
i∈[n]

dK

dµ
(· | xi)

)
dµ . (44)

For each k ∈ N, let sk ≜ {x̂k,1, . . . , x̂k,nk
} ⊆ X be a finite sequence such that∫

Y

(
min
i∈[nk]

dK

dµ
(· | x̂k,i)

)
dµ ≤ 1 +

1

k
,
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where the existence of such a sequence is guaranteed by the definition of 1 as an infimum in (44). Construct an infinite
sequence {x̃1, x̃2, . . .} ⊆ X by concatenating the finite sequences sk in ascending order of k. Define a sequence of functions
gn : Y → R as

∀n ∈ N, gn(y) ≜ min
i∈[n]

dK

dµ
(y | x̃i) . (45)

By construction, it holds that

lim
n→∞

∫
Y
gn dµ = 1 . (46)

Moreover, each gn is non-negative, by the non-negativity of the Radon-Nikodym derivative; and {gn}n∈N is a non-increasing
sequence, since each successive gn is the minimum over a larger set of i. Hence, {gn}n∈N converges µ-a.e. to a measurable
function g : Y → R, i.e.,

lim
n→∞

gn = g (µ-a.e.) (47)

The limiting function g satisfies ∫
Y
g dµ

(a)
= lim

n→∞

∫
Y
gn dµ

(b)
= 1 , (48)

where (a) holds by the dominated convergence theorem because gn ≤ g1 for all n ∈ N and
∫
Y g1 dµ = K(Y | x̃1) = 1 < ∞,

and (b) holds by (46).
Observe that for every x ∈ X , we have

g ≤ dK

dµ
(· | x) (µ-a.e.)

To see this, suppose the contrary: Assume that g > dK
dµ (· | x∗) for some x∗ ∈ X , on some set A∗ ∈ FY with positive measure

µ(A∗) > 0. Then, for any arbitrary ϵ > 0, it follows that

1
(a)
=

∫
A∗

g dµ+

∫
A∗c

g dµ
(b)
>

∫
A∗

dK

dµ
(· | x∗) dµ+

∫
A∗c

g dµ

2

(c)
=

∫
A∗

dK

dµ
(· | x∗) dµ+

∫
A∗c

(
lim
n→∞

min
i∈[n]

dK

dµ
(· | x̃i)

)
dµ

(d)

≥
∫
Y

(
lim

n→∞
min
i∈[n]

dK

dµ
(· | x∗

i )

)
dµ

(e)
= lim

n→∞

∫
Y

(
min
i∈[n]

dK

dµ
(· | x∗

i )

)
dµ

(f)

≥
∫
Y

(
min
i∈[n∗]

dK

dµ
(· | x∗

i )

)
dµ− ϵ

(g)

≥ 1 − ϵ

and we obtain the contradiction 1 > 2 ≥ 1 , where (a) holds by (48) and because Y = A∗∪A∗c, (b) holds by the supposition,
(c) holds by (45) and (47), (d) holds for the sequence x∗

i given by x∗
1 = x∗ and x∗

i = x̃i−1 for all i ≥ 2, (e) holds by the
dominated convergence theorem, (f) holds for some n∗ (possibly depending on ϵ) by definition of limit, and (g) holds by
lower-bounding the value for the specific sequence {x∗

1, . . . , x
∗
n∗} with the infimum over all finite sequences.

Similarly, observe that any function h : Y → R where h ≤ dK
dµ (· | x) µ-a.e. for every x ∈ X satisfies h ≤ g µ-a.e. To see

this, suppose the contrary: Assume that h ≤ dK
dµ (· | x) µ-a.e. for every x ∈ X , and h > g on some set A∗ ∈ FY with positive

measure µ(A∗) > 0. Then, for any arbitrary ϵ > 0, it follows that

1
(a)
=

∫
A∗

g dµ+

∫
A∗c

g dµ
(b)
<

∫
A∗

h dµ+

∫
A∗c

g dµ

3

(c)

≤
∫
A∗

(
min
i∈[n∗]

dK

dµ
(· | x̃i)

)
dµ+

∫
A∗c

g dµ

(d)

≤ lim
n→∞

∫
A∗

(
min
i∈[n]

dK

dµ
(· | x̃i)

)
dµ+ ϵ+

∫
A∗c

g dµ
(e)
=

∫
A∗

(
lim

n→∞
min
i∈[n]

dK

dµ
(· | x̃i)

)
dµ+ ϵ+

∫
A∗c

g dµ

(f)
=

∫
A∗

g dµ+ ϵ+

∫
A∗c

g dµ
(g)
= 1 + ϵ

and we obtain the contradiction 1 < 3 ≤ 1 , where (a) holds by (48) and because Y = A∗ ∪A∗c, (b) and (c) hold by the
supposition, (c) holds for any finite n∗ ∈ N because the finite union of measure-zero sets has measure zero, there always exists
some n∗ (possibly depending on ϵ) to make (d) hold by definition of limit, (e) holds by the dominated convergence theorem,
(f) holds by (45) and (47), and (g) holds by (48) and because Y = A∗ ∪A∗c.

Hence, by definition of lattice infimum (Definition 2), g =
∧̃

x∈X
dK
dµ (· | x). Proceeding from (43), we have

τ(K) =

∫
Y
g dµ

(a)
= 1

(b)
= inf

n∈N
inf

x1,...,xn∈X
inf

n-partition of Y
A1,...,An

n∑
i=1

K(Ai | xi)

as desired, where (a) holds by (48) and (b) holds by (44) and Proposition 2.
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B. Proofs of Doeblin Curve Properties

In this subsection, we first prove Proposition 3. We begin by establishing two technical lemmata used in the proofs of
Proposition 3 and subsequent results.

Lemma 5 (Doeblin Coefficients Under Affine Transformation). Let W : U ×FX → [0, 1] and K : X ×FY → [0, 1] be Markov
kernels. For any probability measures π, µ : FX → [0, 1] and scalars λ, α ≥ 0 such that W −απ ≥ 0 and 1−λᾱ ≥ 0 (where we
define ᾱ ≜ 1−α for convenience), consider the Markov kernel Ŵ : U ×FX → [0, 1] given by Ŵ = λ (W − απ)+ (1− λᾱ)µ.
Then, the complementary Doeblin coefficients of Ŵ and ŴK are ρ(Ŵ ) = λ ρ(W ) and ρ(ŴK) = λ ρ(WK).

Proof of Lemma 5. Fix Markov kernels W and K, probability measures π and µ, and scalars λ and α satisfying the conditions
in Lemma 5. The complementary Doeblin coefficient of Ŵ is

ρ(Ŵ )
(a)
= 1−

∧
u∈U

Ŵ (X | u) (b)
= 1−

(
λ
(∧
u∈U

W (X | u)− απ(X )
)
+ (1− λᾱ)µ(X )

)
(c)
= 1−

(
λ (τ(W )− απ(X )) + (1− λᾱ)µ(X )

)
(d)
= 1−

(
λ (τ(W )− α) + (1− λᾱ)

)
= λ ρ(W )

as desired, where (a) and (c) hold by the greatest common component characterization of Doeblin coefficient (5), (b) holds by
Lemma 8, and (d) holds because π and µ are probability measures. The composition of Ŵ with K is

∀u ∈ U , ŴK(· | u) = λ
(
WK(· | u)− απK(·)

)
+ (1− λᾱ)µK(·) , (49)

so the complementary Doeblin coefficient of ŴK is

ρ(ŴK)
(a)
= 1−

∧
u∈U

ŴK(Y | u) (b)
= 1−

(
λ
(∧
u∈U

WK(Y | u)− απK(Y)
)
+ (1− λᾱ)µK(Y)

)
(c)
= 1−

(
λ (τ(WK)− απK(Y)) + (1− λᾱ)µK(Y)

)
(d)
= 1−

(
λ (τ(WK)− α) + (1− λᾱ)

)
= λ ρ(WK)

as desired, where (a) and (c) hold by the greatest common component characterization of Doeblin coefficient (5), (b) holds by
Lemma 8 and (49), and (d) holds because πK and µK are probability measures.

Lemma 6 (Properties of Identity Kernel). Let (U ,FU ) and (X ,FX ) be Polish spaces with U ⊆ X . Let K : X × FY → [0, 1]
be a Markov kernel. The identity kernel from U to X , i.e., Ξ : U × FX → [0, 1] where Ξ(A | u) = δu(A) for all u ∈ U and
A ∈ FX , satisfies ρ(Ξ) = 1 and ρ(ΞK) = ρU (K).

Proof of Lemma 6. By inspection, the greatest common component of Ξ is
∧

u∈U Ξ(· | u) = 0, and so the complementary
Doeblin coefficient of Ξ, by (5), is ρ(Ξ) = 1 −

∧
u∈U Ξ(X | u) = 1 as desired. By inspection, the composition of Ξ

with K is ΞK(A | u) = K(A | u) for all u ∈ U and A ∈ FY , and so the complementary Doeblin coefficient of ΞK is
ρ(ΞK) = 1−

∧
u∈U K(Y | u) = ρU (K) as desired.

Now, we are ready to prove Proposition 3.

Proof of Proposition 3.
Part 1: Fix Markov kernels K1 and K2 and constraint sets G1 and G2. We have

FK1K2(t;G)
(a)
= sup {ρ(WK1K2) : ρ(W ) ≤ t, W ∈ G}

(b)

≤ sup {ρ(V K2) : ρ(V ) ≤ FK1(t;G1), V ∈ G2}
(c)
= FK2(FK1(t;G1);G2)

as desired, where (a) and (c) hold by definition of Doeblin curve (9), and (b) holds because any kernel W ∈ G with ρ(W ) ≤ t
satisfies ρ(WK1) ≤ sup {ρ(WK1) : ρ(W ) ≤ t, W ∈ G1} = FK1(t;G1) and WK1 ∈ G2.

Part 2: Fix a Markov kernel K and a convex constraint set G containing the identity kernel Ξ(· | u) = δu(·) and a constant
kernel W̄ (· | u) = π(·). For t = 0, we trivially have FK(t;G) = 0 = ρ(K) t, so fix t ∈ (0, 1] for the remainder of this part.
Let Ŵ : X × FX → [0, 1] be the Markov kernel given by Ŵ (· | u) ≜ tΞ(· | u) + (1− t) W̄ (· | u) = tΞ(· | u) + (1− t)π(·)
for all u ∈ X . The complementary Doeblin coefficients of Ŵ and ŴK are

ρ(Ŵ )
(a)
= t ρ(Ξ)

(b)
= t ,

ρ(ŴK)
(a)
= t ρ(ΞK)

(b)
= t ρX (K) = t ρ(K) ,

where in each line (a) holds by Lemma 5 and (b) holds by Lemma 6. By convexity of G, we have Ŵ ∈ G. Hence,

FK(t;G) (a)= sup {ρ(WK) : ρ(W ) ≤ t, W ∈ G} ≥ ρ(ŴK) = t ρ(K) ,

where (a) holds by definition of Doeblin curve (9). Combining this lower bound with (10) completes the proof.
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Part 3: Fix a Markov kernel K, a convex constraint set G containing a constant kernel W̄ (· | u) = π(·), and scalars
λ ∈ [0, 1] and t ∈ [0, 1]. Fix an arbitrary ϵ > 0. By definition of Doeblin curve as a supremum (9), there exists a Markov
kernel W ∗ ∈ G such that ρ(W ∗) ≤ t and ρ(W ∗K) ≥ FK(t;G)− ϵ. Define another Markov kernel Ŵ as Ŵ (· | u) ≜ λW ∗(· |
u) + (1− λ) W̄ (· | u) = λW ∗(· | u) + (1− λ)π(·) for all u ∈ U . By Lemma 5, we have ρ(Ŵ ) = λ ρ(W ∗) ≤ λt and
ρ(ŴK) = λ ρ(W ∗K) ≥ λ (FK(t;G)− ϵ). By convexity of G, we have Ŵ ∈ G. Hence,

FK(λt;G) (a)= sup {ρ(WK) : ρ(W ) ≤ λt, W ∈ G} ≥ ρ(ŴK) ≥ λ (FK(t;G)− ϵ) , (50)

where (a) holds by definition of Doeblin curve (9). Since ϵ > 0 was arbitrary, we have FK(λt;G) ≥ λFK(t;G) as desired.
Finally, to show the equivalent characterization that t 7→ FK(t;G)/t is non-increasing, fix s, t ∈ (0, 1] such that s < t and

observe that
FK(s;G)

s

(a)

≥
(s
t

) FK(t;G)
s

=
FK(t;G)

t
,

where (a) holds by applying (50) with λ ≜ s/t < 1.
Part 4: By definition of Lipschitz continuity, we want to show that |FK(s;G)− FK(t;G)| ≤ |s− t| for all s, t ∈ [0, 1]. Fix

s, t ∈ [0, 1] such that s < t. If s = 0, the result trivially follows from (11). Otherwise, we have

|FK(s;G)− FK(t;G)| (a)= t

s

(s
t

)
FK(t;G)− FK(s;G)

(b)

≤ t

s
FK(s;G)− FK(s;G) = (t− s)

FK(s;G)
s

(c)

≤ t− s
(d)
= |s− t|

as desired, where (a) holds because FK(s;G) ≤ FK(t;G) by monotonicity of Doeblin curves, (b) holds by applying Part 3
with λ ≜ s/t < 1, (c) holds because FK(s) ≤ s by (11), and (d) holds because s < t.

Next, we prove Proposition 4.

Proof of Proposition 4. Fix row stochastic matrices K ∈ R2×n
sto and W ∈ Rm×2

sto . By definition of joint range, it suffices to
show that ρ(WK) = ρ(W)ρ(K). We have

ρ(WK)
(a)
= 1−

n∑
j=1

min
i∈[m]

[WK]i,j
(b)
= 1−

n∑
j=1

min
i∈[m]

{
[W]i,1 [K]1,j +

(
1− [W]i,1

)
[K]2,j

}
= 1−

n∑
j=1

min
i∈[m]

{
[W]i,1

(
[K]1,j − [K]2,j

)}
−

n∑
j=1

[K]2,j
(c)
=

n∑
j=1

max
i∈[m]

{
[W]i,1

(
[K]2,j − [K]1,j

)}
, (51)

where (a) holds by definition of complementary Doeblin coefficient (6), (b) holds because W is row stochastic, and (c) holds
because K is row stochastic. Next, let S = {j ∈ [n] : [K]2,j ≥ [K]1,j} akin to [61, Proposition 4.2]. Proceeding from (51), we
have

ρ(WK) =
∑
j∈S

(
[K]2,j − [K]1,j

)
max
i∈[m]

[W]i,1 +
∑
j∈Sc

(
[K]2,j − [K]1,j

)
min
i∈[m]

[W]i,1 . (52)

Since K is row stochastic, it holds that
n∑

j=1

[K]1,j
(a)
=

n∑
j=1

[K]2,j = 1 .

Rearranging (a), we obtain ∑
j∈S

(
[K]2,j − [K]1,j

)
=
∑
j∈Sc

(
[K]1,j − [K]2,j

)
. (53)

Combining (52) and (53),

ρ(WK) =

(∑
j∈S

(
[K]2,j − [K]1,j

))
1

(
max
i∈[m]

[W]i,1 − min
i∈[m]

[W]i,1

)
2

.

Next, we evaluate 1 . We have

1
(a)
=

1

2

(∑
j∈S

(
[K]2,j − [K]1,j

)
+
∑
j∈Sc

(
[K]1,j − [K]2,j

))
(b)
=

1

2

n∑
j=1

(
max
ℓ∈[2]

[K]ℓ,j − min
ℓ∈[2]

[K]ℓ,j

)

=
1

2

n∑
j=1

(
2∑

ℓ=1

[K]ℓ,j − 2min
ℓ∈[2]

[K]ℓ,j

)
(c)
= 1−

n∑
j=1

min
ℓ∈[2]

[K]ℓ,j
(d)
= ρ(K) ,
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where (a) holds by (53), (b) holds by definition of S, (c) holds because K is row stochastic, and (d) holds by definition of
complementary Doeblin coefficient (6). Next, we evaluate 2 . We have

2
(a)
=

(
1− min

i∈[m]
[W]i,2

)
− min

i∈[m]
[W]i,1 = 1−

2∑
ℓ=1

min
i∈[m]

[W]i,ℓ
(b)
= ρ(W) ,

where (a) holds because W is row stochastic and (b) holds by definition of complementary Doeblin coefficient (6). Hence,
ρ(WK) = ρ(W)ρ(K) as desired.

Next, we prove Proposition 5. We begin by establishing an additional technical lemma used in the proof of Proposition 5.

Lemma 7 (Power Levels Under Affine Transformation). Let W : U × FX → [0, 1] be a Markov kernel. Let 0 ∈ X denote the
element in the Banach space X such that ∥0∥ = 0. For any probability measure π : FX → [0, 1] and scalars λ, α ≥ 0 such
that W − απ ≥ 0 and 1− λᾱ ≥ 0 (where we define ᾱ ≜ 1− α for convenience), the Markov kernel

Ŵ = λ (W − απ) + (1− λᾱ) δ0

has power levels

|||Ŵ |||UA ≤ λ |||W |||UA , (54)

|||Ŵ |||AE ≤ λ |||W |||AE , (55)

where (55) holds if average extremal power is well-defined for W . Furthermore, if α = 0, the bounds in (54) and (55) hold
with equality.

Proof of Lemma 7. Fix a Markov kernel W , a probability measure π, and scalars λ and α satisfying the conditions in Lemma 7.
Firstly, the uniform average power of Ŵ is

|||Ŵ |||UA
(a)
= λ sup

u∈U

∫
X
M(∥x∥)

(
W (dx | u)− απ(dx)

)
+ (1− λᾱ)

∫
X
M(∥x∥) δ0(dx)

(b)
= λ sup

u∈U

∫
X
M(∥x∥)

(
W (dx | u)− απ(dx)

)
≤ λ sup

u∈U

∫
X
M(∥x∥)W (dx | u) (c)

= λ |||W |||UA (56)

as desired, where (a) holds by definition of uniform average power (12) and linearity of Lebesgue integration with respect to
the measure, (b) holds because M(∥0∥) = M(0) = 0, and (c) holds by definition of uniform average power (12).

Secondly, to compute the average extremal power of W , we consider the maximal coupling of random variables {Xu}u∈U
with Xu ∼ W (· | u) for each u ∈ U , defined in (34) as

∀u ∈ U , Xu ≜

{
X∗ , if I = 1 ,

X̃u , if I = 0 ,
(57)

where the random variables I , X∗, and {X̃u}u∈U are sampled independently from the probability measures

I ∼ Bernoulli(τ(W )) , (58)

X∗ ∼
∧

u∈U W (· | u)
τ(W )

, (59)

∀u ∈ U , X̃u ∼
W (· | u)−

∧
u′∈U W (· | u′)

ρ(W )
. (60)

For notational convenience, let ν be the product measure

ν ≜
⊗
u∈U

W (· | u)−
∧

u′∈U W (· | u′)

ρ(W )
.

The average extremal power of W is

|||W |||AE
(a)
= P(I = 1)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ I = 1

]
+ P(I = 0)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ I = 0

]
(b)
= τ(W )E[M(∥X∗∥)] + ρ(W )E

[
sup
u∈U

M
(
∥X̃u∥

)]
(c)
= τ(W )

∫
X
M(∥x∗∥)

∧
u∈U W (dx∗ | u)

τ(W )
+ ρ(W )

∫
XU

(
sup
u∈U

M(∥x̃u∥)
)
dν
(
{x̃u}u∈U

)
=

∫
X
M(∥x∗∥)

∧
u∈U

W (dx∗ | u) + ρ(W )

∫
XU

(
sup
u∈U

M(∥x̃u∥)
)
dν
(
{x̃u}u∈U

)
, (61)
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where all expectations are taken with respect to the maximal coupling (57), (a) holds by definition of average extremal power
(13) and the law of total expectation, (b) holds by (57) and (58), and (c) holds by (59) and (60).

Similarly, to compute the average extremal power of Ŵ , we consider the maximal coupling of random variables {Xu}u∈U
with Xu ∼ Ŵ (· | u) for each u ∈ U , defined in (34) as

∀u ∈ U , Xu ≜

{
X∗ , if I = 1 ,

X̃u , if I = 0 ,
(62)

where the random variables I , X∗, and {X̃u}u∈U are sampled independently from the probability measures

I ∼ Bernoulli
(
τ(Ŵ )

)
, (63)

X∗ ∼
∧

u∈U Ŵ (· | u)
τ(Ŵ )

, (64)

∀u ∈ U , X̃u ∼
Ŵ (· | u)−

∧
u′∈U Ŵ (· | u′)

ρ(Ŵ )
. (65)

By Lemmas 5 and 8 respectively, we have

ρ(Ŵ ) = λ ρ(W ) , (66)∧
u∈U

Ŵ (· | u) = λ
(∧
u∈U

W (· | u)− απ(·)
)
+ (1− λᾱ) δ0(·) , (67)

and so, ⊗
u∈U

Ŵ (· | u)−
∧

u′∈U Ŵ (· | u′)

ρ(Ŵ )
=
⊗
u∈U

λ
(
W (· | u)−

∧
u′∈U W (· | u′)

)
λ ρ(W )

= ν .

Thus, the average extremal power of Ŵ is

|||Ŵ |||AE
(a)
= P(I = 1)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ I = 1

]
+ P(I = 0)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ I = 0

]
(b)
= τ(Ŵ )E[M(∥X∗∥)] + ρ(Ŵ )E

[
sup
u∈U

M
(
∥X̃u∥

)]
(c)
= τ(Ŵ )

∫
X
M(∥x∗∥)

∧
u∈U Ŵ (dx∗ | u)

τ(Ŵ )
1

+ ρ(Ŵ )

∫
XU

(
sup
u∈U

M(∥x̃u∥)
)
dν
(
{x̃u}u∈U

)
2

, (68)

where all expectations are taken with respect to the maximal coupling (62), (a) holds by definition of average extremal power
(13) and the law of total expectation, (b) holds by (62) and (63), and (c) holds by (64) and (65). Next, we evaluate 1 . We have

1
(a)
= λ

∫
X
M(∥x∗∥)

(∧
u∈U

W (dx∗ | u)− απ(dx∗)
)
+ (1− λᾱ)

∫
X
M(∥x∗∥) δ0(dx∗)

(b)
= λ

∫
X
M(∥x∗∥)

(∧
u∈U

W (dx∗ | u)− απ(dx∗)
)
≤ λ

∫
X
M(∥x∗∥)

∧
u∈U

W (dx∗ | u) , (69)

where (a) holds by (67) and linearity of Lebesgue integration with respect to the measure, and (b) holds because M(∥0∥) =
M(0) = 0. Next, we evaluate 2 . By (66), we have

2 = λ ρ(W )

∫
XU

(
sup
u∈U

M(∥x̃u∥)
)
dν
(
{x̃u}u∈U

)
. (70)

Combining (61) and (68) to (70) yields |||Ŵ |||AE ≤ λ |||W |||AE as desired.
Lastly, if α = 0, the bounds in (56) and (69) hold with equality, as desired.

Now, we are ready to prove Proposition 5.

Proof of Proposition 5. Fix a Markov kernel K : X × FY → [0, 1]. Fix scalars t ∈ [0, 1], p ∈ [0,∞), and λ > 0 such that
λt ≤ 1.9 Throughout this proof, let FK and |||·||| denote either FUA

K and |||·|||UA, or FAE
K and |||·|||AE, in general. We will consider

two cases.
Case 1: λ ≤ 1. We follow the argument from [25, Proposition 2]. First, we will show that

FK(λt;λp) ≥ λFK(t; p) . (71)

9The proposition trivially holds for λ = 0, so we assume λ > 0 throughout this proof.
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Fix any arbitrary ϵ > 0. By definition of Doeblin curve, there exists a Markov kernel W ∗ : U × FX → [0, 1] such that
ρ(W ∗) ≤ t, |||W ∗||| ≤ p, and ρ(W ∗K) ≥ FK(t; p) − ϵ. Since X is a Banach space, there exists an element 0 ∈ X such
that ∥0∥ = 0; we denote this element in bold font to distinguish it from the scalar 0 ∈ R. Define another Markov kernel
Ŵ : U × FX → [0, 1] as Ŵ (· | u) = λW ∗(· | u) + (1− λ) δ0(·) for all u ∈ U . By Lemmas 5 and 7, we have

ρ(Ŵ ) = λ ρ(W ∗) ≤ λt , (72)

ρ(ŴK) = λ ρ(W ∗K) ≥ λ (FK(t; p)− ϵ) , (73)

|||Ŵ ||| = λ |||W ∗||| ≤ λp . (74)

Hence,

FK(λt;λp)
(a)
= sup {ρ(WK) : ρ(W ) ≤ λt, |||W ||| ≤ λp}

(b)

≥ ρ(ŴK)
(c)

≥ λ (FK(t; p)− ϵ) ,

where (a) holds by definition of Doeblin curve, (b) holds by (72) and (74), and (c) holds by (73). Since ϵ > 0 was arbitrary,
this shows (71) as desired.

Next, we will show that
λFK(t; p) ≥ FK(λt;λp) . (75)

Fix any arbitrary ϵ > 0. By definition of Doeblin curve, there exists a Markov kernel W ∗ : U × FX → [0, 1] such that
ρ(W ∗) ≤ λt, |||W ∗||| ≤ λp, and ρ(W ∗K) ≥ FK(λt;λp) − ϵ. Let α be any scalar such that 1 − λ ≤ α ≤ τ(W ∗).10 For
notational convenience, define ᾱ ≜ 1− α. By definition of Doeblin coefficient, there exists a probability measure π∗ such that
W ∗ ≥ απ∗.11 Define another Markov kernel Ŵ : U × FX → [0, 1] as Ŵ (· | u) = 1

λ

(
W ∗(· | u)− απ∗(·)

)
+
(
1− ᾱ

λ

)
δ0(·) for

all u ∈ U . This is a valid Markov kernel because W ∗ ≥ απ∗, non-negative12 linear combinations of measures are measures, and
for any u ∈ U , Ŵ (X | u) = 1

λ

(
W ∗(X | u)− απ∗(X )

)
+
(
1− ᾱ

λ

)
δ0(X ) = 1

λ

(
1− α

)
+
(
1− ᾱ

λ

)
= 1. By Lemmas 5 and 7,

we have

ρ(Ŵ ) =
ρ(W ∗)

λ
≤ t , (76)

ρ(ŴK) =
ρ(W ∗K)

λ
≥ FK(λt;λp)− ϵ

λ
, (77)

|||Ŵ ||| = |||W ∗|||
λ

≤ p . (78)

Hence,

λFK(t; p)
(a)
= λ sup {ρ(WK) : ρ(W ) ≤ t, |||W ||| ≤ p}

(b)

≥ λ ρ(ŴK)
(c)

≥ FK(λt;λp)− ϵ ,

where (a) holds by definition of Doeblin curve, (b) holds by (76) and (78), and (c) holds by (77). Since ϵ > 0 was arbitrary,
this shows (75) as desired.

Finally, combining (71) and (75), we have FK(λt;λp) = λFK(t; p) as desired.
Case 2: λ > 1. We have

FK(λt;λp) = λ

(
1

λ

)
FK(λt;λp)

(a)
= λFK

((
1

λ

)
λt;

(
1

λ

)
λp

)
= λFK(t; p)

as desired, where (a) holds by applying Case 1 with 1/λ < 1.

Next, we prove Proposition 6.

Proof of Proposition 6. First, we define scalar multiplication of sets as λA ≜ {λa : a ∈ A} for any λ ∈ R and set A. Note
that for all λ > 0, A ∈ FRd ⇐⇒ λA ∈ FRd . Next, note that for all A ∈ FY and x ∈ X = Rd,

Kσ(σA | σx) =
∫
σA

1

σd
f

(
y − σx

σ

)
dy =

∫
A

f(y′ − x)dy′ = K1(A | x). (79)

Given any W : U × FX → [0, 1], define Wσ such that Wσ(A | u) ≜ W (A/σ | u) (i.e., Wσ(· | u) is the pushforward measure
of W (· | u) by g(x) = σx). Then,

|||Wσ|||UA = sup
u∈U

∫
X
∥x∥2 Wσ(dx | u) = sup

u∈U

∫
X
∥x∥2 W (dx/σ | u) = sup

u∈U

∫
X
∥σx′∥2 W (dx′ | u) = σ2|||W |||UA.

In addition,

ρ(Wσ) = 1− sup {α ∈ R : ∃π ∈ P,∀u ∈ U , ∀A ∈ FX ,Wσ(A | u) ≥ απ(A)}

10Such an α exists because t ≤ 1 and λ > 0, and so 1− λ ≤ 1− λt ≤ 1− ρ(W ∗) = τ(W ∗).
11This is true even for α = τ(W ∗) because the supremum in (4) is always achieved, as per the discussion following (4).
12We have 1− ᾱ/λ ≥ 0 because 1− λ ≤ α.
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= 1− sup {α ∈ R : ∃π ∈ P,∀u ∈ U , ∀A′ ∈ FX ,W (A′ | u) ≥ απ(σA′)}
= 1− sup {α ∈ R : ∃π′ ∈ P,∀u ∈ U , ∀A′ ∈ FX ,W (A′ | u) ≥ απ′(A′)} = ρ(W ),

and similarly ρ(KσWσ) = ρ(KW ) since (KσWσ)(σA | u) = (K1W )(A | u) due to (79) and the definition of Wσ. Thus,
FUA
Kσ

(t;σ2p) = FUA
K1

(t; p) for all p ≥ 0, completing the proof.

C. Proofs of Bounds on Power-Constrained Doeblin Curves

First, we prove Theorem 2.

Proof of Theorem 2. Fix an absolutely continuous Markov kernel K : X × FY → [0, 1] with common dominating measure
µ : FY → R+.

Upper bound: Fix t ∈ (0, 1] and p ∈ [0,∞). By definition of Doeblin curve, we want to show that for any Markov kernel
W : U × FX → [0, 1] satisfying ρ(W ) ≤ t and |||W |||AE ≤ p, we have

ρ(WK) ≤ t “Θ
(
2γM−1

(p
t

))
. (80)

Fix a Polish space (U ,FU ) and such a Markov kernel W . We have

ρ(WK)
(a)
= 1− inf

n∈N
inf

u1,...,un∈U
inf

n-partition of Y
A1,...,An

n∑
i=1

WK(Ai | ui)
(b)
= 1− inf

n∈N
inf

u1,...,un∈U
inf

n-partition of Y
A1,...,An

n∑
i=1

∫
X
K(Ai | x)W (dx | ui)

1

,

(81)
where (a) holds by Theorem 1 and (b) holds by definition of composition of two kernels (8). Next, we lower-bound 1 for
any n ∈ N and u1, . . . , un ∈ U . Let P be the maximal coupling of random variables {Xu}u∈U with Xu ∼ W (· | u) for each
u ∈ U , as defined in (34). We have

1
(a)
= inf

n-partition of Y
A1,...,An

n∑
i=1

∫
X
K(Ai | x)PXui

(dx)
(b)
= inf

n-partition of Y
A1,...,An

n∑
i=1

E[K(Ai | Xui
)]

(c)
= inf

n-partition of Y
A1,...,An

E

[
n∑

i=1

K(Ai | Xui
)

]
≥ E

 inf
n-partition of Y

A1,...,An

n∑
i=1

K(Ai | Xui
)

 (d)
= E

[∫
Y

(
min
i∈[n]

dK

dµ
(· | Xui

)

)
dµ

]
, (82)

where (a) holds by definition of a coupling, the expectations from (b) onwards are taken with respect to {Xu}u∈U ∼ P, (c)
holds by linearity of expectation, and (d) holds by Proposition 2. Combining (81) and (82), we have

ρ(WK) ≤ 1− inf
n∈N

inf
u1,...,un∈U

E
[∫

Y

(
min
i∈[n]

dK

dµ
(· | Xui

)

)
dµ

]
2

. (83)

Next, we lower-bound 2 . For each k ∈ N, let sk ≜ {ûk,1, . . . , ûk,nk
} ⊆ U be a finite sequence such that

E
[∫

Y

(
min
i∈[nk]

dK

dµ
(· | Xûk,i

)

)
dµ

]
≤ 2 +

1

k
,

where the existence of such a sequence is guaranteed by the definition of 2 as an infimum in (83). Construct an infinite
sequence {ũ1, ũ2, . . .} ⊆ U by concatenating the finite sequences sk in ascending order of k. Define a sequence of functions
gn : XU → R (with respect to the cylinder σ-algebra on XU ) as

∀n ∈ N, gn
(
{xu}u∈U

)
≜
∫
Y

(
min
i∈[n]

dK

dµ
(· | xũi)

)
dµ .

By construction, it holds that
lim
n→∞

E
[
gn
(
{Xu}u∈U

)]
= 2 . (84)

Each gn is non-negative, by the non-negativity of the Radon-Nikodym derivative. Hence, we may define h : XU → R+ as the
infimum h ≜ infn∈N gn, i.e.,

h
(
{xu}u∈U

)
≜ inf

n∈N

∫
Y

(
min
i∈[n]

dK

dµ
(· | xũi

)

)
dµ . (85)

By construction, gn ≥ h for all n ∈ N. Proceeding from (84), we thus have

2 ≥ E
[
h
(
{Xu}u∈U

)]
. (86)
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Define the event E = {∀u, v ∈ U , Xu = Xv}, which is measurable since U is Polish. Combining (83) and (86), we have

ρ(WK) ≤ 1− E
[
h
(
{Xu}u∈U

)] (a)
= 1− P(E)E

[
h
(
{Xu}u∈U

) ∣∣ E]− P(Ec)E
[
h
(
{Xu}u∈U

) ∣∣ Ec
]

(b)
= 1− P(E)− P(Ec)E

[
h
(
{Xu}u∈U

) ∣∣ Ec
] (c)
= P(Ec) E

[
1− h

(
{Xu}u∈U

) ∣∣ Ec
]

3
, (87)

where (a) holds by the law of total expectation; (b) holds because, under the event E , there exists some x∗ ∈ X such that
Xu = x∗ for all u ∈ U and so

h
(
{Xu}u∈U

)
=

∫
Y

(
dK

dµ
(· | x∗)

)
dµ = K(Y | x∗) = 1

given E ; and (c) holds by the complement rule of probability and linearity of expectation. If P(Ec) = 0, we have ρ(WK) = 0
and the desired upper bound (80) is trivially satisfied. Hence, assume P(Ec) > 0 for the remainder of this argument.

Next, we upper-bound 3 . Observe that for any bounded (multi)set S = {xu}u∈U ∈ XU (i.e., |||S|||∞ < ∞) and any ϵ > 0,

1− h(S) (a)= 1− inf
n∈N

∫
Y

(
min
i∈[n]

dK

dµ
(· | xũi

)

)
dµ

(b)

≤ 1− inf
n∈N

inf
u1,...,un∈U

∫
Y

(
min
i∈[n]

dK

dµ
(· | xui

)

)
dµ

(c)
= 1− inf

n∈N
inf

u1,...,un∈U
inf

n-partition of Y
A1,...,An

n∑
i=1

K(Ai | xui
)
(d)
= ρS(K)

(e)

≤ ρB(a∗,rad(S)+ϵ)(K)

(f)

≤ sup
a∈X

ρB(a,rad(S)+ϵ)(K)
(g)

≤ sup
a∈X

ρB(a,γ|||S|||∞+ϵ)(K)
(h)
= Θ(γ |||S|||∞ + ϵ)

(i)

≤ “Θ(γ |||S|||∞ + ϵ) ,

where (a) holds by definition of h (85); (b) holds by lower-bounding the integrand for the specific sequence {ũ1, . . . , ũn} with
the infimum over all length-n sequences; (c) holds by Proposition 2; (d) holds by Theorem 1 and the definition of complementary
Doeblin coefficient; (e) holds for some center a∗ ∈ X which satisfies supx∈S ∥x− a∗∥ ≤ rad(S) + ϵ, because S ′ 7→ ρS′(K) is
monotonically non-decreasing in its input set S ′; (f) holds by upper-bounding the value for the specific center a∗ with the
supremum over all centers a ∈ X ; (g) holds because rad(S) ≤ γ |||S|||∞ by rearranging (14); (h) holds by definition of Θ;
and (i) holds because “Θ is the upper concave envelope (and hence an upper bound) of Θ. Therefore, if S has strictly positive
diameter |||S|||∞ > 0,

1− h(S)
(a)

≤ “Θ(γ |||S|||∞)
(b)
= “Θ

(
γ sup

u,v∈U
∥xu − xv∥

)
(c)

≤ “Θ

(
2γ sup

u∈U
∥xu∥

)
(d)
= “Θ

(
2γM−1 ◦M

(
sup
u∈U

∥xu∥
))

(e)
= “Θ

(
2γM−1

(
sup
u∈U

M(∥xu∥)
))

, (88)

where (a) holds because “Θ is concave and thus continuous on its interior which contains γ |||S|||∞ > 0, and because ϵ > 0
was arbitrary; (b) holds by definition of diameter (1); (c) holds by the triangle inequality, and because “Θ is non-decreasing
by Lemma 9, Part 2; (d) holds because M is strictly increasing and hence invertible; and (e) holds because M is increasing.
For notational convenience, define a function G : R+ → [0, 1] as G(r) ≜ “Θ(2γM−1(r)). Since “Θ is non-decreasing and
concave, and since M−1 is increasing and concave (being the inverse of an increasing convex function), it follows that G is
non-decreasing and concave. Combining (87) and (88), we have, akin to the argument of [25, Theorem 4],13

3 ≤ E
[
G

(
sup
u∈U

M(∥Xu∥)
) ∣∣∣∣ Ec

]
(a)

≤ G

(
E
[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ Ec

])
(b)

≤ G

(
1

P(Ec)
E
[
sup
u∈U

M(∥Xu∥)
])

(c)
= G

(
|||W |||AE
P(Ec)

)
, (89)

where (a) holds by Jensen’s inequality and the concavity of G, (b) holds by the law of total expectation because

E
[
sup
u∈U

M(∥Xu∥)
]
= P(E)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ E]+ P(Ec)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ Ec

]
(d)

≥ P(Ec)E
[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ Ec

]
,

the division in (b) is well-defined because we assumed P(Ec) > 0, (c) holds by definition of average extremal power (13)
because P is the maximal coupling (34), and (d) holds because M is non-negative. Combining (87) and (89), we thus have

ρ(WK) ≤ P(Ec)G

(
|||W |||AE
P(Ec)

)
. (90)

Observe that the perspective function H : (0, 1] × R+ → [0, 1] given by

H(s; a) ≜ sG
(a
s

)
13It suffices to define G over R+ instead of R+ ∪ {∞}, because |||W |||AE < ∞ and so supu∈U M(∥Xu∥) < ∞ almost surely. Hence, the expectation

E[G(supu∈U M(∥Xu∥))] is well-defined even if G is undefined at ∞.
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is non-decreasing in s for any a, because for any s, t ∈ (0, 1], s < t and a > 0,14 we have

H(s; a)
(a)
= a

G(a/s)−G(0)

a/s− 0

(b)

≤ a
G(a/t)−G(0)

a/t− 0

(c)
= H(t; a) ,

where (a) and (c) hold because G(0) = “Θ(0) = Θ(0) = 0, where the second equality follows from Lemma 9, Part 1; and (b)
holds because G is concave and so the difference quotient (G(r)−G(q))/(r− q) is monotonically non-decreasing in r > q for
any fixed q by the first inequality in [70, Exercise 3.1.b]. (Alternatively, if G is differentiable, we may use the first derivative
test: for any s ∈ (0, 1] and a ∈ R+, we have

∂H

∂s
= G

(a
s

)
−
(a
s

)
G′
(a
s

) (a)

≥ G
(a
s

)
−
(a
s

)
G′(ξ)

(b)
= G

(a
s

)
−
(
G
(a
s

)
−G(0)

)
(c)
= 0 ,

where (a) holds for any ξ ∈ [0, a/s] by concavity of G; (b) holds for some ξ ∈ [0, a/s] by the mean value theorem; and (c)
holds because G(0) = “Θ(0) = Θ(0) = 0, where the second equality follows from Lemma 9, Part 1.) Next, observe that

P(Ec)
(a)
= ρ(W ) ≤ t , (91)

where (a) holds by Proposition 1 because P is the maximal coupling (34). Proceeding from (90), we have

ρ(WK)
(a)
= H(P(Ec); |||W |||AE)

(b)

≤ H(t; |||W |||AE)
(c)
= t “Θ

(
2γM−1

(
|||W |||AE

t

))
(d)

≤ t “Θ
(
2γM−1

(p
t

))
(92)

as desired, where (a) holds by definition of H , (b) holds by (91) and because H is non-decreasing in s, (c) holds by definition
of H and G, and (d) holds by the power constraint |||W |||AE ≤ p and because “Θ and M−1 are non-decreasing.

Lower bound: Fix t ∈ (0, 1] and p ∈ [0,∞). By definition of Doeblin curve, we want to show that there exists a
Markov kernel W ∗ : U × FX → [0, 1] satisfying ρ(W ∗) ≤ t and |||W ∗|||AE ≤ p such that ρ(W ∗K) ≥ t θ

(
0,M−1

(
p
t

))
.

Consider U ≜ B(0,M−1(p/t)) ⊂ X , equipped with the Borel σ-algebra induced on U by X . Let W : U × FX → [0, 1]
be the identity kernel W (· | u) ≜ δu(·) for all u ∈ U , and choose W ∗ : U × FX → [0, 1] to be the Markov kernel
W ∗(· | u) ≜ tW (· | u) + (1− t) δ0(·) for all u ∈ U .

By inspection, the greatest common component of W is
∧

u∈U W (· | u) = 0. Thus, the complementary Doeblin coefficient of
W , by (5), is ρ(W ) = 1−

∧
u∈U W (X | u) = 1, and the maximal coupling of random variables {Xu}u∈U with Xu ∼ W (· | u)

for each u ∈ U , as defined in (34), reduces to
∀u ∈ U , Xu ∼ δu(·) , (93)

where {Xu}u∈U are independent. Hence, the average extremal power of W is

|||W |||AE
(a)
= E

[
sup
u∈U

M(∥Xu∥)
]

(b)
= sup

u∈U
M(∥u∥) (c)

= M ◦M−1
(p
t

)
=

p

t
,

where (a) holds by definition of average extremal power (13), (b) holds by (93), and (c) holds because U = B(0,M−1(p/t))
and M is increasing. By inspection, the composition of W with K is WK(· | u) = K(· | u) for all u ∈ U , and so the
complementary Doeblin coefficient of WK is

ρ(WK) = ρU (K)
(a)
= θ
(
0,M−1

(p
t

))
,

where (a) holds by definition of θ and because U = B(0,M−1(p/t)). Thus, by Lemmas 5 and 7, we have ρ(W ∗) = t ρ(W ) = t,
ρ(W ∗K) = t ρ(WK) = t θ

(
0,M−1

(
p
t

))
, and |||W ∗|||AE = t |||W |||AE = p as desired.

Next, we prove Corollary 2.

Proof of Corollary 2. Throughout this proof, let K denote one of the kernels K1, K2, or K3 in general. For each kernel,
consider the density function gK(z) = gK(y − x) = dK

dy (y | x) with respect to the Lebesgue measure on R:

gK1

(
z;σ2

)
=

1

σ
√
2π

exp

(
− z2

2σ2

)
, gK2

(z; b) =
1

2b
exp

(
−|z|

b

)
, and gK3

(z;β) =

√
β

π

(
1

1 + βz2

)
,

where gK depends only on the difference z = y − x because K is a convolution kernel. For any r > 0, we have

Θ(r)
(a)
= θ(0, r)

(b)
= ρ[−r,r](K)

(c)
= 1−

∧
x∈[−r,r]

K(R | x) (d)= 1−
∫
R

( ∧̃
x∈[−r,r]

dK

dy
(y | x)

)
dy = 1−

∫
R

(
min

x∈[−r,r]
gK(y − x)

)
dy , (94)

14The a = 0 case is obvious by inspection, since H(s; 0) = sG(0) and G(0) is non-negative by the range of G.



26

where (a) holds because K is a convolution kernel, (b) holds by definition of θ, (c) holds by the greatest common component
characterization of Doeblin coefficient (5), and (d) holds by Lemma 4. By inspection, gK is increasing on (−∞, 0] and
decreasing on [0,∞). Therefore, the minimum of gK over any interval [a, b] ⊂ R is achieved at one of the endpoints, i.e.,

min
z∈[a,b]

gK(z) = min {gK(a), gK(b)} . (95)

Proceeding from (94), we thus have (cf. [25, Eq. 40])

Θ(r)
(a)
= 1−

∫
R
min {gK(y − r), gK(y + r)} dy

(b)
= 1−

∫ 0

−∞
min {gK(y − r), gK(−|y + r|)} dy −

∫ ∞

0

min {gK(|y − r|), gK(y + r)} dy

(c)
= 1−

∫ 0

−∞
gK(y − r) dy −

∫ ∞

0

gK(y + r) dy
(d)
= 1− 2fK(−r) , (96)

where (a) holds by (95); (b) holds because gK is symmetric about z = 0 by inspection; (c) holds because y− r ≤ −|y+ r| ≤ 0
for y ≤ 0 and gK is increasing on z ≤ 0, and 0 ≤ |y− r| ≤ y+ r for y ≥ 0 and gK is decreasing on z ≥ 0; fK in (d) denotes
the CDF fK(y) =

∫ y

−∞ gK(z) dz; and (d) holds because gK is symmetric about z = 0. Also, Θ is concave because

Θ′′(r) = −2g′K(−r)
(a)
< 0 (97)

for all r > 0, where (a) holds because gK is increasing on z < 0. Hence, by Corollary 1 and (96),

FAE
K (t; p) = t

(
1− 2fK

(
−
√

p

t

))
. (98)

It remains to compute the closed-form CDFs for the Gaussian, Laplace, and q-Gaussian kernels. For the Gaussian kernel K1,

fK1
(y) =

∫ y

−∞

1

σ
√
2π

exp

(
− z2

2σ2

)
dz = Φ

( y
σ

)
. (99)

For the Laplace kernel K2, for all y ≤ 0,

fK2
(y) =

∫ y

−∞

1

2b
exp

(
−|z|

b

)
dz =

1

2
exp
(y
b

)
. (100)

Lastly, for the q-Gaussian kernel K3,

fK3(y) =

∫ y

−∞

√
β

π

(
1

1 + βz2

)
dz =

1

π
arctan

(√
βy
)
+

1

2
. (101)

Combining Equations (98) to (101) completes the proof.

Next, we prove Proposition 7.

Proof of Proposition 7. Fix an absolutely continuous Markov kernel K : X ×FY → [0, 1]. By definition of Doeblin curve, we
want to show that for any Markov kernel W ∈ G (i.e., satisfying the assumptions of Proposition 7) such that ρ(W ) ≤ t, we
have

ρ(WK) ≤ t “Θ

(
2γM−1

(
p+ σ

√
2 loge |U|
t

))
. (102)

By following the proof of the upper bound in Theorem 2 up to (92), step (c), we have

ρ(WK) ≤ t “Θ

(
2γM−1

(
|||W |||AE

t

))
. (103)

Next, we upper-bound |||W |||AE. For notational convenience, let Zu = M(∥Xu∥) for each u ∈ U . We have

|||W |||AE
(a)
= E

[
max
u∈U

Zu

]
≤ E

[
max
u∈U

E[Zu] + max
u∈U

{Zu − E[Zu]}
]

= max
u∈U

E[Zu] + E
[
max
u∈U

{Zu − E[Zu]}
]

(b)

≤ p+ E
[
max
u∈U

{Zu − E[Zu]}
]

1

, (104)

where (a) holds by definition of average extremal power (13) and we use max instead of sup because U is finite, and (b) holds
because any kernel W ∈ G satisfies |||W |||UA ≤ p. Next, we upper-bound 1 . For any λ > 0, we have (cf. [71, Eq. 2])

1 =
1

λ
E
[
loge exp

(
max
u∈U

λ (Zu − E[Zu])

)]
(a)
=

1

λ
E
[
loge max

u∈U
eλ(Zu−E[Zu])

]
(b)

≤ 1

λ
loge E

[
max
u∈U

eλ(Zu−E[Zu])

]



27

(c)

≤ 1

λ
loge E

[∑
u∈U

eλ(Zu−E[Zu])

]
(d)
=

1

λ
loge

∑
u∈U

E
[
eλ(Zu−E[Zu])

] (e)

≤ 1

λ
loge

∑
u∈U

exp

(
σ2λ2

2

)
=

loge |U|
λ

+
σ2λ

2
,

where (a) holds because exp is increasing, (b) holds by Jensen’s inequality, (c) holds by upper-bounding the maximum of a
collection of positive terms with their sum, (d) holds by linearity of expectation, and (e) holds by the sub-Gaussianity of W .
Choosing the optimal value λ =

√
2 loge |U|/σ to balance the summands, we have

1 ≤ σ
√
2 loge |U| . (105)

Since “Θ and M−1 are non-decreasing (as established in the proof of Theorem 2), combining Equations (103) to (105) proves
(102) as desired.

Next, we prove Proposition 8.

Proof of Proposition 8. Fix an absolutely continuous Markov kernel K : X ×FY → [0, 1]. By definition of Doeblin curve, we
want to show that for any Markov kernel W ∈ G (i.e., satisfying the assumptions of Proposition 8) such that ρ(W ) ≤ t, we
have

ρ(WK) ≤ t “Θ

(
2γM−1

(
p

t
+

32σ

t

∫ |||U|||∞

0

√
loge N(ϵ,U , dU ) dϵ

))
. (106)

By following the proof of the upper bound in Theorem 2 up to (92), step (c), we have

ρ(WK) ≤ t “Θ

(
2γM−1

(
|||W |||AE

t

))
. (107)

Next, we upper-bound |||W |||AE. For notational convenience, let Zu = M(∥Xu∥) for each u ∈ U . Observe that

sup
u∈U

Zu ≤ sup
u∈U

E[Zu] + sup
u∈U

{Zu − E[Zu]}
(a)
= |||W |||UA + sup

u∈U
{Zu − E[Zu]}

(b)

≤ p+ sup
u∈U

{Zu − E[Zu]} , (108)

where (a) holds by definition of uniform average power (12) and (b) holds because any kernel W ∈ G satisfies |||W |||UA ≤ p.
Hence,

|||W |||AE
(a)
= E

[
sup
u∈U

Zu

]
(b)

≤ p+ E
[
sup
u∈U

{Zu − E[Zu]}
]

(c)
= p+ E

[
sup
u∈U

{Zu − E[Zu]} − (Zv∗ − E[Zv∗ ])

]
≤ p+ E

[
sup

u,v∈U
{(Zu − E[Zu])− (Zv − E[Zv])}

]
(d)

≤ p+ 32σ

∫ |||U|||∞

0

√
loge N(ϵ,U , dU ) dϵ , (109)

where all the expectations are taken with respect to the maximal coupling {Xu}u∈U ∼ P as defined in (34), (a) holds by
definition of average extremal power (13), (b) holds by (108), (c) holds for any fixed v∗ ∈ U (i.e., v∗ is chosen independently
of {Zu}u∈U ), and (d) holds by Dudley’s entropy integral bound [72, Theorem 5.22]. Since “Θ and M−1 are non-decreasing (as
established in the proof of Theorem 2), combining (107) and (109) proves (106) as desired.

Lastly, we prove Proposition 9.

Proof of Proposition 9. Fix an absolutely continuous Markov kernel K : X × FY → [0, 1]. Fix t ∈ (0, 1]. By following the
proof of the lower bound in Theorem 2, we obtain that the Markov kernel W ∗ : U × FX → [0, 1] from U ≜ B(0,M−1(p/t))
to X given by W ∗(A | u) ≜ (1− t) δ0(A) + t δu(A) for all u ∈ U and A ∈ FX satisfies ρ(W ∗) = t, |||W ∗|||AE = p, and
ρ(W ∗K) = t θ(0,M−1(p/t)). By the discussion immediately following Definition 1, we have |||W ∗|||UA ≤ |||W ∗|||AE = p.
Hence, FUA

K (t; p) = sup{ρ(WK) : ρ(W ) ≤ t, |||W |||UA ≤ p} ≥ ρ(W ∗K) = t θ
(
0,M−1

(
p
t

))
as desired.

V. PROOFS OF MAIN RESULTS ON APPLICATIONS

In this section, we prove the main results presented in Section III, pertaining to applications of Doeblin curves.

A. Proofs for Generalization Error

First, we prove Lemma 2.

Proof of Lemma 2. For each t ∈ [T ], define the following random variables representing intermediate computations within the
update rule:

Ut ≜ Wt−1 −
ηt
|Bt|

∑
j∈Bt

∇g(Wt−1, Zj) , Vt ≜ Ut +mtNt , Wt ≜ proj
W

(Vt) .



28

Conditioned on the event that i ∈ Bt (i.e., Zi is used in the tth iteration), the following Markov chain holds, because Zi will
not be used in any future iteration (cf. [41]):

Zi → Ut → Vt → Wt → Ut+1 → Vt+1 → Wt+1 → · · · → UT−1 → VT−1 → WT−1 → UT → VT → WT .

It follows that

ITV(WT ;Zi)
(a)

≤ ITV(VT ;Zi)
(b)
= ∥PVT ,Zi

− PVT
⊗ PZi

∥TV
(c)
= E

z∼PZi

[∥∥PVT |Zi=z − PVT

∥∥
TV

]
(d)
= E

z∼PZi

[∥∥PUT |Zi=z ∗ Normal
(
0,m2

T I
)
− PUT

∗ Normal
(
0,m2

T I
)∥∥

TV

]
, (110)

where (a) holds by the data processing inequality for f -information [46, Theorem 7.16], (b) holds by definition of TV-information
(17), (c) holds because PVT ,Zi

= PZi
PVT |Zi

by the chain rule of probability, and (d) holds by definition of VT . Next, observe
that for any z ∈ Z , the power of the distribution PUT |Zi=z is bounded as

E
[
∥UT ∥22

∣∣∣ Zi = z
]
(a)
= E

[∥∥∥WT−1 −
ηT
|BT |

∑
j∈BT

∇g(WT−1, Zj)
∥∥∥2
2

∣∣∣∣ Zi = z

]
(b)

≤ 2E
[
∥WT−1∥22

∣∣∣ Zi = z
]
+ 2E

[∥∥∥ ηT
|BT |

∑
j∈BT

∇g(WT−1, Zj)
∥∥∥2
2

∣∣∣∣ Zi = z

]
(c)

≤ 2E
[
∥WT−1∥22

∣∣∣ Zi = z
]
+ 2E

[( ηT
|BT |

∑
j∈BT

∥∇g(WT−1, Zj)∥2
)2 ∣∣∣∣ Zi = z

]
(d)

≤ 2E
[
∥WT−1∥22

∣∣∣ Zi = z
]
+ 2η2TL

2
(e)

≤ m2
T pT , (111)

where (a) holds by definition of UT , (b) holds by the identity

∥x+ y∥22 ≤ ∥x+ y∥22 + ∥x− y∥22 = 2 ∥x∥22 + 2 ∥y∥22
and linearity of expectation, (c) holds by the triangle inequality, (d) holds by the bound on the loss gradient (15), and (e) holds
by definition of pT (19). Similarly, the power of the distribution PUT

is bounded as

E
[
∥UT ∥22

]
(a)
= E

z∼PZi

[
E
[
∥UT ∥22

∣∣∣ Zi = z
]] (b)

≤ E
z∼PZi

[
m2

T pT
]
= m2

T pT ,

where (a) holds by the tower rule of expectation and (b) holds by (111). Continuing from (110), we have

ITV(WT ;Zi)
(a)

≤ E
z∼PZi

[
FUA
Φ

(∥∥PUT |Zi=z − PUT

∥∥
TV

; pT
)] (b)

≤ E
z∼PZi

[
“FUA
Φ

(∥∥PUT |Zi=z − PUT

∥∥
TV

; pT
)]

(c)

≤ “FUA
Φ

(
E

z∼PZi

[∥∥PUT |Zi=z − PUT

∥∥
TV

]
; pT

)
(d)
= “FUA

Φ

(
∥PUT ,Zi

− PUT
⊗ PZi

∥TV ; pT

)
(e)
= “FUA

Φ

(
ITV(UT ;Zi); pT

) (f)

≤ “FUA
Φ

(
ITV(WT−1;Zi); pT

)
, (112)

where (a) holds by Proposition 6; (b) holds because “FUA
Φ is the upper concave envelope, and hence an upper bound, of FUA

Φ ; (c)
holds by Jensen’s inequality; (d) holds by the chain rule of probability; (e) holds by definition of TV-information (17); and (f)
holds by the data processing inequality, and because “FUA

Φ is non-decreasing by Lemma 9, Part 2.
Finally, by recursively applying the arguments in (110) and (112) above, we obtain

ITV(WT ;Zi) ≤ “FUA
Φ

(
· · · “FUA

Φ

(
“FUA
Φ

(
ITV(Wt;Zi); pt+1

)
; pt+2

)
· · · ; pT

)
as desired, where the direction of the bound holds at each recursive step because each layer of “FUA

Φ is non-decreasing by
Lemma 9, Part 2.

Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Using the high-level argument of [41], we first bound the expected generalization error in terms of the
TV-information between model parameters and data samples. We have

|E[Gµ(WT )−GS(WT )]|
(a)

≤ A

n

n∑
i=1

ITV(WT ;Zi)
(b)
=

A

n

T∑
t=1

∑
i∈Bt

ITV(WT ;Zi) +
A

n

∑
i/∈∪T

t=1Bt

ITV(WT ;Zi)
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(c)
=

A

n

T∑
t=1

∑
i∈Bt

ITV(WT ;Zi)
(d)

≤ A

n

T∑
t=1

∑
i∈Bt

“FUA
Φ

(
· · · “FUA

Φ

(
ITV(Wt;Zi)

1
; pt+1

)
· · · ; pT

)
, (113)

where (a) holds by Lemma 1; (b) holds by grouping the data indices i ∈ [n] by the iteration t ∈ [T ] in which they are used
(if any), since the mini-batches B1, . . . ,BT are disjoint; (c) holds because data samples which are unused during training are
statistically independent of the final parameters and thus have zero TV-information; and (d) holds by Lemma 2.

Next, we upper-bound 1 . Define the following random variables representing intermediate steps in the update rule:

Ut ≜ Wt−1 −
ηt
|Bt|

∑
j∈Bt

∇g(Wt−1, Zj) , Vt ≜ Ut +mtNt , Wt ≜ proj
W

(Vt) ,

which form the Markov chain Zi → Ut → Vt → Wt. Following the argument in [41, Lemma 9], we have

1
(a)

≤ ITV(Vt;Zi)
(b)
= ∥PVt,Zi − PVt ⊗ PZi∥TV

(c)
= E

z∼µ

[∥∥PVt|Zi=z − PVt

∥∥
TV

] (d)
= E

z∼µ

[∥∥PUt+mtNt|Zi=z − PUt+mtNt

∥∥
TV

2

]
, (114)

where (a) holds by the data processing inequality for f -information [46, Theorem 7.16], (b) holds by definition of TV-information
(17), (c) holds because PVt,Zi

= PZi
PVt|Zi

by the chain rule of probability and PZi
= µ since the data samples are drawn

i.i.d., and (d) holds by definition of Vt.
Next, we upper-bound 2 for any fixed z ∈ Z . For any two distributions P and Q, define the optimal transport cost

W(P,Q;mt) ≜
1

2mt
inf

PX,Y :
PX=P, PY =Q

E
(X,Y )∼PX,Y

[∥X − Y ∥2] , (115)

where the infimum is taken over all couplings PX,Y of the random variables X and Y with respective marginals PX = P and
PY = Q. By [41, Lemma 6], it holds that

2 ≤ W
(
PUt|Zi=z, PUt

;mt

)
. (116)

Define two random variables

U∗ ≜ Wt−1 −
ηt
|Bt|

(∑
j∈Bt:
j ̸=i

∇g(Wt−1, Zj) +∇g(Wt−1, z)

)
, U† ≜ Wt−1 −

ηt
|Bt|

∑
j∈Bt

∇g(Wt−1, Zj) . (117)

These random variables have marginals U∗ ∼ PUt|Zi=z and U† ∼ PUt
, by definition of Ut. Hence, continuing from (116),

2
(a)

≤ 1

2mt
E
[∥∥U∗ − U†∥∥

2

] (b)
=

ηt
2mt |Bt|

E
[
∥∇g(Wt−1, Zi)−∇g(Wt−1, z)∥2

]
, (118)

where (a) holds by upper-bounding the infimum in (115) with the specific instance (117), and (b) holds by definition of U∗ and
U†.

Next, observe that Wt−1 and Zi are statistically independent, because i ∈ Bt by (113) and thus Zi is not used in any iteration
except t. Combining (114) and (118), we have

1 ≤ E
z∼µ

[
ηt

2mt |Bt|
E

(Wt−1,Zi)
∼PWt−1

⊗µ

[
∥∇g(Wt−1, Zi)−∇g(Wt−1, z)∥2

]]
(a)
=

ηt
2mt |Bt|

E
(Wt−1,Zi,z)

∼PWt−1
⊗µ⊗µ

[
∥∇g(Wt−1, Zi)−∇g(Wt−1, z)∥2

]
(b)

≤ ηt
2mt |Bt|

(
E

(Wt−1,Zi)
∼PWt−1

⊗µ

[∥∥∥∇g(Wt−1, Zi)− E
(Wt−1,Z)

∼PWt−1
⊗µ

[∇g(Wt−1, Z)]
∥∥∥
2

]
+ E
(Wt−1,z)

∼PWt−1
⊗µ

[∥∥∥∇g(Wt−1, z)− E
(Wt−1,Z)

∼PWt−1
⊗µ

[∇g(Wt−1, Z)]
∥∥∥
2

])
(c)

≤ ηtσt−1

mt |Bt|
, (119)

where (a) holds by Tonelli’s theorem and linearity of expectation, (b) holds by the triangle inequality and linearity of expectation,
and (c) holds by definition of σt−1. Combining (113) and (119), we have

|E[Gµ(WT )−GS(WT )]|≤
A

n

T∑
t=1

∑
i∈Bt

“FUA
Φ

(
· · · “FUA

Φ

( ηtσt−1

mt |Bt|
; pt+1

)
· · ·; pT

)
=A

T∑
t=1

|Bt|
n

“FUA
Φ

(
· · · “FUA

Φ

( ηtσt−1

mt |Bt|
; pt+1

)
· · ·; pT

)
as desired.
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B. Proofs for Reliable Computation

First, we prove Lemma 3.

Proof of Lemma 3. Let Ψ : Uq × F⊗q
V → [0, 1] denote the Markov kernel from Uq to Vq such that for all u(1:q) ∈ Uq,

Ψ(· | u(1:q)) is the maximal coupling of Φ(· | u(1)), . . . ,Φ(· | u(q)) defined in (34). Given πU , construct the coupling
πV : F⊗q

V → [0, 1] as

∀B ∈ F⊗q
V , πV (B) ≜

∫
Uq

Ψ
(
B
∣∣∣ u(1:q)

)
dπU

(
u(1:q)

)
(120)

= E
u(1:q)∼πU

[
Ψ
(
B
∣∣∣ u(1:q)

)]
. (121)

This defines a valid coupling of P (1)
V , . . . , P

(q)
V , because for any ℓ ∈ [q] and any A ∈ FV ,

πV

(
Vℓ−1 ×A× Vq−ℓ

) (a)
=

∫
Uq

Ψ
(
Vℓ−1 ×A× Vq−ℓ

∣∣∣ u(1:q)
)
dπU

(
u(1:q)

)
(b)
=

∫
Uq

Φ
(
A
∣∣∣ u(ℓ)

)
dπU

(
u(1:q)

)
(c)
=

∫
U
Φ
(
A
∣∣∣ u(ℓ)

)
dP

(ℓ)
U

(
u(ℓ)

)
(d)
= P

(ℓ)
V (A) ,

where (a) holds by the definition of πV (120), (b) holds because Ψ(· | u(1:q)) is a coupling of Φ(· | u(1)), . . . ,Φ(· | u(q)), (c)
holds because πU is a coupling of P (1)

U , . . . , P
(q)
U , and (d) holds by (20). Also, πV satisfies

P
V (1:q)∼πV

(
¬
(
V (1) = · · · = V (q)

))
(a)
= E

U(1:q)∼πU

[
P

V (1:q)∼Ψ(·|U(1:q))

(
¬
(
V (1) = · · · = V (q)

))]
(b)
= E

U(1:q)∼πU

[
ρ
([

Φ(· | U (1)), . . . ,Φ(· | U (q))
])]

= E
U(1:q)∼πU

[
ρ
([

δU(1) , . . . , δU(q)

]
Φ
)] (c)

≤ E
U(1:q)∼πU

[
FUA
Φ

(
ρ
([

δU(1) , . . . , δU(q)

])
; p
)]

= E
U(1:q)∼πU

[
FUA
Φ

(
1

{
¬
(
U (1) = · · · = U (q)

)}
; p
)] (d)

≤ E
U(1:q)∼πU

[
“FUA
Φ

(
1

{
¬
(
U (1) = · · · = U (q)

)}
; p
)]

(e)

≤ “FUA
Φ

(
E

U(1:q)∼πU

[
1

{
¬
(
U (1) = · · · = U (q)

)}]
; p

)
(f)
= “FUA

Φ

(
P

U(1:q)∼πU

(
¬
(
U (1) = · · · = U (q)

))
; p

)
as desired, where (a) holds by (121), (b) holds by the maximal coupling characterization of Doeblin coefficients (Proposition 1),
(c) holds by definition of Doeblin curve (9) because the kernel of Dirac measures has uniform average power∣∣∣∣∣∣[δU(1) , . . . , δU(q)

]∣∣∣∣∣∣
UA

= max
ℓ∈[q]

∫
U
M(∥u∥) dδU(ℓ)(u) = max

ℓ∈[q]
M
(
∥U (ℓ)∥

)
≤ max

u∈U
M(∥u∥) = p ,

(d) holds because “FUA
Φ is the upper concave envelope (and hence an upper bound) of FUA

Φ , (e) holds by Jensen’s inequality, and
(f) holds because the probability of an event is the expectation of its indicator.

Now, we are ready to prove Theorem 4.

Proof of Theorem 4. Define a function f : [0, 1] → [0, 1] as f(t) ≜ “FUA
Φ (min{1, bt}; p). As a prelude to our main argument,

we establish the following useful result concerning fixed point convergence of f . Observe that [0, 1] is a compact and totally
ordered set so that any decreasing sequence {ts}s∈N ⊂ [0, 1] has infs∈N ts ∈ [0, 1]. Furthermore, “FUA

Φ (· ; p) is non-decreasing
and continuous on [0, 1] by Lemma 9, Parts 2 and 3. Hence, f is non-decreasing and continuous on [0, 1] (being the composition
of two non-decreasing and continuous functions), and so f(infs∈N ts) = infs∈N f(ts). Also, 1 ≥ f(1) by the range of f . Hence,
applying Kleene’s fixed point theorem [73] on ([0, 1],≥),

lim
s→∞

f (s)(1)
(a)
= inf

s∈N
f (s)(1) = max {t ∈ [0, 1] : f(t) = t} ,

where f (s) denotes the s-fold composition of f , and (a) holds because f (s)(1) is monotonically non-increasing in s.
With this groundwork established, we commence our main argument. Fix ϵ > 0, and fix n sufficiently large such that for all

s ≥ ⌈logb(n)⌉,
f (s)(1) ≤ max {t ∈ [0, 1] : f(t) = t}+ ϵ . (122)

Consider any n-input circuit of noisy gates where each gate has at most b inputs. Define the height of an input vertex Xi as
the length of the shortest directed path from Xi to the output vertex Ym, where the existence of such a path is guaranteed for
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each Xi by the formal model defined in Section III-B. Since the in-degree of each gate vertex is at most b, there must exist at
least one input vertex whose height is ⌈logb(n)⌉ or greater.15 Without loss of generality, let X1 be such an input vertex.

Fix any values x2, . . . , xn ∈ Q for the remaining inputs. We define some notation used throughout the remainder of our proof.
To refer to input and gate vertices in a unified manner, let Wk ≜ X−k for all k ∈ {−1, . . . ,−n}, let Wk ≜ Yk for all k ∈ [m],
and let Oj ≜ {−i : i ∈ Nj} ∪Mj for all j ∈ [m]. Given a subset of indices S ⊆ {−1, . . . ,−n} ∪ [m], let wS ≜ {wk}k∈S
refer to the corresponding collection of subscripted variables. For any W , let P (ℓ)

W be the marginal distribution of W induced
by the circuit when setting X1 = ℓ and Xi = xi for all i > 1. Lastly, let a ∧ b ≜ min{a, b} for any scalars a, b ∈ R.

Recall from Section III-B that we index the gate vertices in topological order, such that Mj ⊆ [j − 1] for each j ∈ [m].
We follow the strategy in [25, Section 5.3]. Consider the following algorithm for constructing a coupling of the marginal
distributions at each vertex in the circuit:

1) For each i ∈ [n], let πW−i
be the maximal coupling of P (1)

Xi
, . . . , P

(q)
Xi

.
2) For each j ∈ [m]:

a) Let πZj
be the pushforward measure of

⊗
k∈Oj

πWk
through the function Γ⊗q

j : (Rd)bj×q → Qq which accepts q copies

of input variables and independently applies Γj on each copy to produce q outputs, i.e., Z(1:q)
j = Γ⊗q

j

(
W

(1:q)
Oj

)
, where

for each ℓ ∈ [q],
Z

(ℓ)
j = Γj

(
W

(ℓ)
Oj

)
. (123)

Namely, πZj is the coupling of P (1)
Zj

, . . . , P
(q)
Zj

induced by independently sampling W
(1:q)
k ∼ πWk

for each k ∈ Oj and
then computing (123) for each ℓ ∈ [q].

b) Construct a coupling πWj
of P

(1)
Yj

, . . . , P
(q)
Yj

by applying Lemma 3 with input space U ≜ Q, output space V ≜ Rd,
input coupling πU ≜ πZj , output coupling πV ≜ πWj , and Φ being the circuit noise mechanism.

We analyze the coupling πWm constructed by the algorithm above to upper-bound ρ
(
[P

(1)
Ym

, . . . , P
(q)
Ym

]
)

using the maximal
coupling characterization of Doeblin coefficients (Proposition 1). For notational convenience, for each k ∈ {−1, . . . ,−n} ∪ [m],
let

tWk
≜ P

W
(1:q)
k ∼πWk

(
¬
(
W

(1)
k = · · · = W

(q)
k

))
. (124)

The value of tW−i for each input i ∈ [n] is

tW−1
= 1 , (125)

∀i > 1, tW−i
= 0 , (126)

where (125) holds because πW−1 is a coupling of distinct Dirac measures P
(ℓ)
X1

= δξℓ for ℓ ∈ [q], and (126) holds because
πW−i

for i > 1 is a coupling of identical Dirac measures P
(1)
Xi

= · · · = P
(q)
Xi

= δxi
. For each gate j ∈ [m], tWj

satisfies the
recurrence (cf. [25, Eq. 149])

tWj

(a)

≤ “FUA
Φ

(
P

Z
(1:q)
j ∼πZj

(
¬
(
Z

(1)
j = · · · = Z

(q)
j

))
; p

)
(b)

≤ “FUA
Φ

(
P

W
(1:q)
Oj

∼
⊗

k∈Oj

πWk

(
¬
(
W

(1)
Oj

= · · · = W
(q)
Oj

))
; p

)
(c)

≤ “FUA
Φ

(
1 ∧

∑
k∈Oj

P
W

(1:q)
k ∼πWk

(
¬
(
W

(1)
k = · · · = W

(q)
k

))
; p

)
(d)
= “FUA

Φ

(
1 ∧

∑
k∈Oj

tWk
; p

)
(e)

≤ “FUA
Φ

(
1 ∧ bmax

k∈Oj

tWk
; p

)
(f)
= f

(
max
k∈Oj

tWk

)
, (127)

where (a) holds by (21); (b) holds by (123) because the gate operation is a deterministic function of its inputs, and because
“FUA
Φ is non-decreasing by Lemma 9, Part 2; (c) holds by the union bound; (d) holds by (124); (e) holds because |Oj | ≤ b since

gates have at most b inputs; and (f) holds by definition of f .
For convenience, let D ⊆ [m] denote the set of gates which are descendants of X1, i.e., there exists a directed path from X1

to any gate j ∈ D. Next, we will construct a directed path from X1 to Ym by searching backwards starting at Ym, following
the algorithm below (cf. [25, Section 5.3]):

15To see this, consider all circuits where the in-degree of each gate is at most b and the height of each input vertex is at most hmax ≜ ⌈logb(n)− 1⌉, and
let C be such a circuit with the greatest number of input vertices. We may assume that no vertex in C has multiple outgoing edges, since we may equivalently
consider the tree generated by running breadth-first traversal starting from Ym and following edges in reverse direction, which preserves the heights of all
input vertices. Furthermore, each gate vertex in C must have exactly b incoming edges; otherwise, additional input vertices may be added to the gate and
hence to C. Lastly, each vertex in C with height less than hmax must be a gate, since if such a vertex was an input, replacing it with a gate taking b new
input vertices would add b− 1 input vertices to C overall. Hence, C is a perfect b-ary anti-arborescence where all input vertices have height hmax, and so C
has bhmax < blogb(n) = n inputs.
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1) Let j ∈ [m] denote the current gate vertex. Start at j ≜ m.
2) If X1 is an incoming neighbor of gate j (i.e., 1 ∈ Nj), move to X1 and terminate.
3) Otherwise, find and move to any incoming gate neighbor j′ ∈ Mj such that

j′ ∈
(
arg max

j′∈Mj

tWj′

)
∩ D . (128)

Set j ≜ j′ and return to Step 2.
This algorithm is guaranteed to terminate at X1, because the circuit has no directed cycles and the invariant j ∈ D holds
throughout execution. (We start at the output gate m ∈ D in Step 1, and move to some gate j′ ∈ D on each iteration of
Step 3.) To establish well-definedness, it remains to show that the set in (128) is always non-empty if the algorithm did not
terminate in Step 2 (i.e., 1 /∈ Nj). Since j ∈ D and 1 /∈ Nj , we must have Mj ̸= ∅. By (126) and (127) and the fact that
f(0) = “FUA

Φ (0; p) = FUA
Φ (0; p) = 0 (where the second equality holds by Lemma 9, Part 1), it follows that any gate j′ /∈ D has

tWj′ = 0. Hence, (argmaxj′∈Mj
tWj′ ) ̸⊆ Dc, and so the set in (128) is non-empty, as desired.

Let j1 < · · · < js = m be the sequence of gates from X1 to Ym constructed above, where s is the path length. We have
maxk∈Oj1

tWk
= 1, because 1 ∈ Nj1 and tW−1

= 1 by (125). For any r ∈ {2, . . . , s}, we have

max
k∈Ojr

tWk

(a)
= max

j′∈Mjr

tWj′
(b)
= tWjr−1

,

where (a) holds because 1 /∈ Njr and so tW−i
= 0 for all i ∈ Njr by (126), and (b) holds by Step 3 of the algorithm (128).

Therefore,

ρ
([
P

(1)
Ym

, . . . , P
(q)
Ym

]) (a)
= 1− sup

P:Y (ℓ)
m ∼P

(ℓ)
Ym

P
(
Y (1)
m = · · ·=Y (q)

m

) (b)

≤ 1− P
Y

(1:q)
m ∼πWm

(
Y (1)
m = · · ·=Y (q)

m

)
(c)
= tWm

(d)

≤ f
(
tWjs−1

)
≤ · · ·

(e)

≤ f (s)(1) ,

where (a) holds by Proposition 1, where the supremum is taken over all couplings of P (1)
Ym

, . . . , P
(q)
Ym

; (b) holds by lower-bounding
the supremum with a specific coupling πWm ; (c) holds by definition of tWk

(124); and (d) and (e) hold by repeatedly applying
the recurrence (127) along with the above characterizations of maxk∈Ojr

. Since the height of X1 is ⌈logb(n)⌉ or greater,
s ≥ ⌈logb(n)⌉. By (122), we have ρ

(
[P

(1)
Ym

, . . . , P
(q)
Ym

]
)
≤ max{t ∈ [0, 1] : f(t) = t}+ ϵ as desired.

We remark on an alternative way to guarantee that starting from Ym and repeatedly moving to the gate maximizing tWj′

leads to a path terminating at X1. For each j /∈ D, let Nj represent the randomness in the noise mechanism which produces Yj

from Zj [74, Lemma 4.22]. Then,

ρ
([
P

(1)
Ym

, . . . , P
(q)
Ym

]) (a)
= ρ

(
E

φDc
iid∼Φ

[[
P

(1)
Ym|NDc=φDc

, . . . , P
(q)
Ym|NDc=φDc

]]) (b)

≤ E
φDc

iid∼Φ

[
ρ
([

P
(1)
Ym|NDc=φDc

, . . . , P
(q)
Ym|NDc=φDc

])]
where (a) holds by the law of total probability, and (b) holds by convexity of complementary Doeblin coefficients [19, Theorem
1, Part 3] and Jensen’s inequality. The marginal distributions in (b) correspond to analyzing the circuit where all gate vertices
which are not descendants of X1 are deterministic (after conditioning on NDc ), and so may be removed from the circuit before
proceeding with the coupling constructions. Since all directed paths in the circuit now start with X1, the search algorithm is
guaranteed to build a path back to X1.

C. Proofs for Differential Privacy

In this section, we prove Theorems 5 and 6.

Proof of Theorem 5. Fix an absolutely continuous Markov kernel K : X × FY → [0, 1] with common dominating measure
µ : FY → R+. Fix n ≥ 2 and ϵ = (ϵ1, . . . , ϵn) ∈ Rn

+ with ϵ1 = 0 and ϵi ≤ ϵj for all i < j.
Part 1: Fix a Markov kernel W : U × FX → [0, 1] from a Polish space (U ,FU ). We have

ρϵ(WK,n)
(a)
= 1− inf

u1,...,un∈U
inf

n-partition of Y
A1,...,An

n∑
i=1

eϵiWK(Ai | ui)
(b)
= 1− inf

u1,...,un∈U

∫
Y

(
min
i∈[n]

eϵi
dWK

dµ
(· | ui)

)
dµ

1

, (129)

where (a) holds by definition of ρϵ (26) and (b) holds by Proposition 2.
Next, we lower-bound 1 . Let ν : FX → R+ given by ν(·) ≜

∧
i∈[n] e

ϵiW (· | ui) be the weighted greatest common
component of W restricted to {u1, . . . , un}. Let τ0 ≜ ν(X ) (for convenience, we elide the dependence of ν and τ0 on
u1, . . . , un when denoting them). Notice that

τ0
(a)

≤ min
i∈[n]

eϵiW (X | ui)
(b)
= min

i∈[n]
eϵi

(c)
= 1 , (130)
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where (a) holds by definition of greatest common component (3), (b) holds because W is a Markov kernel, and (c) holds
because ϵ1 = 0 and ϵi ≥ ϵ1 for all i > 1. We consider two cases based on the value of τ0.

Case 1: τ0 = 1. Proceeding from (129), we have

1
(a)
=

∫
Y

(
d

dµ

∧
i∈[n]

eϵiWK(· | ui)

)
dµ

(b)
=
∧
i∈[n]

eϵiWK(Y | ui) , (131)

where (a) holds by Lemma 4 and because the lattice infimum of a finite family is the minimum, and (b) holds by the
Radon-Nikodym theorem. For notational convenience, let wi : FX → [0, 1] be the probability measure wi(·) ≜ W (· | ui).
Observe that for any i ∈ [n],

eϵiWK(· | ui) = eϵiwiK(·) = (eϵiwi − ν)K(·) + νK(·) ,

and so by Lemma 8, ∧
i∈[n]

eϵiWK(· | ui) =
∧
i∈[n]

(eϵiwi − ν)K(·) + νK(·) . (132)

Furthermore, it holds that ν = w1. To see this, first observe that ν ≤ w1, because

∀A ∈ FX , ν(A)
(a)

≤ eϵ1w1(A)
(b)
= w1(A) ,

where (a) holds by definition of greatest common component and (b) holds because ϵ1 = 0. Next, suppose for the sake of
contradiction that ν(A) ̸= w1(A) for some A ∈ FX . Then,

1
(a)
= ν(X )

(b)
= ν(A) + ν(Ac)

(c)
< w1(A) + ν(Ac)

(d)

≤ w1(A) + w1(A
c)

(e)
= w1(X )

(f)
= 1

and we obtain the contradiction 1 < 1, where (a) holds by the assumption that τ0 = 1, (b) holds by additivity of measures, (c)
holds by combining the supposition ν(A) ̸= w1(A) with the fact that ν ≤ w1, (d) holds because ν ≤ w1, (e) holds by additivity
of measures, and (f) holds because w1 is a probability measure. Finally, combining (132) with the fact that ν = w1, we have∧

i∈[n]

eϵiWK(· | ui) = νK(·) , (133)

and combining (131) and (133), we have

1 = νK(Y)
(a)
= (1− τ0) τϵ(K,n) + νK(Y) , (134)

where (a) holds by the assumption that τ0 = 1.
Case 2: τ0 < 1. Define a Markov kernel V : {u1, . . . , un} × FX → [0, 1] given by

∀i ∈ [n], V (· | ui) ≜
eϵiW (· | ui)− ν(·)

eϵi − τ0
. (135)

This is a valid Markov kernel because for any i ∈ [n], V (X | ui) =
eϵiW (X|ui)−ν(X )

eϵi−τ0
= eϵi−τ0

eϵi−τ0
= 1. By rearranging (135), W

may be written in terms of V and ν as eϵiW (· | ui) = (eϵi − τ0)V (· | ui) + ν(·), and therefore the composition WK may be
written as

eϵiWK(· | ui) = (eϵi − τ0)V K(· | ui) + νK(·) . (136)

Proceeding from (129), we have

1
(a)
=

∫
Y
min
i∈[n]

{
(eϵi − τ0)

dV K

dµ
(· | ui) +

dνK

dµ

}
dµ

(b)
=

∫
Y

(
min
i∈[n]

(eϵi − τ0)
dV K

dµ
(· | ui)

)
dµ

2

+

∫
Y

dνK

dµ
dµ , (137)

where (a) holds by differentiating both sides of (136) and (b) holds by linearity of integration. Next, we lower-bound 2 . We
have

2
(a)
= inf

n-partition of Y
A1,...,An

n∑
i=1

(eϵi − τ0)V K(Ai | ui)
(b)
= inf

n-partition of Y
A1,...,An

n∑
i=1

(eϵi − τ0)

∫
X
K(Ai | x)V (dx | ui)

(c)

≥ inf
n-partition of Y

A1,...,An

n∑
i=1

(eϵi − τ0) inf
xi∈X

K(Ai | xi)
(d)
= inf

x1,...,xn∈X
inf

n-partition of Y
A1,...,An

n∑
i=1

(eϵi − τ0)K(Ai | xi)

(e)
= (1− τ0) inf

x1,...,xn∈X
inf

n-partition of Y
A1,...,An

n∑
i=1

eϵi − τ0
1− τ0

K(Ai | xi)
(f)

≥ (1− τ0) inf
x1,...,xn∈X

inf
n-partition of Y

A1,...,An

n∑
i=1

eϵiK(Ai | xi)
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(g)
= (1− τ0) τϵ(K,n) , (138)

where (a) holds by Proposition 2, (b) holds by definition of kernel composition (8), (c) holds by replacing a weighted average
with an infimum, (d) holds by interchanging the order of infimums, (e) holds because 1− τ0 > 0, (f) holds because ϵi ≥ 0 and
so eϵi−τ0

1−τ0
≥ eϵi−eϵiτ0

1−τ0
= eϵi for each i ∈ [n], and (g) holds by definition of τϵ (25). Combining (137) and (138), we have

1 ≥ (1− τ0) τϵ(K,n) +

∫
Y

dνK

dµ
dµ

(a)
= (1− τ0) τϵ(K,n) + νK(Y) , (139)

where (a) holds by the Radon-Nikodym theorem.
Proceeding from both cases: Now, by (134) and (139), we have the same lower bound for 1 in both cases. For notational

convenience, let ν̂ : FX → R+ be the measure given by

ν̂(·) ≜

{
ν(·)
τ0

, if τ0 > 0 ,

0 , if τ0 = 0 .

Proceeding onwards,

1 ≥ (1− τ0) τϵ(K,n) + τ0 ν̂K(Y)
(a)
= (1− τ0) τϵ(K,n) + τ0 , (140)

where (a) holds in the case τ0 > 0 because ν̂ is a probability measure on FX in this case and so ν̂K is a probability measure
on FY . Combining (129) and (140), we have

ρϵ(WK,n) ≤ 1− inf
u1,...,un∈U

{(1− τ0) τϵ(K,n) + τ0} =

(
1− inf

u1,...,un∈U
τ0

3

)
(1− τϵ(K,n)) . (141)

Next, we evaluate 3 . Given any u1, . . . , un ∈ U , let ξ : FX → R+ be the measure ξ(·) ≜
∑n

i=1 W (· | ui), where we elide
the dependence on u1, . . . , un in the notation ξ for convenience. We have

3
(a)
= inf

u1,...,un∈U

∧
i∈[n]

eϵiW (X | ui)
(b)
= inf

u1,...,un∈U

∫
X

(
d

dξ

∧
i∈[n]

eϵiW (· | ui)

)
dξ

(c)
= inf

u1,...,un∈U

∫
X

(
min
i∈[n]

eϵi
dW

dξ
(· | ui)

)
dξ

(d)
= inf

u1,...,un∈U
inf

n-partition of X
A1,...,An

n∑
i=1

eϵiW (Ai | ui)
(e)
= τϵ(W,n) , (142)

where (a) holds by definition of τ0, (b) holds by the Radon-Nikodym theorem because
∧

i∈[n] e
ϵiW (· | ui) ≪ ξ, (c) holds by

Lemma 4 and because the lattice infimum of a finite family is the minimum, (d) holds by Proposition 2, and (e) holds by
definition of τϵ (25). Combining (141) and (142), we have

ρϵ(WK,n) ≤ (1− τϵ(W,n)) (1− τϵ(K,n))
(a)
= ρϵ(W,n) ρϵ(K,n)

as desired, where (a) holds by definition of ρϵ (26).
Part 2: First, observe that

K is (ϵ, δ, n)-LDP
(a)⇐⇒ inf

x1,...,xn∈X
inf

n-partition of Y
A1,...,An

n∑
i=1

eϵiK(Ai | xi) ≥ 1− δ
(b)⇐⇒ τϵ(K,n) ≥ 1− δ

(c)⇐⇒ ρϵ(K,n) ≤ δ , (143)

where (a) holds by definition of (ϵ, δ, n)-LDP (24), (b) holds by definition of τϵ (25), and (c) holds by subtracting both sides
of the inequality from 1. We note that (143) generalizes [42, Theorem 1].

With (143) in mind, observe also that

ρϵ(K,n) ≤ δ =⇒ ∀W, ρϵ(WK,n) ≤ δρϵ(W,n) , (144)

because for any Markov kernel W : U × FX → [0, 1] from any Polish space (U ,FU ), we have

ρϵ(WK,n)
(a)

≤ ρϵ(W,n) ρϵ(K,n)
(b)

≤ δρϵ(W,n) ,

where (a) follows by Part 1 and (b) follows by the antecedent in (144). Next, we will show that the converse(
∀W, ρϵ(WK,n) ≤ δρϵ(W,n)

)
=⇒ ρϵ(K,n) ≤ δ (145)
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also holds. Note that if τϵ(K,n) = 1, the consequent in (145) is trivially satisfied, because ρϵ(K,n) = 1− τϵ(K,n) = 0 ≤ δ.
Hence, we assume τϵ(K,n) < 1 for the remainder of this argument. By definition of τϵ as an infimum in (25), for any arbitrary
0 < γ < 1− τϵ(K,n), there exists x∗

1, . . . , x
∗
n ∈ X (possibly depending on γ) such that

inf
n-partition of Y

A1,...,An

n∑
i=1

eϵiK(Ai | x∗
i ) ≤ τϵ(K,n) + γ . (146)

Furthermore, there must be at least two distinct values within (x∗
1, . . . , x

∗
n), because if we suppose the contrary that x∗

1 = · · · =
x∗
n = x∗ for some x∗ ∈ X , we obtain the contradiction

inf
n-partition of Y

A1,...,An

n∑
i=1

eϵiK(Ai | x∗
i ) = inf

n-partition of Y
A1,...,An

n∑
i=1

eϵiK(Ai | x∗)
(a)
= eϵ1K(Y | x∗)

(b)
= 1 > τϵ(K,n) + γ ,

where (a) holds because ϵi ≥ ϵ1 for all i > 1, and (b) holds because ϵ1 = 0 and K is a Markov kernel. Let W ∗ : [n]×FX → [0, 1]
be a Markov kernel such that W ∗(· | i) ≜ δx∗

i
(·) for all i ∈ [n]. Then,

ρϵ(K,n)
(a)
= 1− τϵ(K,n)

(b)

≤ 1− inf
n-partition of Y

A1,...,An

n∑
i=1

eϵiK(Ai | x∗
i ) + γ

(c)
= 1− inf

n-partition of Y
A1,...,An

n∑
i=1

eϵiW ∗K(Ai | i) + γ

(d)

≤ 1− inf
u1,...,un∈[n]

inf
n-partition of Y

A1,...,An

n∑
i=1

eϵiW ∗K(Ai | ui) + γ
(e)
= ρϵ(W

∗K,n) + γ
(f)

≤ δ ρϵ(W
∗, n)

1
+ γ , (147)

where (a) holds by definition of ρϵ (26), (b) holds by (146), (c) holds by definition of W ∗ and because each {x∗
i } is measurable

(since X is Polish), (d) holds by lower-bounding the value of a particular instance with an infimum, (e) holds by definition of
ρϵ (26), and (f) holds by the antecedent in (145). Next, we evaluate 1 . Let s, t ∈ [n] be indices such that x∗

s ̸= x∗
t . We have

1
(a)
= 1− inf

u1,...,un∈U
inf

n-partition of X
A1,...,An

n∑
i=1

eϵiW ∗(Ai | ui)
(b)
= 1−

(
eϵ1W ∗(X − {x∗

s} | s) + eϵ2W ∗({x∗
s} | t)

)
(c)
= 1−

(
eϵ1δx∗

s
(X − {x∗

s}) + eϵ2δx∗
t
({x∗

s})
)

(d)
= 1 , (148)

where (a) holds by definition of ρϵ (26); the events X − {x∗
s} and {x∗

s} in (b) are measurable because X is Polish, and so
{x} is measurable for any x ∈ X ; (b) follows by replacing the infima with a specific instance, and equality holds because∑n

i=1 e
ϵiW ∗(Ai | ui) ≥ 0 for all u1, . . . , un and A1, . . . , An; (c) holds by definition of W ∗; and (d) holds by definition of

Dirac measure. Since γ > 0 was arbitrary, combining (147) and (148) shows that ρϵ(K,n) ≤ δ, thus proving (145).
Finally, combining Equations (143) to (145), we have

K is (ϵ, δ, n)-LDP ⇐⇒ ∀W, ρϵ(WK,n) ≤ δρϵ(W,n)

as desired.
Part 3: Fix a Markov kernel W : U × FX → [0, 1]. Following the argument from (129), we have

ρϵ(WK,n)
(a)
= 1− inf

u1,...,un∈U

∫
Y

(
min
i∈[n]

eϵi
dWK

dµ
(· | ui)

)
dµ

1

. (149)

Note that if infu1,...,un∈U 1 = 1, the result (28) trivially follows because

ρϵ(WK,n) = 0
(a)

≤ FUA
K (ρϵ(W,n); p) ,

where (a) holds by the range of FUA
K . Hence, assume infu1,...,un∈U 1 < 1 for the remainder of this argument. Next, we

lower-bound 1 . Let ν : FX → R+ given by ν(·) ≜
∧

i∈[n] e
ϵiW (· | ui) be the weighted greatest common component of W

restricted to {u1, . . . , un}. Let τ0 ≜ ν(X ) (as before, we elide the dependence of ν and τ0 on u1, . . . , un when denoting them).
Following the argument from (130), we have τ0 ≤ 1. We consider two cases based on the value of τ0.

Case 1: τ0 = 1. We have
1

(a)
= νK(Y)

(b)
= 1 , (150)

where (a) holds by following the arguments from (131) and (133), and (b) holds because ν is a probability measure on FX
(since ν(X ) = τ0 = 1) and so νK is a probability measure on FY .

Case 2: τ0 < 1. Define a Markov kernel V : {u1, . . . , un} × FX → [0, 1] given by

∀i ∈ [n], V (· | ui) ≜
eϵiW (· | ui)− ν(·)

eϵi − τ0
. (151)
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Following the argument from (137), we have

1 =

∫
Y

(
min
i∈[n]

(eϵi − τ0)
dV K

dµ
(· | ui)

)
dµ

2

+ νK(Y) . (152)

Next, we lower-bound 2 . We have

2
(a)

≥ (1− τ0)

∫
Y

(
min
i∈[n]

dV K

dµ
(· | ui)

)
dµ

(b)
= (1− τ0) inf

n-partition of Y
A1,...,An

n∑
i=1

V K(Ai | ui)
(c)

≥ (1− τ0) τ(V K) , (153)

where (a) holds because ϵi ≥ 0 for all i ∈ [n], (b) holds by Proposition 2, and (c) holds by Theorem 1. For notational
convenience, let ν̂ : FX → R+ be the measure given by

ν̂(·) ≜

{
ν(·)
τ0

, if τ0 > 0 ,

0 , if τ0 = 0 .

Combining (152) and (153),

1 ≥ (1− τ0) τ(V K) + τ0 ν̂K(Y)
(a)
= (1− τ0) τ(V K) + τ0 , (154)

where (a) holds in the case τ0 > 0 because ν̂ is a probability measure on FX in this case and so ν̂K is a probability measure
on FY .

Proceeding from both cases: Now, by (150) and (154), we have lower bounds on 1 for any value of τ0. Proceeding from
(149), we have

ρϵ(WK,n)
(a)
= 1− inf

u1,...,un∈U :
τ0<1

1
(b)

≤ 1− inf
u1,...,un∈U :

τ0<1

{(1− τ0) τ(V K) + τ0}
(c)

≤ 1− inf
u1,...,un∈U

{(1− τ0) τ(V K) + τ0}

= sup
u1,...,un∈U

{(1− τ0) ρ(V K)}
(d)

≤ sup
u1,...,un∈U

{
(1− τ0) F

UA
K (ρ(V ); |||V |||UA)

} (e)

≤ sup
u1,...,un∈U

{
(1− τ0) F

UA
K (1; |||V |||UA)

}
, (155)

where (a) holds because the infimum infu1,...,un∈U 1 < 1 is not achieved by any (u1, . . . , un) for which τ0 = 1, by (150); (b)
holds by (154); (c) holds because an infimum does not increase when taken over a larger feasible set; (d) holds by definition of
Doeblin curve (9); and (e) holds because Doeblin curves are non-decreasing in their first argument. The uniform average power
of V may be bounded as

|||V |||UA
(a)
= max

i∈[n]

∫
X
M(∥x∥)V (dx | ui)

(b)
= max

i∈[n]

∫
X
M(∥x∥) e

ϵiW (dx | ui)− ν(dx)

eϵi − τ0

≤ max
i∈[n]

∫
X
M(∥x∥) eϵi

eϵi − τ0
W (dx | ui)

(c)

≤ pmax
i∈[n]

eϵi

eϵi − τ0

(d)
=

p

1− τ0
, (156)

where (a) holds by definition of uniform average power (12); (b) holds by definition of V (151); (c) holds because W satisfies
|||W |||UA ≤ p; and (d) holds because s 7→ s/(s− τ0) is decreasing for s > τ0, and eϵi ≥ 1 > τ0 for each i ∈ [n]. Combining
(155) and (156),

ρϵ(WK,n) ≤ sup
u1,...,un∈U

{
(1− τ0) F

UA
K

(
1;

p

1− τ0

)}
(a)
= sup

u1,...,un∈U
FUA
K (1− τ0; p)

(b)
= FUA

K

(
sup

u1,...,un∈U
{1− τ0} ; p

)
(c)
= FUA

K (1− τϵ(W,n); p)
(d)
= FUA

K (ρϵ(W,n); p)

as desired, where (a) holds by Proposition 5, (b) holds because Doeblin curves are non-decreasing in their first argument, (c)
holds by following the argument in (142), and (d) holds by definition of ρϵ (26).

Next, we prove Theorem 6.

Proof of Theorem 6. For each t ∈ [T ] and each initialization i ∈ [n], define the following random variables representing
intermediate computations within the update rule:

U
(i)
t ≜ W

(i)
t−1 − ηt∇gt

(
W

(i)
t−1

)
, V

(i)
t ≜ U

(i)
t +mtNt , W

(i)
t ≜ proj

W

(
V

(i)
t

)
.

Clearly, the random variables form the Markov chain (similar to the proof of Lemma 2 and [41], [67])

W
(i)
0 → U

(i)
1 → V

(i)
1 → W

(i)
1 → · · · → U

(i)
T → V

(i)
T → W

(i)
T
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for each i ∈ [n]. We have

ρϵ
([
P

(1)
WT

, . . . , P
(n)
WT

]
, n
) (a)
≤ ρϵ

([
P

(1)
VT

, . . . , P
(n)
VT

]
, n
) (b)
= ρϵ

([
P

(1)
UT

∗ Normal(0,m2
T I), . . . , P

(n)
UT

∗ Normal(0,m2
T I)
]
, n
)
, (157)

where (a) holds by the data processing inequality for ρϵ (29), and (b) holds by definition of VT . The power of the input
distributions is bounded as∣∣∣∣∣∣∣∣∣[P (1)

UT
, . . . , P

(n)
UT

]∣∣∣∣∣∣∣∣∣
UA

(a)
= max

i∈[n]
E
[
∥U (i)

T ∥22
]
(b)
= max

i∈[n]
E
[∥∥∥W (i)

T−1 − ηT∇gT
(
W

(i)
T−1

)∥∥∥2
2

]
(c)

≤ max
i∈[n]

{
2E
[
∥W (i)

T−1∥
2
2

]
+ 2E

[∥∥∥ηT∇gT
(
W

(i)
T−1

)∥∥∥2
2

]}
(d)

≤ 2max
i∈[n]

E
[
∥W (i)

T−1∥
2
2

]
+ 2η2TL

2 (e)
= m2

T pT ,

where (a) holds by definition of uniform average power (12), (b) holds by definition of UT , (c) holds by the identity
∥x+ y∥22 ≤ ∥x+ y∥22 + ∥x− y∥22 = 2 ∥x∥22 + 2 ∥y∥22 and linearity of expectation, (d) holds by the bound on the objective
gradients (31), and (e) holds by definition of pT (32). Continuing from (157), we have

ρϵ
([
P

(1)
WT

, . . . , P
(n)
WT

]
, n
) (a)
≤ FUA

Φ

(
ρϵ
([
P

(1)
UT

, . . . , P
(n)
UT

]
, n
)
; pT
) (b)

≤ FUA
Φ

(
ρϵ
([
P

(1)
WT−1

, . . . , P
(n)
WT−1

]
, n
)
; pT
)
, (158)

where (a) holds by Theorem 5 and Proposition 6, and (b) holds by the data processing inequality for ρϵ (29). Finally, by
recursively applying the arguments in (157) and (158) above, we obtain

ρϵ
([
P

(1)
WT

, . . . , P
(n)
WT

]
, n
)
≤ FUA

Φ

(
· · ·FUA

Φ

(
ρϵ
([
P

(1)
W0

, . . . , P
(n)
W0

]
, n
)
; p1
)
· · · ; pT

)
as desired.

VI. CONCLUSION

In closing, we review our main contributions and propose some directions for follow-up work. In this paper, we formulated
the notion of a Doeblin curve to quantify information contraction of Markov kernels on collections of arbitrarily many input
distributions with specific divergence and power levels, building upon existing literature on Doeblin coefficients and nonlinear
information contraction. After introducing a new variational characterization of Doeblin coefficients, we established several
properties of Doeblin curves and derived bounds on Doeblin curves under canonical power constraints and regularity conditions.
With this more nuanced measure of information contraction in place, we presented three theoretical applications in noisy
iterative optimization, reliable computation, and differential privacy, leveraging Doeblin curves to generalize results in these
areas to multi-way or unbounded settings where Doeblin coefficients fail to capture information contraction.

We suggest two potential extensions of our present work. Firstly, our current understanding of Doeblin curves may be further
enriched by establishing precise conditions for concavity and by studying examples of closed-form uniform average Doeblin
curves. Secondly, future research may explore and broaden our proposed definition of group differential privacy (24), since the
standard definition of differential privacy is sometimes considered very stringent for many applications [75], [76].

APPENDIX A
TECHNICAL LEMMATA

In this appendix, we state and prove two miscellaneous results used throughout our paper.

Lemma 8 (Greatest Common Component Under Affine Transformation). For any kernel W : U × FX → R+ and signed
measure π : FX → R, the greatest common component of the kernel Ŵ : U × FX → R+ given by

∀u ∈ U , Ŵ (· | u) ≜ αW (· | u) + π(·) , (159)

where α ≥ 0 and π are such that Ŵ ≥ 0, is∧
u∈U

Ŵ (· | u) = α
∧
u∈U

W (· | u) + π(·) . (160)

Proof. The lemma trivially holds for α = 0, so assume α > 0 henceforth. For notational convenience, let µ∗ denote the measure
given by the right-hand side of (160). By definition of greatest common component as a supremum in (3), we seek to verify
two properties of µ∗.

Firstly, µ∗ satisfies the condition of the supremum Ŵ ≥ µ∗, because for any u ∈ U ,

Ŵ (· | u) (a)= αW (· | u) + π(·)
(b)

≥ α
∧
u∈U

W (· | u) + π(·) (c)
= µ∗(·) ,

where (a) holds by definition of Ŵ (159), (b) holds because the greatest common component of a kernel is a lower bound on
the kernel, and (c) holds by definition of µ∗ as the right-hand side of (160).
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Secondly, we will prove that for any measure µ satisfying Ŵ ≥ µ, we have µ∗ ≥ µ. Fix a measure µ such that Ŵ ≥ µ.
Observe that

∀u ∈ U , W (· | u) (a)
=

Ŵ (· | u)− π(·)
α

≥ µ(·)− π(·)
α

, (161)

where (a) holds by rearranging (159). Consider a Hahn-Jordan decomposition of µ− π, i.e.,

∀A ∈ FX , (µ− π)
+
(A) ≜ (µ− π) (A ∩ P ) , (µ− π)

−
(A) ≜ − (µ− π) (A ∩N) , (162)

where P ⊆ X and N = P c are the supports (modulo null sets) of the positive and negative parts of µ− π, respectively. Then,

W (A | u) (a)= W (A ∩ P | u) +W (A ∩N | u)
(b)

≥ (µ− π) (A ∩ P )

α
+ 0

(c)
=

(µ− π)
+
(A)

α
(163)

for all u ∈ U and A ∈ FX , where (a) holds by additivity of measures because N = P c, (b) holds because W ≥ (µ− π)/α (by
(161)) and W ≥ 0, and (c) holds by (162). Now, suppose for the sake of contradiction that there exists A ∈ FX such that
µ∗(A) < µ(A). Then,∧

u∈U
W (A | u) (a)= sup {ν(A) : W ≥ ν}

(b)

≥ (µ− π)
+
(A)

α
≥ µ(A)− π(A)

α
>

µ∗(A)− π(A)

α

(c)
=
∧
u∈U

W (A | u)

and we obtain the contradiction
∧

u∈U W (A | u) >
∧

u∈U W (A | u), where (a) holds by definition of greatest common
component (3), (b) holds because W ≥ (µ − π)+/α by (163) and so we may lower-bound the supremum by this specific
instance, and (c) holds because µ∗ is the right-hand side of (160).

Lemma 9 (Properties of Upper Concave Envelope). Let f : I → [0, 1] be a function defined on a (possibly infinite) interval
I ⊆ R+. The upper concave envelope “f : I → [0, 1] of f satisfies the following properties:

1) For all boundary points t of I, we have “f(t) = f(t).
2) If f is non-decreasing, then “f is non-decreasing.
3) If f is non-decreasing, I = [0, 1], and f(t) ≤ t for all t ∈ I, then “f is continuous on I.

Proof.
Part 1: Consider a boundary point a ∈ I. Suppose for the sake of contradiction that “f(a) ̸= f(a). Since “f ≥ f everywhere

on I by definition of upper concave envelope, we must have “f(a) > f(a). Consider the function g : I → [0, 1] given by

∀t ∈ I, g(t) ≜

{
f(a) , if t = a ,
“f(t) , if t ̸= a .

(164)

Clearly, f ≤ g ≤ “f everywhere on I. Moreover, g is concave, because for all distinct s, t ∈ I and all θ ∈ (0, 1),

g(θs+ (1− θ) t)
(a)
= “f(θs+ (1− θ) t)

(b)

≥ θ “f(s) + (1− θ) “f(t)
(c)

≥ θ g(s) + (1− θ) g(t) ,

where (a) holds by the second case in (164) because θs+ (1− θ)t is an interior point of I, (b) holds because “f is concave,
and (c) holds because g ≤ “f everywhere, as mentioned above. This contradicts the fact that “f is the pointwise infimum of all
concave upper bounds of f .

Part 2: Let f̄ : I → R be the closed upper concave envelope (or “closed convex hull”) of f [44, Chapter B, Proposition
2.5.2, Definition 2.5.3], i.e.,

∀t ∈ I, f̄(t) ≜ inf {αt+ β : α ≥ 0, β ∈ R such that ∀s ∈ I, αs+ β ≥ f(s)} , (165)

where it suffices to consider only α ≥ 0 because f is non-decreasing. Fix s, t ∈ I such that s < t. By definition of f̄ as an
infimum (165), there exist sequences of coefficients {αn}n∈N ⊂ R+ and {βn}n∈N ⊂ R, satisfying αns+ βn ≥ f(s) for all
s ∈ I and n ∈ N, such that f̄(t) = limn→∞{αnt+ βn}. It follows that

f̄(s)
(a)

≤ inf
n∈N

{αns+ βn} ≤ lim
n→∞

{αns+ βn}
(b)

≤ lim
n→∞

{αnt+ βn} = f̄(t) ,

where (a) holds by taking the infimum in (165) over a smaller set, and (b) holds because s < t and αn ≥ 0 for all n ∈ N. This
establishes that f̄ is non-decreasing on I. Since f̄ is the closure of “f [44, Chapter B, Proposition 2.5.2], f̄ and “f agree on
the interior of I [44, Chapter B, Proposition 1.2.6] and “f ≤ f̄ on any boundary points of I. Hence, “f is non-decreasing on
I − {sup I}. If I is finite and includes its right boundary point b ∈ I, then “f(b) ≤ f̄(b) ≤ f(b), where the second inequality
holds by upper-bounding the infimum in (165) with the specific majorant α = 0 and β = f(b). By Part 1, “f(b) = f(b), and so
“f(b) = f̄(b). Thus, “f is non-decreasing on all of I, as desired.

Part 3: By concavity, “f is continuous on the interior of I. To establish the continuity of “f at 0, observe that

∀t ∈ I, “f(t)
(a)

≥ “f(0)
(b)
= f(0)

(c)
= 0 ,
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where (a) holds by Part 2, (b) holds by Part 1, and (c) holds by the assumption f(t) ≤ t and the range of f . Furthermore,

∀t ∈ I, “f(t) ≤ f̄(t)
(a)

≤ t ,

where (a) holds by upper-bounding the infimum in (165) with the specific majorant α = 1 and β = 0 due to the assumption
f(t) ≤ t. Hence, we have limt→0+

“f(t) = 0 = “f(0) as desired. To establish the continuity of “f at 1, observe that limt→1−
“f(t) ≤

“f(1) because “f is non-decreasing by Part 2, and limt→1−
“f(t) ≥ limt→1−{t “f(1)+ (1− t) “f(0)} = “f(1) because “f is concave.

Hence, limt→1−
“f(t) = “f(1) as desired.

APPENDIX B
VARIATIONAL CHARACTERIZATION UNDER EQUICONTINUITY

In this appendix, we provide an alternative statement and proof of Theorem 1 without the use of lattice infima, under the
assumption of equicontinuity of the kernel K.

Theorem 7 (Variational Characterization of Doeblin Coefficient). Let (X , dX ) and (Y,FY) be Polish spaces, where X is
endowed with the metric dX : X × X → R+. Let K : X × FY → [0, 1] be an absolutely continuous Markov kernel with
respect to the σ-finite measure µ : FY → R+. Assume the family of functions {x 7→ dK

dµ (y | x) : y ∈ Y} is equicontinuous [77,
Definition 7.22], i.e.,

∀ϵ > 0, ∃δ > 0, ∀x, x′ ∈ X , ∀y ∈ Y, dX (x, x′) < δ =⇒
∣∣∣∣dKdµ (y | x)− dK

dµ
(y | x′)

∣∣∣∣ < ϵ . (166)

Then, the Doeblin coefficient of K admits the characterization

τ(K) = inf
n∈N

inf
x1,...,xn∈X

inf
n-partition of Y

A1,...,An

n∑
i=1

K(Ai | xi) . (167)

Proof. Fix a Markov kernel K : X ×FY → [0, 1] satisfying the assumptions in Theorem 7. For notational convenience, denote
the right-hand side of (167) as

1 ≜ inf
n∈N

inf
x1,...,xn∈X

inf
n-partition of Y

A1,...,An

n∑
i=1

K(Ai | xi) .

First, we will show that τ(K) ≤ 1 . By definition of Doeblin coefficient as a supremum (4) which is achieved as per the
discussion following (4), there exists some probability measure π∗ : FY → [0, 1] such that K ≥ τ(K)π∗. For any n ∈ N, any
x1, . . . , xn ∈ X , and any partition A1, . . . , An of Y , we have

τ(K)
(a)
= τ(K)π∗(Y)

(b)
= τ(K)

n∑
i=1

π∗(Ai)
(c)

≤
n∑

i=1

K(Ai | xi) ,

where (a) holds because π∗ is a probability measure, (b) holds because A1, . . . , An is a partition of Y , and (c) holds because
K ≥ τ(K)π∗. Since n, x1, . . . , xn, and A1, . . . , An were arbitrary, it follows that τ(K) ≤ 1 as desired.

Next, we will show that 1 ≤ τ(K). Since X is Polish and thus separable, there exists a countable dense net {x∗
1, x

∗
2, . . .} ⊆ X ,

i.e.,
∀x ∈ X , ∀δ > 0, ∃i ∈ N, dX (x, x∗

i ) ≤ δ . (168)

For notational convenience, define a sequence of functions gn : Y → R+ as

∀n ∈ N, gn(y) ≜ min
i∈[n]

dK

dµ
(y | x∗

i ) .

We have

1
(a)
= inf

n∈N
inf

x1,...,xn∈X

∫
Y

(
min
i∈[n]

dK

dµ
(· | xi)

)
dµ

(b)

≤ inf
n∈N

∫
Y
gn dµ

(c)
= lim

n→∞

∫
Y
gn dµ , (169)

where (a) holds by Proposition 2, (b) holds by upper-bounding the inner infimum with the specific instance {x∗
1, . . . , x

∗
n}, and

(c) holds because {gn}n∈N is a non-increasing sequence, since each successive gn is the minimum over a larger set of i. Next,
define a function g : Y → R+ as

g(y) ≜ lim
n→∞

gn(y) = inf
i∈N

dK

dµ
(y | x∗

i ) . (170)

Observe that g is measurable, because it is the countable infimum of measurable functions. Furthermore, observe that gn ≤ g1
for all n ∈ N, g ≤ g1, and

∫
Y g1 dµ = K(Y | x∗

1) = 1 < ∞. Hence, proceeding from (169) and applying the dominated
convergence theorem, we have

1 ≤
∫
Y

(
lim
n→∞

gn

)
dµ =

∫
Y
g dµ

=α∗

, (171)
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where we define α∗ ∈ [0, 1] above for convenience hereafter. If α∗ = 0, we trivially have 1 = 0 ≤ τ(K) as desired. Hence,
assume α∗ > 0 for the remainder of this argument. Define a probability measure π∗ : FY → [0, 1] as π∗(A) ≜ 1

α∗

∫
A
g dµ for

all A ∈ FY . Fix an arbitrary ϵ > 0. Consider δ > 0 (possibly depending on ϵ) such that (166) holds. Observe that for any
x ∈ X and y ∈ Y , we have

g(y)
(a)

≤ dK

dµ
(y | x∗

i )
(b)

≤ dK

dµ
(y | x) + ϵ , (172)

where (a) holds for all i ∈ N by definition of g (170), and (b) holds for some i ∈ N (possibly depending on x) such that
dX (x, x∗

i ) < δ, by equicontinuity (166); we remark that the existence of such an i is guaranteed by (168). Hence, for any
x ∈ X and A ∈ FY ,

α∗π∗(A) =

∫
A

g dµ
(a)

≤
∫
A

(
dK

dµ
(· | x)

)
dµ = K(A | x) , (173)

where (a) holds by (172) because ϵ > 0 was arbitrary. Proceeding from (171), we have

1 ≤ α∗
(a)

≤ sup {α ∈ R : ∃π ∈ P, K ≥ απ} (b)
= τ(K)

as desired, where (a) holds because K ≥ α∗π∗ by (173), and (b) holds by definition of Doeblin coefficient (4).

We remark that the equicontinuity assumption on K allows us to circumvent measurability issues in the proof by defining g
as the pointwise infimum over a countable dense subset of X , which is guaranteed to be measurable while approximating the
infimum over all of general uncountable X to any ϵ > 0 accuracy. Otherwise, g would have to be defined as the lattice or
essential infimum, as was done in the proof of Theorem 1 in Section IV-A.

APPENDIX C
MARKOV KERNEL EXAMPLES

In this appendix, we provide examples of non-trivial Markov kernels satisfying the preconditions for various results in our
paper. Throughout this appendix, let Φ : R → (0, 1) denote the standard Gaussian CDF Φ(x) ≜

∫ x

−∞(1/
√
2π) exp(−t2/2) dt.

First, we present a Markov kernel W : U ×FX → [0, 1] with a countably infinite source space U , unbounded support on the
target space X , and finite average extremal power.

Proposition 10 (Average Extremal Power Example). Let U be countable (without loss of generality, U ≜ N) and X ≜ R. Let
W : U × FX → [0, 1] be a Markov kernel such that for each i ∈ U , Xi ∼ W (· | i) is sub-Gaussian with mean 0 and variance
factor σ2

i ≤ c/ loge(i+ 1), i.e.,

∀λ ∈ R, E
[
eλ(Xi−E[Xi])

]
≤ exp

(
σ2
i λ

2

2

)
,

where c > 0 is a fixed constant. Then, under the norm ∥x∥ ≜ |x| and power function M(z) ≜ z2, the average extremal power
of W satisfies |||W |||AE ≤ 4c(1 + π2/6).

Proof. Let P be any coupling of random variables {Xi}i∈N with Xi ∼ W (· | i) for each i ∈ N. In the following, all expectations
are taken with respect to {Xi}i∈N ∼ P. We have

|||W |||AE
(a)
= E

[
sup
i∈N

M(∥Xi∥)
]

(b)
= E

[
sup
i∈N

|Xi|2
]
= E

[
lim
n→∞

max
i∈[n]

|Xi|2
]

(c)
= lim

n→∞
E
[
max
i∈[n]

|Xi|2
]

1

, (174)

where (a) holds by definition of average extremal power (13), (b) holds by definition of ∥·∥ and M , and (c) holds by the monotone
convergence theorem because the sequence of functions {gn}n∈N given by gn

(
{xi}i∈N

)
≜ maxi∈[n] |xi|2 is monotonically

non-decreasing in n. Next, we upper-bound 1 by adapting the result in [78, Lemma 2.3]. For any t0 ≥ 0, we have

1
(a)

≤
∫ ∞

0

P
(
max
i∈[n]

|Xi|2 ≥ t

)
dt

(b)
=

∫ t0

0

P
(
max
i∈[n]

|Xi|2 ≥ t

)
dt+

∫ ∞

t0

P
(
max
i∈[n]

|Xi|2 ≥ t

)
dt

(c)

≤ t0 +

∫ ∞

t0

P
(
max
i∈[n]

|Xi|2 ≥ t

)
dt

(d)

≤ t0 +

∫ ∞

t0

n∑
i=1

P
(
|Xi|2 ≥ t

)
dt = t0 +

n∑
i=1

∫ ∞

t0

P
(
|Xi| ≥ t

1
2

)
dt

(e)

≤ t0 +

n∑
i=1

∫ ∞

t0

2 exp

(
− t

2σ2
i

)
dt

(f)
= t0 + 4

n∑
i=1

σ2
i exp

(
− t0
2σ2

i

)
, (175)

where (a) holds by the layer cake representation [79, Lemma 1.2.1], (b) holds for any t0 ∈ [0,∞] by splitting the region of
integration into two intervals, (c) holds because probability values are bounded by 1, (d) holds by the union bound, (e) holds
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by [72, Eq. 2.9] because Xi is sub-Gaussian with mean 0 and variance factor σ2
i , and (f) holds by evaluating the integral.

Choosing t0 ≜ 4maxi∈[n]

{
σ2
i loge(i+ 1)

}
and continuing from (175), we have

1
(a)

≤ 4max
i∈[n]

{
σ2
i loge(i+ 1)

}
+ 4

n∑
i=1

σ2
i exp

(
−4σ2

i loge(i+ 1)

2σ2
i

)
= 4max

i∈[n]

{
σ2
i loge(i+ 1)

}
+ 4

n∑
i=1

σ2
i

(i+ 1)2

(b)

≤ 4c+ 4

n∑
i=1

c

(i+ 1)2 loge(i+ 1)
, (176)

where (a) holds by the choice of t0 and (b) holds because σ2
i ≤ c/ loge(i+ 1) for each i ∈ N. Combining (174) and (176), we

have

|||W |||AE ≤ 4c

(
1 +

∞∑
i=1

1

(i+ 1)2 loge(i+ 1)

)
≤ 4c

(
1 +

∞∑
i=1

1

i2

)
= 4c

(
1 +

π2

6

)
as desired.

Next, we present a Markov kernel W : U × FX → [0, 1] with an uncountable source space U , unbounded support on the
target space X , and finite average extremal power.

Proposition 11 (Average Extremal Power Example). Let U ≜ (0,∞) and X ≜ R. Let W : U × FX → [0, 1] be the Markov
kernel such that for each u ∈ U , Xu ∼ W (· | u) is given by

Xu ∼

{
Normal(0, 1) , if Ju = 1 ,

2Beta(u, u)− 1 , if Ju = 0 ,

where Ju ∼ Bernoulli(1/2) is independent of the Beta and Gaussian random variables. Namely, the cumulative distribution
function fXu

: R → (0, 1) is

fXu
(x) =

1

2
Φ(x) +


0 , if x < −1 ,

1
4B(u,u)

∫ x

−1

(
t+1
2

)u−1 (
1− t+1

2

)u−1
dt , if −1 ≤ x ≤ 1 ,

1
2 , if x > 1 ,

where B(α, β) denotes the Beta function B(α, β) ≜
∫ 1

0
tα−1 (1− t)

β−1
dt, and the probability density function pXu is

pXu
(x) =


1

4B(u,u)

(
x+1
2

)u−1 (
1− x+1

2

)u−1
+ 1

2
√
2π

exp
(
−x2

2

)
, if |x| < 1 ,

1
2
√
2π

exp
(
−x2

2

)
, if |x| > 1 .

(177)

Then, under the norm ∥x∥ ≜ |x| and power function M(z) ≜ z2, the average extremal power of W satisfies |||W |||AE ≤ 1.

Proof. First, we compute the pointwise infimum of the probability densities {pXu
}u∈U . We have

inf
u∈U

pXu
(x)

(a)
=

1

2
√
2π

exp

(
−x2

2

)
+ 1{|x| < 1} inf

u∈U

1

4B(u, u)

(
x+ 1

2

)u−1(
1− x

2

)u−1

1

, (178)

where (a) holds by (177). For any x ∈ (−1, 1),

1
(a)

≤ lim
u→0

1

4B(u, u)

(
x+ 1

2

)u−1(
1− x

2

)u−1

=
1

4
lim
u→0

{
1

B(u, u)

}
lim
u→0

{(
x+ 1

2

)u−1(
1− x

2

)u−1}
(b)
=

1

4

(
4

1− x2

)
lim
u→0

1

B(u, u)

(c)
=

1

1− x2
lim
u→0

Γ(2u)

Γ(u)2
(d)
=

1

1− x2
lim
u→0

22u−1Γ
(
u+ 1

2

)
√
π Γ(u)

=
1

2 (1− x2)
lim
u→0

1

Γ(u)
= 0 , (179)

where (a) holds because u = 0 is a limit point of U , (b) holds because x ∈ (−1, 1) and so ((x+1)/2)−1 and ((1−x)/2)−1 are well-
defined, (c) holds by the identity B(α, β) = Γ(α) Γ(β)/Γ(α+ β), where Γ denotes the Gamma function Γ(α) ≜

∫∞
0

tα−1e−tdt,
and (d) holds by the Legendre duplication formula Γ(2α) = 22α−1Γ(α) Γ

(
α+ 1

2

)
/
√
π. Also, clearly 1 ≥ 0 by inspection.

Hence, combining (178) and (179) yields

inf
u∈U

pXu
(x) =

1

2
√
2π

exp

(
−x2

2

)
.

Following from the above, the greatest common component of W is∧
u∈U

W (A | u) (a)=
∫
A

(
inf
u∈U

pXu
(x)

)
dx =

∫
A

1

2
√
2π

exp

(
−x2

2

)
dx ,
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where (a) holds by Lemma 4 and because the lattice infimum reduces to the pointwise infimum when the latter is measurable.
Hence, the maximal coupling of random variables {Xu}u∈U with Xu ∼ W (· | u) for each u ∈ U , defined in (34), is

∀u ∈ U , Xu ≜

{
X∗ , if I = 1 ,

X̃u , if I = 0 ,
(180)

where the random variables I , X∗, and {X̃u}u∈U are sampled independently from the distributions

I ∼ Bernoulli

(
1

2

)
,

X∗ ∼ Normal(0, 1) , (181)

∀u ∈ U , X̃u ∼ 2Beta(u, u)− 1 . (182)

Therefore, the average extremal power of W is

|||W |||AE
(a)
= P(I = 1)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ I = 1

]
+ P(I = 0)E

[
sup
u∈U

M(∥Xu∥)
∣∣∣∣ I = 0

]
(b)
=

1

2
E
[
(X∗)

2
]

= 1
2 (181)

+
1

2
E
[
sup
u∈U

X̃2
u

]
≤ 1

2 (182)

≤ 1

as desired, where all expectations are taken with respect to the maximal coupling (180), (a) holds by definition of average
extremal power (13) and the law of total expectation, and (b) holds by definitions of ∥·∥, M , and Xu.

Next, we present a Markov kernel W : U × FX → [0, 1] with unbounded support on the target space X which satisfies the
preconditions for Proposition 7.

Proposition 12 (Upper Bound Example). Let n ∈ N and ς > 0 be fixed constants. Let U ≜ [n] and let X ≜ R+ be equipped
with the norm ∥·∥ ≜ | · |. Let W : U × FX → [0, 1] be the Markov kernel such that for each i ∈ U , Xi ∼ W (· | i) is given by

Xi ≜

{
Xi|1 ∼ µi + HalfNormal(ς) , if Ji = 1 ,

Xi|0 ∼ Uniform(i, µi) , if Ji = 0 ,

where Ji ∼ Bernoulli(1/2), Xi|1, and Xi|0 are independent, and µi ≜ i+2ς
√

2/π. Namely, the cumulative distribution function
fXi

: R → [0, 1) is

fXi(x) =


0 , if x < i ,
x−i
4ς

√
π
2 , if i ≤ x < µi ,

Φ
(
x−µi

ς

)
, if x ≥ µi ,

and the probability density function pXi
is

pXi
(x) =


0 , if x < i ,
1
4ς

√
π
2 , if i ≤ x < µi ,

1
ς
√
2π

exp
(
− (x−µi)

2

2ς2

)
, if x > µi .

Then, under the definition of G in Proposition 7 with power function M(z) ≜ z, p ≜ µn, and σ ≜
√
2 (4ς/π), we have W ∈ G.

Proof. Throughout this proof, for notational convenience, let Zi ≜ M(∥Xi∥)
(a)
= Xi for all i ∈ U , where (a) holds because

Xi ≥ i > 0.
Uniform average power constraint: Observe that for each i ∈ U , we have

E[Zi] = E[Xi]
(a)
= P(Ji = 0)E

[
Xi|0

]
+ P(Ji = 1)E

[
Xi|1

] (b)
=

1

2
E
[
Xi|0

]
+

1

2
E
[
Xi|1

] (c)
=

1

2

(
i+ µi

2

)
+

1

2

(
µi + ς

√
2/π

)
= µi ,

(183)

where (a) holds by the law of total expectation, (b) holds because Ji ∼ Bernoulli(1/2), and (c) holds because Xi|0 ∼
Uniform(i, µi) and Xi|1 ∼ µi + HalfNormal(ς). Therefore,

|||W |||UA
(a)
= sup

i∈U
E[Zi]

(b)
= µn = p

as desired, where (a) holds by definition of uniform average power (12) and (b) holds from (183) because U = [n].
Sub-Gaussianity: Fix i ∈ U . For any t ≥ 0, we have

P(|Zi − E[Zi]| ≥ t) = P(|Xi − E[Xi]| ≥ t)
(a)
= P(Ji = 0)P

(∣∣Xi|0 − E[Xi]
∣∣ ≥ t

)
+ P(Ji = 1)P

(∣∣Xi|1 − E[Xi]
∣∣ ≥ t

)
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(b)
=

1

2
P
(∣∣Xi|0 − E[Xi]

∣∣ ≥ t
)
+

1

2
P
(∣∣Xi|1 − E[Xi]

∣∣ ≥ t
) (c)
=

1

2
P
(∣∣Xi|0 − µi

∣∣ ≥ t
)
+

1

2
P
(∣∣Xi|1 − µi

∣∣ ≥ t
)

(d)
=

1

2
P
(
Xi|0 ≤ µi − t

)
1
+

1

2
P
(
Xi|1 ≥ µi + t

)
2
, (184)

where (a) holds by the law of total probability, (b) holds because Ji ∼ Bernoulli(1/2), (c) holds by (183), and (d) holds because
Xi|0 ≤ µi and Xi|1 ≥ µi. Next, we upper-bound 1 and 2 . Let Ni ∼ Normal(0, (4ς/π)2) be an independent Gaussian random
variable. Then,

1
(a)
=

1

2
max

{
0, 1−

∫ 0

−t

1

2ς
√
2/π

dx

}
= max

{
0,

1

2
−
∫ 0

−t

1

4ς
√
2/π

dx

}
(b)

≤ max

{
0,

1

2
−
∫ 0

−t

1

(4ς/π)
√
2π

exp

(
− x2

2(4ς/π)2

)
dx

}
(c)
= P(Ni ≤ −t) , (185)

where (a) holds by the PDF of a uniform random variable supported on an interval of length µi − i = 2ς
√
2/π, (b) holds by

lower-bounding the integrand pointwise, and (c) holds by the PDF of Ni ∼ Normal(0, (4ς/π)2). Similarly, we also have

2
(a)
=

1

2

∫ ∞

t

√
2

ς
√
π
exp

(
− x2

2ς2

)
dx = 1− Φ

(
t

ς

)
(b)

≤ 1− Φ

(
t

4ς/π

)
= P(Ni ≥ t) , (186)

where (a) holds by the PDF of a HalfNormal(ς) random variable and (b) holds because CDFs are non-decreasing. Combining
Equations (184) to (186), we thus have P(|Zi − E[Zi]| ≥ t) ≤ P(|Ni| ≥ t), and so by [72, Theorem 2.6] we have sub-Gaussianity
with variance factor σ =

√
2 (4ς/π) as desired, i.e., E

[
eλ(Zi−E[Zi])

]
≤ exp

(
16ς2λ2

π2

)
for all λ ∈ R.

Finally, we present a Markov kernel W : U × FX → [0, 1] with an uncountable source space U and unbounded support on
the target space X which satisfies the preconditions for Proposition 8.

Proposition 13 (Upper Bound Example). Let a > 0 and ς > 0 be fixed constants. Let U ≜ [−a, a] be equipped with the metric
dU (u, v) ≜ |u− v|. Let X ≜ R be equipped with the norm ∥·∥ ≜ | · |. Let W : U × FX → [0, 1] be the Markov kernel such
that for each u ∈ U , Xu ∼ W (· | u) is given by

Xu ≜

{
Xu|1 ∼ Normal

(
0, ς2

)
, if Ju = 1 ,

Xu|0 ∼ δu , if Ju = 0 ,

where Ju ∼ Bernoulli(1/2), Xu|1, and Xu|0 are independent. Namely, the probability measure W (· | u) : FX → [0, 1] is

∀A ∈ FX , W (A | u) =
∫
A

1

2ς
√
2π

exp

(
− x2

2ς2

)
dx+

1

2
δu(A) ,

and the cumulative distribution function fXu
: R → (0, 1) is

fXu
(x) =

{
1
2Φ
(
x
ς

)
, if x < u ,

1
2Φ
(
x
ς

)
+ 1

2 , if x ≥ u .

Then, under the definition of G in Proposition 8 with power function M(z) ≜ z2, p ≜ (a2 + ς2)/2, and σ ≜ a, we have W ∈ G.

This example resembles an erasure channel wherein erasures are replaced by independent Gaussian variables, akin to the
construction of symmetric channels using erasure channels on finite alphabets (cf. [80], [81]).

Proof. Throughout this proof, for notational convenience, let Zu ≜ M(∥Xu∥) = X2
u for all u ∈ U .

Uniform average power constraint: Observe that for each u ∈ U , we have

E[Zu] = E
[
X2

u

] (a)
= P(Ju = 0)E

[
X2

u|0

]
+ P(Ju = 1)E

[
X2

u|1

]
(b)
=

1

2
E
[
X2

u|0

]
+

1

2
E
[
X2

u|1

]
(c)
=

u2 + ς2

2
, (187)

where (a) holds by the law of total expectation, (b) holds because Ju ∼ Bernoulli(1/2), and (c) holds because Xu|0 ∼ δu and

Xu|1 ∼ Normal(0, ς2). Therefore, |||W |||UA
(a)
= supu∈U E[Zu]

(b)
= (a2 + ς2)/2 = p as desired, where (a) holds by definition of

uniform average power (12) and (b) holds from (187) because U = [−a, a].
Sub-Gaussian increments: Let {Xu}u∈U be distributed according to the maximal coupling defined in (34). Fix u, v ∈ U .

Since
E
[
eλ((Zu−Zv)−E[Zu−Zv ])

]
= E

[
eλ(Zu−Zv)

]
1

eλ(E[Zv]−E[Zu])

2
, (188)
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we separately consider 1 and 2 . To evaluate 1 , notice that the greatest common component of W is∧
u∈U

W (A | u) (a)=
∫
A

1

2ς
√
2π

exp

(
− x2

2ς2

)
dx+

1

2

∧
u∈U

δu(A) =

∫
A

1

2ς
√
2π

exp

(
− x2

2ς2

)
dx ,

where (a) holds by Lemma 8, and so
∧

u∈U W (X | u) =
∫∞
−∞

1
2ς

√
2π

exp
(
− x2

2ς2

)
dx = 1

2 . Thus, the maximal coupling {Xu}u∈U
such that Xu ∼ W (· | u) for all u ∈ U is

Xu ≜

{
X∗ , if I = 1 ,

X̃u , if I = 0 ,

where the random variables I , X∗, and {X̃u}u∈U are sampled independently from the probability measures

I ∼ Bernoulli

(
1

2

)
, X∗ ∼ Normal

(
0, σ2

)
, X̃u ∼ δu .

Hence,

1 = E
[
eλ(X

2
u−X2

v)
]
(a)
= P(I = 1)E

[
eλ(X

∗2−X∗2)
]
+ P(I = 0)E

[
eλ(X̃

2
u−X̃2

v)
]

(b)
=

1

2
+

1

2
E
[
eλ(X̃

2
u−X̃2

v)
]
(c)
=

1

2
+

1

2
E
[
eλX̃

2
u

]
E
[
e−λX̃2

v

]
(d)
=

1

2
+

1

2
eλu

2

e−λv2

=
1 + e−(v

2−u2)λ

2
, (189)

where (a) holds by the law of total expectation, (b) holds because I ∼ Bernoulli(1/2), (c) holds because X̃u and X̃v are
independent, and (d) holds because X̃u ∼ δu and X̃v ∼ δv . Next, we evaluate 2 and obtain

2
(a)
= exp

(
λ

(
v2 + ς2

2
− u2 + ς2

2

))
=

1

exp
(
− (v2−u2)λ

2

) , (190)

where (a) holds by (187). Combining Equations (188) to (190), we have

E
[
eλ((Zu−Zv)−E[Zu−Zv])

]
(a)
= cosh

((
v2 − u2

)
λ

2

)
(b)

≤ exp

((
u2 − v2

)2
λ2

8

)
= exp

(
(u+ v)

2
(u− v)

2
λ2

8

)
(c)

≤ exp

(
a2 (u− v)

2
λ2

2

)
(d)
= exp

(
σ2dU (u, v)

2λ2

2

)
as desired, where (a) holds by the identity cosh(x) = (1 + e−2x)/(2e−x), (b) holds by the inequality cosh(x) ≤ exp(x2/2),
(c) holds because U = [−a, a], and (d) holds by definition of dU and σ.

Measurability: Observe that if I = 1, we have

sup
u∈U

{Zu − E[Zu]} = sup
u∈[−a,a]

{
X∗2 − u2 + ς2

2

}
= X∗2 − ς2

2
,

and if I = 0, we have

sup
u∈U

{Zu − E[Zu]} = sup
u∈[−a,a]

{
X̃2

u − u2 + ς2

2

}
= sup

u∈[−a,a]

{
u2 − u2 + ς2

2

}
=

a2 + ς2

2
.

Hence, the pre-image of any measurable set A ⊆ R under supu∈U{Zu−E[Zu]} is the measurable event ({I = 1} ∩ {X∗ ∈ SA})
∪ {I = 0} if (a2 + ς2)/2 ∈ A, and the measurable event {I = 1} ∩ {X∗ ∈ SA} otherwise, where SA ⊆ R is the set
SA = {−

√
z + ς2/2,

√
z + ς2/2 : z ∈ A, z ≥ −ς2/2}.

APPENDIX D
DOEBLIN CURVES AND MARKOV CHAINS

Lastly, we conclude with a discussion relating Doeblin curves back to the classic setting of Markov chain ergodicity. As a
minor departure from our previous exclusive focus on Doeblin curves, we will also discuss contraction properties of Doeblin
coefficients here. Throughout this appendix, we focus on the special case of discrete-time finite-state time-homogeneous Markov
chains, which we represent as a row stochastic matrix K ∈ Rd×d

sto whose entries [K]i,j denote the probability of transitioning
from state i to state j (which, by homogeneity, is the same at any time). We assume that norms operate on row vectors
analogously to their usual behavior on column vectors.

Below, we present an overview of pertinent results on Markov chain convergence from the literature and add new results
discussing how Doeblin curves relate to these existing characterizations.

Proposition 14 (Markov Chain Properties). Given a discrete-time finite-state time-homogeneous Markov chain represented as a
row stochastic matrix K ∈ Rd×d

sto , the following statements are equivalent:
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a) (Positive spectral gap [82]) |λ2(K)| < 1.
b) (Aperiodic unichain [82]) The Markov chain represented by K has exactly one recurrent class, and its recurrent class is

aperiodic.
c) (Strong ergodicity [82], [83]) The Markov chain represented by K converges to a fixed steady-state distribution π∗ ∈ Pd−1

regardless of the initial distribution, i.e., limn→∞ π0K
n = π∗ for all π0 ∈ Pd−1. Furthermore, the convergence is

exponentially fast, i.e., there exist constants C > 0 and 0 < α < 1 independent of π0 such that ∥π0K
n − π∗∥1 ≤ Cαn

for all n ∈ N.
d) (Weak ergodicity [83], [84]) The rows of Kn equalize as time n → ∞, i.e., limn→∞∥[Kn]⟨i⟩ − [Kn]⟨j⟩∥∞ = 0 for all

i, j ∈ [d].
e) (Doeblin characterization of weak ergodicity) For all n ≥ d2, τ(Kn) > 0.
f) (Doeblin curves) FKn

(
t;Rd×d

sto

)
< t for all n ≥ d2 and t ∈ (0, 1].

Proof. The equivalences a) through f) hold because:

• b) =⇒ a) by [82, Theorem 4.4.2]
• ¬ b) =⇒ ¬ a) by [82, Section 4.4.2, p. 178]
• b) =⇒ c) by [82, Theorem 4.3.7]
• ¬ b) =⇒ ¬ c) by [82, Section 4.3.5, p. 175]
• c) ⇐⇒ d) by [83, p. 867]
• e) =⇒ d) by [28, Eq. 6] or [84, Theorem 4.8]

Proof of d) =⇒ e): By [84, Theorem 4.8], d) implies that there exists some N ∈ N such that τ(KN ) > 0 (i.e., a weaker
version of e) that lacks an explicit threshold), but the threshold d2 is not usually explicitly derived in the literature. To remedy
this, we supply a proof of the threshold below.

Lemma 10 (Threshold For Positivity of τ(Kn)). If there exists some N ∈ N such that τ(KN ) > 0, τ(Kn) > 0 for all n ≥ d2.

Proof. If τ(KN ) > 0, there must exist some state i in the Markov chain represented by K that can be reached in exactly N
steps from any state including itself. Thus, i must be a part of some cycle of length p ≤ d in the graph representation of K.

We argue that unless p = 1, there must exist another cycle that includes state i with length q ≤ d such that p⊥q (i.e., p and
q are coprime). If this is not the case, every cycle that includes state i must have a length that is a multiple of some integer
k ≥ 2. Let j be the predecessor state of i in one or more of these cycles. Then, all paths from j to i must have length ≡ 1
mod k. However, all paths from i to i must have length ≡ 0 mod k, thus no path from j to i can have the same length as
any path from i to i, which is a contradiction.

Thus, state i is included in two (possibly equal) cycles of coprime lengths p and q. From the solution of the Frobenius
coin problem with two coins [85], it is known that any integer ≥ (p − 1)(q − 1) can be represented as ap + bq where
a, b are nonnegative integers. Given any state l, let d(l) < d be the distance from l to i (i must be reachable from l by
assumption). Then, for any integer m ≥ d(l) + (p − 1)(q − 1), there must exist a trajectory of exactly length m from l to
i. Since d(l) + (p − 1)(q − 1) ≤ (d − 1) + (d − 1)(d − 2) = d2 − 2d + 1 ≤ d2 since p, q ≤ d and p⊥q, τ(Kn) > 0 for all
n ≥ d2.

Note that this result bears a strong resemblance to [86, Corollary 8.5.8] which states a similar threshold for primitive matrices.
Furthermore, kernels represented by primitive matrices are ergodic with no transient states (i.e., every state is in the recurrent
class), thus the class of primitive matrices is a subset of the class of ergodic Markov chains.

Although c) ⇐⇒ d) is known in the literature [83, p. 867], this equivalence is seldom directly argued for homogeneous
Markov chains, since the distinction between strong and weak forms of ergodicity is traditionally only made in the context of
inhomogeneous chains. So, for completeness, we provide a proof of c) ⇐⇒ d) from first principles below.

Proof of c) ⇐⇒ d): Fix a time-homogeneous Markov chain K ∈ Rd×d
sto . First, we will prove the forward direction; the

argument is straightforward and standard. Assume K is strongly ergodic, with π∗ denoting its steady-state distribution. Then,
for any i, j ∈ [d],

lim
n→∞

∥∥∥[Kn]⟨i⟩ − [Kn]⟨j⟩

∥∥∥
∞

= lim
n→∞

∥eiKn − ejK
n∥∞

(a)

≤ lim
n→∞

∥eiKn − π∗∥∞ + lim
n→∞

∥ejKn − π∗∥∞
(b)
= 0 ,

where (a) holds by the triangle inequality and additivity of limits, and (b) holds by strong ergodicity. Hence, K is weakly
ergodic, as desired.

Next, we will prove the reverse direction. Assume K is weakly ergodic. Consider the sequence of powers {Kn}∞n=1. Since
the set of all row stochastic matrices Rd×d

sto is compact (e.g., under the Frobenius norm), there exists a subsequence {Knℓ}∞ℓ=1

which converges to a limit K∗ ∈ Rd×d
sto , i.e.,

lim
ℓ→∞

∥Knℓ −K∗∥F = 0 . (191)
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Furthermore, for any i, j ∈ [d], we have∥∥∥[K∗]⟨i⟩ − [K∗]⟨j⟩

∥∥∥
∞

(a)

≤ lim
ℓ→∞

∥∥∥[Knℓ ]⟨i⟩ − [K∗]⟨i⟩

∥∥∥
∞
+ lim

ℓ→∞

∥∥∥[Knℓ ]⟨j⟩ − [K∗]⟨j⟩

∥∥∥
∞

+ lim
ℓ→∞

∥∥∥[Knℓ ]⟨i⟩ − [Knℓ ]⟨j⟩

∥∥∥
∞

(b)
= lim

ℓ→∞

∥∥∥[Knℓ ]⟨i⟩ − [Knℓ ]⟨j⟩

∥∥∥
∞

(c)
= lim

n→∞

∥∥∥[Kn]⟨i⟩ − [Kn]⟨j⟩

∥∥∥
∞

(d)
= 0 ,

where (a) holds by the triangle inequality and additivity of limits, (b) holds by (191), (c) holds because the limit of any
subsequence of a convergent sequence is equal to the limit of the entire sequence, and (d) holds by weak ergodicity. Hence,
K∗ has all identical rows, and so rank(K∗) = 1. Therefore, |λ1(K

∗)| > 0 and λ2(K
∗) = · · · = λd(K

∗) = 0.
Moreover, by the Perron-Frobenius theorem [84, Chapter 1], we have λ1(K

∗) = 1 and λ1(K
n) = 1 for every n ∈ N.

This, along with the continuity of eigenvalues with respect to the entries of a matrix [87, Chapter IV, Theorem 1.1], yields
limℓ→∞ λi(K

nℓ) = λi(K
∗) = 0 for all i ∈ {2, . . . , d}. Since λi(K

nℓ) = λi(K)nℓ for all i ∈ [d], it follows that |λi(K)| < 1
for all i ∈ {2, . . . , d}. Hence, consider the Jordan canonical form K = X−1JX [86, Chapter 3], where the Jordan matrix J is
lower triangular with [J]1,1 = 1 and all other diagonal entries strictly less than 1 in magnitude, and the rows of X contain the
generalized eigenvectors of K, scaled such that ∥[X]⟨1⟩∥1 = 1. For any initial distribution π0 = cX ∈ Pd−1, we have

lim
n→∞

π0K
n = lim

n→∞

{
(cX)

(
X−1JnX

)}
= c

(
lim
n→∞

Jn
)
X

(a)
= ceT1 e1X = [c]1 [X]⟨1⟩ ,

where (a) holds because the powers of Jordan blocks corresponding to eigenvalues with magnitude less than 1 vanish entry-wise
in the limit. Finally, since ∥π0K

n∥1 = 1 for each n ∈ N, we have [c]1 = 1 for any choice of π0 ∈ Pd−1,16 and thus,
limn→∞ π0K

n = [X]⟨1⟩. Hence, K is strongly ergodic, as desired.
Proof of e) ⇐⇒ f): The set of all d× d row stochastic matrices Rd×d

sto is convex, contains the identity kernel (i.e., the d× d
identity matrix), and contains a constant kernel (e.g., the d× d matrix where each row is e1). Thus, by Proposition 3, Part 2,

FKn

(
t;Rd×d

sto

)
= ρ(Kn) t . (192)

Hence, FKn

(
t;Rd×d

sto

)
< t holds iff ρ(Kn) < 1, or equivalently τ(Kn) > 0, as desired.

Proposition 14 states that any Markov chain K ∈ Rd×d
sto has positive spectral gap (i.e., |λ2(K)| < 1) iff FKn

(
t;Rd×d

sto

)
< t

holds for sufficiently large n. We note that taking into account whether the inequality holds for sufficiently high power Kn,
not necessarily K itself, is crucial to this equivalence, as |λ2(K)| < 1 does not imply in general that the inequality holds for
n = 1. As a counterexample, consider a directed cycle on d ≥ 4 vertices with self-loops at each vertex:

∀i, j ∈ [d], [K]i,j =


1
2 , if j = i ,
1
2 , if j = i+ 1 or (i, j) = (d, 1) ,

0 , otherwise .

Clearly, K has positive spectral gap because it is a unichain (by virtue of its cycle structure) and aperiodic (by virtue of its self-
loops). Now, let w and v be point mass distributions at vertices at least distance 2 apart on the cycle, e.g., w = e1 and v = e3.
Then, by matrix multiplication, the distributions after one step of K are wK = (1/2)e1+(1/2)e2 and vK = (1/2)e3+(1/2)e4.
It follows that

ρ(K)
(a)
= ρ
(
[w,v]

)
ρ(K)

(b)

≥ ρ
(
[wK,vK]

) (c)
= 1 ,

where (a) holds because w = e1 and v = e3 have disjoint support and thus ρ([w,v]) = 1, (b) holds by submultiplicativity
of complementary Doeblin coefficients, and (c) holds because wK and vK have disjoint support. By (192), it follows that
FK(t;Rd×d

sto ) = t, even though K has positive spectral gap.
Next, we present the following proposition which exactly characterizes when contraction occurs between two input distributions

after one step of the Markov chain K.17

Proposition 15 (Strict Contraction of Doeblin Coefficient). Let K ∈ Rd×d
sto be a Markov chain. For any subset of states S ⊆ [d],

let NK(S) denote the set of states reachable from S in one time step, i.e.,

NK(S) =
{
j ∈ [d] : ∃i ∈ [d], [K]i,j > 0

}
. (193)

Then, for any pair of distributions w,v ∈ Pd−1, we have ρ
(
[w,v]K

)
< ρ
(
[w,v]

)
iff NK(Sw>v)∩NK(Sw<v) is non-empty,

where we define

Sw>v = {i ∈ [d] : [w]i > [v]i} , Sw<v = {i ∈ [d] : [w]i < [v]i} . (194)

16This occurs because [X]⟨1⟩ is a point on Pd−1, and the remaining rows of X span the direction space associated with Pd−1.
17Since we consider two input distributions, the Doeblin coefficient ρ reduces to TV distance.
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Proof. Fix a Markov chain K ∈ Rd×d
sto and distributions w,v ∈ Pd−1. We have

ρ
(
[w,v]K

) (a)
= 1−

d∑
j=1

min
{
[wK]j , [vK]j

}
(b)
= 1−

d∑
j=1

min

{
d∑

i=1

[w]i [K]i,j ,

d∑
i=1

[v]i [K]i,j

}
(c)

≤ 1−
d∑

j=1

d∑
i=1

min
{
[w]i [K]i,j , [v]i [K]i,j

}
(d)
= 1−

d∑
i=1

min{[w]i , [v]i}
d∑

j=1

[K]i,j

(e)
= 1−

d∑
i=1

min{[w]i , [v]i}
(f)
= ρ
(
[w,v]

)
, (195)

where (a) holds by definition of Doeblin coefficient (6), (b) holds by matrix algebra, (c) holds by the identity

min

{∑
i

xi,
∑
i

yi

}
≥
∑
i

min{xi, yi} , (196)

(d) holds by factoring [K]i,j outside the minimum (because [K]i,j ≥ 0) and interchanging the order of summation, (e) holds
because K is row stochastic, and (f) holds by definition of Doeblin coefficient (6). The inequality in (196) is strict iff xi > yi
and xi′ < yi′ for some i and i′. Hence, the inequality in step (c) of (195) is strict iff there exist i, i′, j ∈ [d] such that [w]i > [v]i
and [K]i,j > 0 (i.e., j ∈ NK(Sw>v)), and [w]i′ < [v]i′ and [K]i′,j > 0 (i.e., j ∈ NK(Sw<v)).18 Clearly, this is equivalent to
the condition that NK(Sw>v) ∩NK(Sw<v) ̸= ∅, as desired.

Proposition 15 exactly characterizes the condition on K, w, v such that strict contraction occurs in one step. We remark that
two natural corollaries of this result give intuitive conditions on K under which strict contraction occurs for entire classes of w
and v.

Corollary 3 (Strict Contraction and Gramian). Let K ∈ Rd×d
sto be a Markov chain. The joint range of K satisfies F

(
K;R2×d

sto

)
⊆

{(t, y) ∈ [0, 1]
2
: y < t} ∪ {(0, 0)}, or, equivalently, we have ρ

(
[w,v]K

)
< ρ

(
[w,v]

)
for all pairs of distinct distributions

w,v ∈ Pd−1, iff the Gramian matrix KKT is entry-wise strictly positive.

Proof. Fix K ∈ Rd×d
sto .

First, we will prove the forward direction. Assume KKT is entry-wise strictly positive. Fix any distinct distributions
w,v ∈ Pd−1. Recall the definitions of Sw>v and Sw<v from (194). Since probability distributions sum to 1, both Sw>v and
Sw<v are non-empty. Consider any i ∈ Sw>v and i′ ∈ Sv<w. By assumption, we have [KKT]i,i′ =

∑d
j=1[K]i,j [K]i′,j > 0,

so there exists j∗ ∈ [d] such that [K]i,j∗ > 0 and [K]i′,j∗ > 0. By (193), it holds that j∗ ∈ NK(Sw>v) and j∗ ∈ NK(Sw<v),
and so NK(Sw>v) ∩NK(Sw<v) ̸= ∅. By Proposition 15, we have ρ([w,v]K) < ρ([w,v]) as desired.

Next, we will prove the reverse direction. Assume that ρ([w,v]K) < ρ([w,v]) for any distinct distributions w,v ∈ Pd−1.
Fix unspecified distinct i, i′ ∈ [d]. Choosing w = ei and v = ei′ and applying Proposition 15, we have NK({i})∩NK({i′}) ̸= ∅.
Consider any j∗ ∈ NK({i}) ∩NK({i′}). We have

[
KKT

]
i,i′

=

d∑
j=1

[K]i,j [K]i′,j ≥ [K]i,j∗ [K]i′,j∗
(a)
> 0 ,

where (a) holds by definition of NK from (193), and so the off-diagonal entries of KKT are positive. Furthermore, for any
i ∈ [d], we have [KKT]i,i =

∑d
j=1[K]2i,j > 0, where the final inequality holds because K is row stochastic, and so the diagonal

entries of KKT are positive. Hence, KKT is entry-wise strictly positive, as desired.

Corollary 4 (Strict Contraction and Laziness). Let K ∈ Rd×d
sto be a lazy Markov chain (i.e., [K]i,i > 0 for all i ∈ [d]) with

positive spectral gap (i.e., |λ2(K)| < 1). Then, for all pairs of distributions w,v ∈ Pd−1 which differ at each entry (i.e.,
[w]i ̸= [v]i for all i ∈ [d]), we have ρ

(
[w,v]K

)
< ρ
(
[w,v]

)
.

Proof. Fix a Markov chain K ∈ Rd×d
sto and distributions w,v ∈ Pd−1 satisfying the conditions in Corollary 4. Since w and

v differ at each entry, we have Sc
w>v = Sw<v. Since K has positive spectral gap, K has exactly one recurrent class (by

Proposition 14, Part (b)), and so the directed graph representation of K is connected (in an undirected sense). Hence, there
exists an edge between Sw>v and Sc

w>v, i.e., for some i ∈ Sw>v and i′ ∈ Sw<v, we have [K]i,i′ > 0 or [K]i′,i > 0. Without
loss of generality, assume [K]i,i′ > 0. Since K is lazy, we have [K]i′,i′ > 0. By (193), it holds that i′ ∈ NK(Sw>v) and
i′ ∈ NK(Sw<v), and so NK(Sw>v) ∩NK(Sw<v) ̸= ∅. By Proposition 15, we have ρ([w,v]K) < ρ([w,v]) as desired.

18This condition for equality can also be verified by using the ℓ1-norm characterization of TV distance in (a), applying the triangle inequality to deduce (e),
and then using known conditions for equality in the triangle inequality.
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