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Abstract—The antithetic variates method is a well-known
variance reduction technique for Monte Carlo sampling that
is known to be empirically effective in many settings. However,
precise theoretical analyses that quantify the degree of variance
reduction remain unexplored. In this work, as a step towards
developing such theoretical guarantees, we show how strongly
isotonic assumptions allow us to derive stronger antithetic variance
reduction inequalities that provide quantitative lower bounds
on the degree of variance reduction. To this end, we develop
the closely intertwined concepts of antithetic maps and indices,
and reveal their useful properties and ties to problems in
optimal transport and signal processing. In addition, we use our
stronger antithetic variance reduction inequalities to demonstrate
improved theoretical guarantees when antithetic variates are used
in various applications. These applications encompass various
topics including approximating integrals, function approximation,
concentration inequalities, and stochastic optimization. Our
arguments utilize and develop ideas from correlation inequalities
and first-order optimization theory among other tools.

Index Terms—Variance reduction, antithetic variates, function
approximation, stochastic optimization.

I. INTRODUCTION

Variance reduction is a major topic of theoretical and
practical interest in the field of Monte Carlo sampling [2]-[7],
which is widely used in signal processing and machine learning
[8]-[12]. One simple yet effective method of variance reduction
is to use antithetic variates [13]. The idea behind antithetic
variates (and some other variance reduction techniques such
as the control variates method [14]) is to introduce auxiliary
variables that are negatively correlated to the original samples
so that their addition “cancels out” the variance.

For a simple example, suppose the objective is to estimate
fol g(t) dt. The standard Monte Carlo method would be to
generate n independent and identically distributed (i.i.d.)
uniform random samples Uy, ..., U, ~ Unif(0, 1) and evaluate
the canonical estimator 13" | ¢(U;). Antithetic variates
improve on this by sampling g at 1 — U; in addition to Uj,
hoping to induce negative correlation in the summands while
keeping the estimator unbiased [15], [16] (also see [7, Chapter
521, e, g iy (9(U) + 9(1 = U)).

Since cov(g(U;),g(1 — U;)) < var(g(U;)), where var(-)
and cov(-,-) denote the variance and covariance operators,
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respectively, it is trivial to show that the antithetic estimator has
no greater variance than the canonical Monte Carlo estimator
with n i.i.d. samples. Thus, antithetic variates achieve a variance
reduction while using the same amount of randomness (number
of independent random samples).

However, oftentimes the metric of concern is the number
of function evaluations (e.g., in oracle complexity analyses),
in which case it is more appropriate to compare the antithetic
estimator with a canonical estimator that uses 2n i.i.d. samples.
In this regime, it is well-known that antithetic variates achieve
variance reduction when ¢ : [0,1] — R is monotonic [7]:
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Furthermore, the antithetic variates method can also be adapted
to general distributions via the antithetic estimator (cf. [7]):

1

2n 4
=1

n

oo > (U 91— V)] < var

=1

var

n

(9(Z) + g(F (1 = F(Z)))) » )
where F' is the cumulative distribution function (CDF) of the
continuous random variable Z € R and F~! is its generalized
inverse (see Definition 1).

Note that (1) does not provide any guarantees on the
magnitude of the variance reduction that can be achieved
with antithetic variates. Such guarantees are of significant
theoretical interest, as they can be used to improve the
theoretical bounds of many stochastic results and algorithms
that are sensitive to variance, e.g., Monte Carlo integration [3],
concentration inequalities [17], stochastic optimization [18],
[19], and function approximation [20], [21]. However, such
theoretical guarantees are often not available in the literature,
because merely assuming that g is monotonic is too weak
to always ensure a meaningful reduction in variance. Indeed,
in the extreme case when g is constant (which is technically
monotonic), there is no variance reduction (nor any variance
to be reduced in the first place).

Motivated by this observation, we use the anti-Lipschitzness
of a univariate function or strong isotonicity of a multivariate
function, as defined in Assumptions 3 and 4, to capture the
“strength” of its monotonicity. In addition, to derive general
inequalities that can be easily applied to a wide variety of prob-
ability distributions, we define a measure of self-anticorrelation
between a random variable and its antithetic counterpart, the
antithetic index, to isolate the sample distribution’s contribution
to the variance reduction.

A. Main Contributions
We next delineate our main contributions.

1) We define the antithetic map (Definition 2), which maps
a random variable to its antithetic counterpart, and the



antithetic index (Definition 3), an intrinsic property of
probability distributions that measures the magnitude of
negative covariance between an antithetic pair.

2) We analyze some properties of the antithetic map and
index (Theorem 2) and evaluate values for some common
probability distributions (Table I). Furthermore, we present
some observations that reveal interesting links between
antithetic variates and various other problems in optimal
transport and signal processing (Theorem 3).

3) We find a lower bound on the effectiveness of the antithetic
variates method that depends on the anti-Lipschitz constant
(see Assumption 3) and the antithetic index of the random
variable (Theorem 4).

4) We generalize our results to multivariate functions and
establish a strong antithetic variance reduction inequality
(Theorems 5 and 6).

5) Finally, we investigate several applications of sampling
methods and show that their theoretical guarantees can
be improved with antithetic variates:

a) Monte Carlo integration (Proposition 7),

b) Function approximation (Proposition 8),

¢) Concentration inequalities such as Bernstein’s inequality
(Propositions 9 and 11), Bennett’s inequality (Propo-
sition 12), and Lipschitz concentration for Gaussian
random variables (Proposition 13),

d) Stochastic optimization in the nonconvex (Theorem 14)
and strongly convex (Theorem 15) settings.

B. Related Literature

Here we provide a brief summary of the existing literature
on antithetic variates, variance reduction, and some of the
applications that we examine in Sections II-D to II-F. The
concept of antithetic variates was introduced in [13] in a
line of work that focused on harnessing correlation to reduce
variance (see [2] for an early survey). Further research by
[15], [16], [22]-[24] analyzed other theoretical properties of
antithetic variates. Though some of the earlier Monte Carlo
literature did not mention the resemblance, the manner in which
antithetic methods harnessed negative correlation resembled
known correlation inequalities (see, e.g., [25]-[27]). We develop
and exploit such ideas in our proofs. More recently, [19],
[28] have studied how antithetic methods can help empirically
improve the performance of sampling algorithms in machine
learning. We refer readers to textbooks such as [5, Chapter V]
or [7, Chapter 5] for a broader overview of variance reduction
methods.

One of the applications of antithetic variates that we examine
in Section II-F is variance-reduced stochastic optimization,
which has attracted significant attention since the advent of
methods such as Stochastic Average Gradient (SAG) [29], [30],
SAGA [31], Stochastic Variance Reduced Gradient (SVRG)
[18], [32], [33], nonparametric regression methods [34], and
non-uniform (importance) sampling [35]-[37] (see [38] for
a comprehensive survey). Another problem that we analyze
in Section II-D is function approximation, which has a rich
literature with some machine-learning-related results tracing
its roots back to [20], [21], [39]-[41].

C. Outline

First, in Section II-A, we begin with an overview of the
notation and conventions used in this paper and introduce
concepts such as the generalized inverse and strongly isotonic
functions. Next, in Section II-B, we define the antithetic map
and index and examine their properties. In Section II-C, we
present our main results on strong antithetic variance reduction
inequalities. In Sections II-D to II-F, we use our strong variance
reduction inequalities to derive strengthened theoretical guaran-
tees for various applications including function approximation,
concentration of measure, and stochastic gradient descent. In
Sections III to VII, we present the proofs of the aforementioned
results. Finally, in Section VIII, we conclude by summarizing
our results and discuss future research directions.

II. MAIN RESULTS
A. Preliminaries

We begin by introducing the conventions and assumptions
used throughout this paper. First, we impose some basic
constraints on the random variables we study in order to avoid
pathological cases.

Assumption 1 (Non-atomic distribution). The random variable
Z €R is non-atomic, i.e., it has continuous CDF F':R— [0, 1].

Assumption 2 (Finite second moment). The random variable
Z € R has finite second moment, i.e., E[Z?] < +oc.

Although we do not mention it explicitly, Borel measurability
is assumed implicitly for various functions and random vari-
ables in the paper. Since [ is not necessarily strictly increasing,
its inverse might not be well defined. Thus, we use the notion
of a generalized inverse (or quantile function); see [42] for an
exposition of this widely adopted definition.

Definition 1 (GeneralizEd inverse [42]). The generalized
inverse F~1 : [0,1] — R of the CDF F : R — [0,1] of a
real-valued random variable Z is defined as F'~' (y) 2 inf{r €

R : F(z) > y}, where we define R = R U {—o00, +0c0} and
let inf @ = 400 and inf R = —o0.

Note that if Assumption | is satisfied, there must exist an x
such that F'(z) = y for any y € (0,1). Thus, if Z is non-atomic,
F(F~(y)) = y for all y € [0,1] when we let F(—oc0) = 0
and F(+o0c) = 1. Note also that F'~! agrees with the usual
definition of inverse on the range of F' when F' is strictly
increasing and continuous [42], and that F~1(F(Z)) = Z as.
(almost surely).

A main theme of this work is to exploit strong monotonicity
assumptions on a function to prove stronger theoretical guar-
antees. Strong monotonicity can be formally defined in the
univariate and multivariate settings as follows; the definitions
are presented as assumptions for convenience in the sequel.

Assumption 3 (Monotone increasing anti-Lipschitz function).
The function g : R — R is monotone increasing and c-anti-
Lipschitz (see [43, Definition 4.4]) with constant ¢ > 0 if for

every = >y, g(z) — g(y) > c(x — y).

Assumption 4 (Strongly isotonic function). The function g :
R? — R is c-strongly isotonic with constant ¢ > 0 if for



all € = (21,...,724),y = (Y1,...,94) € R with z > y
(i.e., z; > y; for all i € {1,...,d}), we have g(x) — g(y) >
cllz —yl|,,, where || - ||, denotes the ¢?-norm for ¢ € [1, cc].
Furthermore, g : RY — R?, g(z) = (g1(x),...,gp(x)) is
coordinate-wise c-strongly isotonic if g; is c-strongly isotonic
forall i € {1,...,p}.

As the following proposition shows, such strongly isotonic
functions are closely related to strongly monotone operators,
where f: RY — R? is said to be c-strongly monotone (with
c>0)if (f(z)—f(y) (xz—y) > |z — y||§ forall x,y € R?
or simply monotone if ¢ = 0 (see, e.g., [44]).

Proposition 1 (Isotonic functions and monotone operators).
Given a function g : R* — R, if there exists an entry-
wise positive vector u € R? such that g(z)u is a (strongly)
monotone operator, then g is (strongly) isotonic.

Proposition 1 is proved in Appendix A. Note that a
conservative monotone operator g(x)u can be perceived as the
gradient of a convex ridge function F' : R? — R with the form
F(x) = G(uTz) for some scalar function G : R — R [45].

B. Antithetic Indices

In order to derive results for general probability distributions,
we begin by revisiting the antithetic variates method (cf. (2))
and analyze the antithetic map F~*(1 — F(Z)).

Definition 2 (Antithetic map). The antithetic map az : R —
R of a random variable Z € R with CDF F' is defined as

az(z) = F7' (1= F(2)),

where F~! is the generalized inverse of F as defined in
Definition 1. The random variable az(Z) is referred to as
the antithetic pair (or antithetic counterpart) of Z. Note that
although the codomain of az is the extended reals, this does
not cause any issues because az(Z) € R a.s.

As we will soon show, az preserves the distribution of Z
while making the pair (Z,az(Z)) as anticorrelated as possible.
We introduce the concept of antithetic indices to quantify the
degree of this inverse correlation.

Definition 3 (Antithetic index). The antithetic index 7(2)
of a random variable Z € R with CDF F' and finite second
moment is defined as

7(Z) & —cov(Z,az(Z))

= (/OlF_l(u) du)

For CDFs where the mean exists and is finite and the second
moment is infinite, the antithetic index remains well-defined,
but it can be infinite. Note that we omit Z and denote the
antithetic map and index as a and 7 whenever it is unambiguous.
The next theorem presents several useful properties of 7(Z).
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Theorem 2 (Properties of the antithetic index). The antithetic
map az and antithetic index 7(Z) of a random variable Z € R
with CDF F : R — [0, 1] satisfy the following properties:

(a) az(Z) and Z are identically distributed if the distribution
of Z is non-atomic.

(b) az is monotone non-increasing. Furthermore, if F' is
continuous and strictly increasing in the support of Z, az
is continuous and strictly decreasing in the support of Z.

(c) If Z has strictly increasing and continuous CDF, az is
the unique function that satisfies properties (a) and (b).

(d) Forany a # 0and B € R, Y = aZ+ (3 has antithetic map
ay (V) = aaz(a= (Y —PB))+B. If Z has finite second mo-
ment, Y = aZ + B has antithetic index 7(Y) = o*7(Z),
which implies that 7(Y) /var(Y) = 7(Z) /var(Z).

(e) 7(Z) > 0. Arbitrarily small T for fixed variance o* can
be achieved by a piecewise uniform random variable
Z parameterized by t € [%,1) and supported on [O,

o+/3/(t(1 —t))| with probability density function (PDF)

= JeTV IR o<y Tita st
(2) =
1 ¢ t(1—t) . 1 /t(1—t)
sV s Pty -5 21,

which has variance var(Z;) = o2 and limy_,; 7(Z;) = 0.
(f) If Z is non-atomic and has finite second moment, T7(Z) <
var(Z), with equality if and only if F is symmetric, i.e.,
there exists some d € R such that F(d — z) =1 — F(z)
for all z € R.
(g) For any compact interval I = [o,« + L] of length L,

L2

sup E

Z: support(Z)=1

7(Z) =

where the supremum can be achieved by a sequence of L-
scaled symmetric beta random variables with both shape
parameters tending to 0, i.e., if Zy, = o+ LBy where
By ~ Beta(1/k,1/k), limg_,o, 7(Z1,) = L? /4.

Theorem 2 is proved in Section III-A. Note that although
the antithetic map and index remain well defined even for
distributions with atoms, desirable properties such as Theo-
rem 2(a) (which is required for the antithetic estimator to
remain unbiased) are no longer guaranteed, which is why we
assume non-atomicity in most of our work.

The antithetic index is an intrinsic property of probability
distributions that can be readily computed from the CDF
and quantile function using either analytical or numerical
integration. For example, when Z ~ Unif(0,1), we obtain
7(Z) = —cov(Z,a(Z)) = —cov(Z,1 — Z) = E[Z?] —
E[Z](1 — E[Z]) = var(Z) = 5. As another example, when
Z ~ N(0,1) is standard Gaussian, we obtain 7(Z) =
—cov(Z,a(Z)) = —cov(Z,—Z) = var(Z) = 1. For these two
examples, where the distribution is symmetric, the antithetic
index is equal to the variance due to Theorem 2(f). On the
other hand, for random variables with asymmetric probability
distributions, such as exponential Z ~ Exp(1), the antithetic
index is strictly less than the variance: 7(Z) = — [ (2 —
D(=log(1 —e™?) = 1)(e*)dz = & — 1 < 1 = var(Z).

Table I summarizes the antithetic indices and variances
of some common symmetric and asymmetric distributions
including the previously discussed examples. Intuitively, the
antithetic index can be perceived as measuring the “intrinsic
negative correlation” of a probability distribution, which is



TABLE I
A LIST OF SOME PROBABILITY DISTRIBUTIONS ALONG WITH THEIR
ANTITHETIC INDICES AND VARIANCES. NOTE THAT 7(Z) = var(Z) FOR
SYMMETRIC DISTRIBUTIONS, BUT NOT FOR ASYMMETRIC ONES.

Distribution Antithetic Index ~ Variance 7(Z)/var(Z)
Unif (a, b) (b—a)® (b=a)® )
N(p,0) o? o2 1
B b m im0
Beta(a, 1) (O‘L‘H)? g(%-é) (a+1)%(a+2> QQQ(QH)_(;HPB%%)

maximized when the distribution is symmetric and minimized
when it differs drastically from its reflection.

Furthermore, the antithetic map can alternatively be character-
ized as a maximum correlation coupling between a probability
distribution and its mirror image (also see “maximal correlation”
in statistics and information theory [46]). This formulation
also reveals close ties between antithetic variates and optimal
transport theory, as the following theorem details.

Theorem 3 (Maximal correlation and optimal transport for-
mulations of antithetic variates). The antithetic map az and
antithetic index 7(Z) of a non-atomic random variable Z ~ P
with finite second moment has the following properties:

(a) The antithetic map —ayz is the maximum correlation
coupling between the distributions of Z and —Z, i.e.,

—az = argmax corr(Z, f(Z)).
FRoR,—f(Z)~P

(b) Let Q be the distribution of 2E[Z] — Z, i.e., the reflection
of P with respect to its mean. Then,

Wy (P, Q) = \/2var(Z
where Wy (-,

W2(P7 Q)

- 2T(Z>7

-) is the 2-Wasserstein distance [47]:

= inf, /E (X =Y)2
llg \/ (X,Y) 'y[( ) }

where the infimum is over all couplings (joint distributions)
of X ~PandY ~ Q with P and @) as marginals.
(¢) Let R be the distribution of (Z + az(Z))/2. Then,

var(Z) + 7(2)
—
(d) Let S be the distribution of (Z —az(Z))/2+E|Z)]. Then,

var(Z) — 7(Z) B Wa(P, Q)
2 2

Theorem 3 is proved in Section III-B. Notably, the optimal
transport formulation of the antithetic map provides an explana-
tion for why the non-atomicity assumption is needed in order for
the antithetic map to be well-defined. Although the Kantorovich
formulation of the optimal transport problem (which minimizes
over transport plans instead of transport maps) is known to
be equivalent to Monge’s original formulation for non-atomic
distributions [47], this is not true in general for distributions
with atoms. Generalizing the antithetic map to an antithetic

W2(P7 R) <

Wy (P, S) <

“plan” (or equivalently a stochastic map) might accommodate
for such distributions, but this is outside the scope of this paper.

In addition, the antithetic map has an interesting connection
to another classical signal processing problem. The proof of
Theorem 3(b) reveals that W (P, Q)? = 4dvar(3(Z +az(2))).
while Theorem 3(c) and Theorem 3(d) present other relations
between Z, 2(Z+az(Z)), and 3(Z —az(Z)). In general, the
transformation 3(Z + az(Z)), which is closely related to the
antithetic index, may discard information about the distribution
of Z. So, an interesting question is: When can we recover the
distribution of Z from that of Y = %(Z—l—aZ(Z)) ? To simplify
this question, let U be a uniform random variable on the interval
(—3.3).Since Z+az(Z) = Z+F~'(1-F(2)) 4t (3+
U ) + F~ (2 U ) where = denotes equality in distribution,
define the monotone non-decreasing function g : ( é ;) — R,
g(z) =F'(z+3) and let ge(z) = %(gd(a?) + g(—x)) be the
even part of g. Then, Z = g(U) and Y = g.(U). We seek to
recover the distribution of g(U) from that of g.(U), which is
challenging because g, is not usually monotone (and Y’s CDF
is a monotone rearrangement of g, that is difficult to analyze).
So, we consider the simpler question: When can we recover g
from ge?

To answer thls latter question, denote the Fourier transform
of g as G(w f 1/29 r)e”? dx (for w € R), which is
well- deﬁned because

1/2
/ 19(2) *“"”Idx*/ s
~-1/2

since Z has finite second moment. Moreover, the Fourier
transform of g, is Re{G(w)}. So, it suffices to reconstruct G,
or just In{G}, from Re{G}. It is well-known that Im{G} and
Re{G} are related by a Hilbert transform under the Titchmarsh
analytic conditions [48, Theorem 95], which hold when at least
half of Z’s distribution is concentrated at one extreme. We
also note that the question of determining Im{G} from Re{G}
using Hilbert transforms mirrors the classical problem of phase
retrieval using minimum phase assumptions (see, e.g., [49]).

u)| du = E[|Z]] < +o0,

C. Antithetic Variates

As a consequence of Theorem 2(b), when a function g is
monotonic, g o a is monotonic in the opposite direction. This
implies that the variance of the antithetic estimator (2) cannot
be greater than that of the canonical Monte Carlo estimator with
2n samples, - % ZZ 19(Z;). However, this only shows a non-
increase in variance, but not any guarantees on the magnitude
of the reduction. To establish the latter, we impose additional
c-anti-Lipschitz conditions on the pertinent functions to get
the following result.

Theorem 4 (Strong antithetic variates). For any random
variable Z € R with CDF F : R — [0, 1], and any monotone
increasing c-anti-Lipschitz functions f : R — R and g : R —
R with constant ¢ > 0 such that E[f( )2, E[g(Z)?] < 400,
we have cov(f(Z),g(a(Z))) < —c*7(Z) < 0.

Theorem 4 is proved in Section IV-A. Note that although
Theorem 4 does not require Assumption 1, it is required for
strong variance reduction results such as Theorem 6. We



also present a classical proof for vanilla antithetic variates
in Appendix B.

We next generalize Theorem 4 to present a strengthened
version of the antithetic variates method for multivariate
strongly isotonic functions.

Theorem 5 (Antithetic variates for strongly isotonic functions).
Consider a random vector X = (X1,...,X4) € R? where
Xi,...,Xg are i.i.d. random variables with continuous CDF
F : R — [0,1] and antithetic index T > 0. Then, for any
c-strongly isotonic function g : R — R with constant ¢ > 0
such that E[g(X)?] < +oo, we have cov(g(X), g(a(X))) <
—c?7d, where a(X) = (a(X1),...,a(Xy)).

Theorem 5 is proved in Section IV-B. Finally, we further
extend Theorem 5 to (output) coordinate-wise isotonic functions
and express it as a strong variance reduction inequality.

Theorem 6 (Strong antithetic variance reduction inequality).
Consider a random vector X = (X1,...,Xq) € R? where
X1,...,X, are i.i.d. random variables with continuous CDF
F : R — [0,1] and antithetic index T > 0. Then, for any
coordinate-wise c-strongly isotonic function g : R — RP with
constant ¢ > 0 such that E[||g(X)||3] < +oo, we have

g[8 +9(20)] _ gigix

var(g(X)) — 2rpd
2 b
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where a(X) = (a(X1),...,a(X4)) and the variance of a
random vector X is defined as the sum of the variances of
each coordinate, i.e., var(X) £ E[|| X — E[X]||3].

Theorem 6 is proved in Section IV-C. It implies that antithetic
pairs can be used as “drop-in replacements” for i.i.d. variable
pairs to enjoy a reduction in variance. We note that, intuitively,
it indeed holds that var(g(X)) > ¢?7pd in Theorem 6. To
see this, suppose we strengthen the coordinate-wise c-strongly
isotonic condition on g to the following: |g;(z) — ¢;(y)| >
cllz —yl, foralli € {1,...,p} and all z,y € R% Then, for
an independent copy X’ of X, we have

£ llg(X) ~ Elg (I3 = 3E[lo(X) - 9(x)12]

DN | =

D_E[(0:(X) - 0:(X)] = FE[I1X - X[l
= c2pIE{HX - E[X]Hg} = pdvar(X,) > ZpdT(X1),

where we use the fact that X;,..., Xy are i.i.d. This shows
that the gain in adopting antithetic sampling is at least
epd(var(Xy) — 7(X1)).

In the following sections, we explore how our results can
improve theoretical guarantees for approximation using Monte
Carlo methods in various settings. Note that every random
variable considered in the upcoming sections is assumed to be
non-atomic with finite second moment.

D. Application to Monte Carlo Integration and Function
Approximation

One use of antithetic indices is to compute a lower bound
on how much antithetic variates can reduce the variance of
a certain Monte Carlo estimation problem without empirical
evaluation.

Proposition 7 (Antithetic Monte Carlo integration). Given a
monotone increasing c-anti-Lipschitz function g : R — R, the
variance of the antithetic Monte Carlo estimator of fol g(t) dt
satisfies

(;n > (o) + g1 - Um) <) o

where Uy, ..., U, ~ Unif(0,1) are i.i.d. random variables.

Proposition 7 is proved in Section V-A. Next, we apply our
results to approximating a function given a stochastic oracle,
i.e., estimating g : R? — R, g(x) = Ez[¢(x, Z)] given access
to ¢ : R? x R? — RR. Such stochastic functions are commonly
encountered in statistics and machine learning contexts. For ex-
ample, stochastic approximation methods such as the Robbins-
Monro algorithm [50] aim to estimate properties of g (e.g.,
its roots, extrema, etc.) using such a stochastic oracle, while
in machine learning contexts, similar stochastic functions are
used as random bases to form, e.g., neural network functions,
that fit given data [39]. The classic Monte Carlo approach to
approximating g at a given point & would be to sample 2n
values Z1,..., Zs, and evaluate 5- 21221 é(x, Z;), which is
an unbiased estimator with variance varz(¢(z, Z))/(2n). In
the following proposition, we show that the use of antithetic
variates can improve the variance of our estimator.

Proposition 8 (Function approximation). Suppose g(x) =
Ez[é(x, Z)], where Z is a random d-dimensional vector
with i.i.d. coordinates that each have continuous CDF F and
antithetic index 7 > 0, and ¢ : RP x RY — R is a function
with c-strongly isotonic ¢(x,-) for all x. Then, given a point
x, the antithetic estimator

- x, Z; x,a(Z;
Z;(b( )+2¢( (Zi))

i) = -

is an unbiased estimator of g(x) with a variance of
< varz(¢(xz, Z)) — c*rd
2n ’

Moreover, if ¢ is L-Lipschitz under {°°-norm with respect to
Z for all x (with L > c), we also have

E[(3() - g(x))?]

where var(Z) is the variance of a single component of Z. If we
further assume that the domain of x is restricted to a compact
set X C RP with volume vol(X) and that F is symmetric,

< %(Iﬂvar(Z) — 1),

Bl oll) < |/ tevar(Z)vol(X)(22 - ),

where || - ||2 denotes the L*-norm when applied to functions.



Proposition 8 is proved in Section V-B. We briefly mention
an interesting special case of the problem of estimating a
stochastic function g, which can be recast in integral transform
(or “basis expansion”) form g(z) = [p. ¢(x,2)p(2)dz,
where p(z) is the PDF of Z. Consider the case where
¢ :[0,a] x I — R, ¢(z,2) = e~ ** (for some a > 0 and
compact interval I) so that g(z) is the Laplace transform of
p(2). Under mild conditions, the Hausdorff-Bernstein-Widder
theorem states that g is such a Laplace transform if and only if g
is completely monotone (i.e., has alternating signed derivatives)
[51], [52]. Since the “Laplace basis” ¢(x, z) is (uniformly)
strongly isotonic with respect to z if z € [0,a] and z € I,
one special case of the function class we are approximating
is a non-parametric class of completely monotone functions.
Such functions are known to characterize transfer functions
of externally positive linear systems in signal processing and
control applications [53].

E. Application to Concentration of Measure

Our bounds can also be used to tighten many theoretical
results in probability that depend on the variance of samples.
We present the following improvement to Bernstein’s inequality
[17] as an example.

Proposition 9 (Bernstein’s inequality for antithetic vari-
ates). Let Xq,...,X, be iid. zero-mean real-valued random
variables with variance o2, continuous CDF F such that
F(-K)=1-F(K) = 0 for some K > 0, and antithetic
index T. Let X, 11, ...,Xay, be their antithetic counterparts.
Then, for all t > 0, we have

t2/2

P( Zt>f;%“p(_2nw2—r)+2KU3)'

Proposition 9 is proved in Section VI-A. Note that the bound
is asymptotically tighter than the usual Bernstein’s inequality
for 2n i.i.d. variables,

t2/2

ﬂ”( 2t> < 2exp <2m+m/3>

when t/n is dominated by ¢2/K as is the case in the sub-
Gaussian regime [17]. Although this is an improvement in
an asymptotic sense, the 2K¢/3 term prevents it from being
unconditionally superior. This is due to a difficulty in bounding
the sum X + a(X). Without any additional assumptions, it
is difficult to improve on the trivial bound: | X| < K a.s. =
|X + a(X)| < 2K as. This is especially troublesome for
inequalities such as Bennett’s inequality which have a greater
dependence on K. Fortunately, it is possible to improve this
bound with an additional (mild) assumption on the distribution
of X.

2n

S

i=1

2n

Sox,

i=1

Proposition 10 (Condition for tighter bound on antithetic sum).

Let X be a random variable with CDF F such that | X| < K
a.s. for some constant K. Suppose there exist some random
variables Y and Z with symmetric distributions such that
EY]=-K/2, E[Z]=K/2, - K<Y <0as,0<Z<K
as., andY <X X <X Z, where A < B means A has (first-order)

stochastic dominance over B, i.e., P(A > z) > P(B > x) for
all x € R [54]. Then, | X + a(X)| < K a.s.

Furthermore, if such Y and Z exist, then F(K/2) > 1/2
and F(—K/2) < 1/2. Conversely, if F(0) = 1/2 (i.e., X has
median 0), or F' is convex in [—K,0] and concave in [0, K],
or F'is 1/K-Lipschitz, then such Y and Z exist.

Proposition 10 is proved in Section VI-B. As the various
sufficient conditions imply, the condition described in Propo-
sition 10 is very mild. The stochastic dominance condition
Y < X < Z holds for many common distributions such as
the beta distribution and triangular distribution (when shifted
to have zero mean). Under Proposition 10’s assumptions,
concentration inequalities such as Bernstein’s inequality and
Bennett’s inequality can be improved using antithetic variates
without any tradeoff.

Proposition 11 (Improved Bernstein’s inequality for antithetic
variates). In addition to the assumptions of Proposition 9,
further assume that Proposition 10 holds. Then, for all t > 0,

2n t2/2
]P’( ;X > t) < 2exp (—ZH(JQ ) +Kt/3) .

Furthermore, the improved bound on X + a(X) allows for
a direct improvement to Bennett’s inequality as well.

Proposition 12 (Bennett’s inequality for antithetic variates). Let
Xi,...,X, bei.id. zero-mean random variables with variance
o2, continuous CDF F such that F(-K) =1 — F(K) =0
for some K > 0, and antithetic index 7. Let X,41,...,Xon
be their antithetic counterparts. Suppose Proposition 10 holds.
Then, for all t > 0,

P <§: X; > t) < exp (‘ 2n(§2_ 2y (%(55— ﬂ)) ’

=1

where h(x) = (1 + z)log(l + z) — .

Propositions 11 and 12 are immediate consequences of
Proposition 10 and the standard inequalities in [17]. Next,
we shift our attention to concentration inequalities regarding
Gaussian variables. The symmetry of Gaussian distributions
can be exploited to derive an improvement to a classical
concentration inequality regarding Lipschitz functions.

Proposition 13 (Antithetic Lipschitz concentration). Let f :
R™ — R be an L-Lipschitz (under (?-norm) and c-strongly
isotonic function. Let X = (X1,...,X,) be i.id. N(0,1)
with antithetic map a(x) = —x. Let g(x) = %;‘(m)) =

M\/J;*w). Then, for all t > 0,

P (9(X) - Blg(X)]| > ) < 205 (575 )

Proposition 13 is proved in Section VI-C. It improves on the
standard Gaussian concentration inequality for Lipschitz func-
tions [55]: P(|f(X) — E[f(X)]| > t) < 2exp(—t?/(2L?)).
The normalizing constant V2 might seem unusual, but it
naturally arises from the ¢2-norm Lipschitzness assumption.
Suppose that we define another version of g, ¢’ : R?" — R,
that uses 2n i.i.d. variables instead of using antithetic variates:



g @)= f((x1,...,zn)) + f((Tnt1,---,T2n)). Then, ¢’ will
be v/2L-Lipschitz, so ¢’ must be scaled by 1/1/2 to maintain
the same Lipschitz constant.

E Application to Stochastic Optimization

Next, we proceed to an application of our antithetic variance
inequalities in the domain of first-order optimization theory. In
machine learning problems where the objective function can
be expressed as the average of some loss function evaluated at
each data point (e.g., empirical risk minimization), stochastic
gradient descent (SGD) is often used instead of plain gradient
descent (GD) to reduce the cost of evaluating the gradient
when the dataset is large. Although the stochastic gradient is
an unbiased estimate of the full gradient, its high variance
could sometimes make SGD converge more slowly than GD.

Thus, many techniques have been developed to reduce the
variance of the stochastic gradient while keeping it unbiased
[18], [29]-[33], [35]-[37], [56]. The use of antithetic variates
for this purpose has been studied by [19], [28], but theoretical
results that indicate an improvement from vanilla SGD do
not exist. Here, we outline an alternative method of utilizing
antithetic variates and show it to have better worst-case
convergence bounds than SGD.

Given an L-smooth (i.e., continuously differentiable with
L-Lipschitz gradient) but possibly non-convex function f :
RP — R, suppose g : RP? x RY — RP is an unbiased stochastic
first-order oracle (SFO) of f, i.e., Ez[g(z, Z)] = V f(x) and
varz(g(z, Z)) < o for all x € RP, where Z = (Z1,...,Z4)
and Z,...,Z, are i.i.d. random variables with known distri-
bution and antithetic index 7 > 0. Even though we assume
that a global optimum x* € arg min_p, f(x) exists, finding
it for non-convex f may be NP-hard (see [57]). Instead, we
aim to find an e-stationary point, i.e., a random vector & € R?
such that E [||[V f(2)||3] < e for some desired accuracy & > 0.
We note that most of the above, e.g., L-smoothness, SFO, etc.,
are standard assumptions in the optimization literature.

Starting from some x; € RP, the antithetic SGD algorithm
repeats the following iteration:

9(xi, Zy) + g4, a(Z))

2 )
where 77 > 0 is the step-size and a is the multidimensional
antithetic map as defined in Theorem 6.

Z, ~ PZ,

Liy1 =T — 1

Theorem 14 (Antithetic SGD in the non-convex setting).

Suppose g is c-strongly isotonic with respect to Z for all
x. After T iterations, let & be a random vector such that
P& = x:) = 1/T for t € {1,...,T}. Then, the antithetic
SGD method with 1 < 1/L satisfies

2A4
Ez,....z00 || V(@3] <
Zuvna | IVI@E] < T

Ln(o? — ?7pd)
2 )

where Ay = f(x1) — f(x*).

Theorem 14 is proved in Section VII-A. Note that an
equivalent (mini-batch) SGD implementation that takes two
i.i.d. samples per iteration has the bound

2
< 2A4 L Lno
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Fig. 1. A comparison between the performance of SGD and antithetic SGD
when used to optimize nonconvex (left) and strongly convex (right) functions.

which lacks the ¢?7pd term. Similarly, we can derive improved
guarantees in the strongly convex setting, where f is p-strongly

. 2
convex, ic.. f(y) - f(@) = V(@) (y—2)+ &y — =
for all =,y € RP.

Theorem 15 (Antithetic SGD in the strongly convex setting).
In addition to the assumptions of Theorem 14, further assume
that f is u-strongly convex. If the step-size satisfies 1 < j/L?,

o2— cszd

Ez,..zr H‘17T+1*CE*||§ <(1- nu)Tél +7n o

where 61 = ||x1 — :c*||§

Theorem 15 is proved in Section VII-B. Figure 1 shows
examples of two experiments that empirically demonstrate
the improved performance of antithetic SGD as implied in
Theorems 14 and 15. The experiments compare the performance
of constant step-size SGD (with batches of two samples per
iteration so that its rate of oracle calls is equivalent to that
of antithetic SGD) and antithetic SGD when used to find the
minima of fi(z) = 1—3 faﬁ +w (a non-convex function)
and fo(z) = 2* + 22 + 1 (a strongly convex function) using
the first-order oracles gy(z,Z) = (l”ﬁ;l)z -G Jjgzz)z and
g2(2,Z) = 2(2 +4/3)(z? + 1) — (z — 1)% + 423, respectively,
where Z ~ Unif (0, 1). As predicted by Theorems 14 and 15,
antithetic SGD achieves a lower noise floor than SGD.

III. PROOFS OF PROPERTIES OF ANTITHETIC MAPS AND
INDICES

A. Proof of Theorem 2

Proof.
Part (a): From the definition of the antithetic map, we have

Plaz(Z) <x) =P(F'(1 - F(Z)) < x)
Qp1-F(2)<F(2)) 2Pz > F (1 - F(z)))
=1-F(F'(1-F(z) 2 F(x),

where (a) and (b) hold due to F(z) >y &z > F~1(y) [42]
and (c) follows from F(F~!(y)) = y when Z is non-atomic
(see note below Definition 1).

Part (b): Since F 1! is non-decreasing [42] and 1 — F' is non-
increasing, the composition F~1(1 — F(-)) is non-increasing.
Furthermore, if F is continuous and strictly increasing, F'~1
is continuous and strictly increasing in the support of Z [42],
thus ay is also strictly decreasing and continuous.



Part (c): Consider any strictly decreasing and continuous
f:R — R such that Z and f(Z) are identically distributed.
Then, for any ¢t € R, we have

F(t) =P(f(Z)<t) =P(Z>f'(t)) L1 - F(f~'(t)),

where (a) uses the continuity of F. This implies that { =
F~1(1 = F(f~1(t))) for all t € R. Hence, the inverse of f~!
is the strictly decreasing function f(t) = F~1(1 — F(¢t)).
Therefore, f(t) = F~1(1 — F(t)) is the unique strictly
decreasing and continuous function such that Z and f(Z)
are identically distributed.

Part (d): Y = aZ + 8 has CDF Fy(y) = F((y — 8)/c)
and inverse CDF Fy,'(t) = aF~'(t) + . Thus,

ay (y) = Fy' (1 = Fy (y))

o (e (52)

In addition,

T(Y)=—cov(Y,ay (Y))=—cov(aZ + B,aaz(Z) + B)
=—a’cov(Z,az(2)) = o*7(2).

Part (e): 7(Z) = —cov(Z,az(Z)) > 0 follows from
Chebyshev’s association inequality [17] due to az being non-
increasing from Theorem 2(b). It can be shown that Z; has

variance var(Z;) = o2 and antithetic index
(1—-t)(10t2 —6t+1) ,
T(Z) = 573 o,

thus lim;_,; 7(Z¢) = 0.
Part (f): Per the Cauchy-Schwarz inequality,

lcov(Z, az(2))|? < var(Z)var(az(Z)) = var®(Z),

with equality if and only if az(Z) = ¢Z + d a.s. for some
constants ¢ and d. Since az is non-increasing and az(Z)
and Z are identically distributed due to Theorem 2(a) and
Theorem 2(b), it can be inferred that ¢ = —1 and Z must be
symmetric in order for the equality to hold.

Part (g): The upper bound follows immediately from Popovi-
ciu’s inequality [58], which states that var(Z) < L?/4, and
Theorem 2(f). Since var(By,) = k/(8+4k), using Theorem 2(d)
and Theorem 2(f) we have that 7(Z;) = L?k/(8 + 4k). Thus,
limg s 0 7(Z1) = L?/4, achieving the supremum. O

B. Proof of Theorem 3

Proof.

Part (a): We begin by noting that the £2-optimal transport
map from P to @ on the real line is known to be the monotone
rearrangement (see, e.g., [47, Corollary 4.6]), i.e., Fél o Fp
where Fp and Fyy are the CDFs of P and (), respectively.

Next, set P and ) such that 7 ~ P and —Z ~ Q.
Then, Fp(z) = 1 — Fp(—x), thus Fél(t) = —F5'(1 - 1).
Therefore, the monotone rearrangement from P to @ is
F ' (Fp())) = —=Fp'(1 = Fp()) = —az. It is well-known
and easy to prove that the maximum correlation problem is
equivalent to the optimal transport problem with ¢2-cost (see,
e.g., [59]), completing the proof.

Part (b): In one dimension, the 2- Wasserstein distance is
known to be Wy(P,Q) = \/fo — F5'(t))2dt (see,
e.g., [39]). If Z ~ P and 2E[Z] — Z Q we have

Fo(z) =P2E[X] — X <z) =P(X > 2E[X] — )
=1-Fp(2E[X] —x)

and Fj,'(t) = 2E[X] — F ' (1 —t). Thus,
2(P.Q) = ¢ / RO
\// —2E[Z] + Fp'(1—t))2dt

_ WR(Z _9E[Z) + Fp' (1= Fp(2)))? dP(2)

- \//R(Z + az(z) — 2E[Z])? dP(z)

& \Jvar(Z + az(2)) = /2var(Z) — 27(Z),

where (a) follows from E[Z 4 az(Z)] = 2E[Z]. We also note
that the notation | - dP(z) refers to a Lebesgue integral with
respect to the measure defined by P in the sequel.
Part (c): Consider the square of W5 distance which we will
upper bound by using the identity coupling:
inf

rell(P,R) /(xy)(x —y)?m(x,y)dedy
<[ (- +QZ())2 aP(2)
(Z—zz(Z)f

— 1E[2%] + 1Elas(2)"] - LElZay(2)

4
_ E[Z%] — E[Zaz(Z))] _ var(Z) + 7(2)
2 2 .

Part (d): Similarly to (c),

Wa(P,R)? =

=Ez.p

Wa(P,S)?

inf

T
<Z +az(Z2) ]E[Z]>2

(z,y) dz dy

<Ez.p 5

7 —
— var +az(2) _ var(Z) T(Z).
2 2
This completes the proof. O

IV. PROOFS OF ANTITHETIC VARIATES RESULTS
A. Proof of Theorem 4

Proof. We begin by letting Z denote an independent copy of
Z. Then, we have
12) (

¢ 021@[ 2)(a(2) )}

€ 2¢*(E[Z]E[a(2)] - E[Zaw)]):2c2cov<z,a<2>>,

~ g(a(2)))]



where (a) follows from the monotonicity and anti-Lipschitzness
of f and g and the fact that ¢ is monotone non-increasing,
and (b) uses the fact that Z is an independent copy of Z.
Furthermore, note that

E[(£(2) - £(2))(9(a(2)) -
=2 (BLf(2) E[a(a(2)| - Bl
= —2cov(f(Z),9(a(2))),

where we again use the fact that Z is an independent copy
of Z. Together, these inequalities yield the desired bound
cov(f(Z),g9(a(Z))) < c*eov(Z,a(Z)) = —c21(Z) < 0,
where the nonpositivity follows from Theorem 2(e). O

gla (Z)))]
2)g(a(2))])

B. Proof of Theorem 5

Proof. We establish this result by induction on the dimension
d. When d = 1, the result holds due to Theorem 4. Suppose
the result holds for any arbitrary fixed d. We will use this
inductive hypothesis to show that the result holds for d + 1.
To this end, consider d + 1 i.i.d. random variables

X1,..., X441 with continuous CDF F : R — [0,1] and
any c-strongly isotonic function g : R — R. Let W =
(XQ, e ,XdJrl) and X = (Xl, W) = (Xl, . 7Xd+1). Then,

Elg(X)g(a(X))] € EwEx,[g(X:,W)g(a(X,),a(W
® / Eax [g(X1, w)g(a(X1), a(w))] dP(w)

2 [ Bxlaiw) Bxlola(X). a(w)]dP(w) — 7

— Buy[Ex[g(X1, W)|W] Ex[g(a(X0). (W) W] - 7

2 EwlEx[g(X1, W)|W]] EwlEx,[o(a( X)), a(W)) W]
—Ar(d+1)

)W ]]

©E[g(X)]Elg(a(X))] - r(d + 1),

where W ~ P, (a) and (e) follow from the tower property,
(b) uses the independence of X; and W, (c) follows from
Theorem 4 because h(t) = g(t,w) and h'(t) = g(t, a(w))
are monotone non-decreasing and c-anti-Lipschitz, and (d)
follows from the inductive hypothesis and the independence
of X; and W because h(w) = Ex, [g(X1,w)] is c-strongly
isotonic and Ex, [g(a(X1), a(W))|W = w] = h(a(w)) due
to Theorem 2(a). Therefore, we have established by induction
that cov(g(X), g(a(X))) < —c?7d, completing the proof. []

C. Proof of Theorem 6

Proof. The first result follows immediately from Theorem 2(a).

Next, observe that

(K1 10X

2
_ Engm +9(a(X)

= 1E[la(X) ~Elg (X112 +{E [lg(a(X)) ~Elg (a(X )]

+ 5E[(9(X) ~ Elg(X))" (g(a(X)) ~ Elg(a(X)))

(a) var

warX) | 1 Z cov(gi(X), gi(a(X)))
® Var(g(X)) —c Tpd
— 2 b
where (a) uses Theorem 2(a) and (b) follows from Theorem 5,
completing the proof. O

V. PROOFS OF MONTE CARLO INTEGRATION AND
FUNCTION APPROXIMATION RESULTS

A. Proof of Proposition 7

Proof. Let h(U) = 3" (U,
isotonic, Theorem 6 1mphes

(;n D60 + 91 - U»)) —var ()
- 2 B 2n 24n’

< var(g(U)) — (%)2771 @ var(g(Up)) B 2
where (a) follows from 7(U;) = 1/12. O

. Since h is c¢/n-strongly

B. Proof of Proposition 8

Proof. The proof follows from adapting arguments in [20],
[28]. Using Theorem 5 and the fact that ¢(x,-) : RY —
R is c-strongly isotonic for all @, we have covz(¢(x, Z),
#(x,a(Z))) < —c*rd for all z. Thus,

E|(3() - 9())’]

_ V&rz((b(.’l}, Z)) + COVZ(d)(ma Z)7 (rb(mﬂ CL(Z)))
2n
< varz(¢(xz, Z)) — c*rd

— 2” i

where j(z) = L1y @Z0to@alZ)) 5 an unbiased
estimator of g(x). In addition, if ¢(z,-) : R? — R is L-
Lipschitz with respect to the {*°-norm for all x,

var(o(x, Z)) o(x, Z"))

2

= %V&T(¢(CL‘, Z) —

= El(¢(e, 2) - 6(@, 2] £ El|Z - Z'|]
®) L?

<71E[Hz Z'||3] = L*dvar(2),

where Z' is an independent copy of Z, (a) is due to Lipschitz
continuity, (b) is due to the monotonicity of ¢P-norms, and
var(Z) is the variance of a single component of Z. Thus,

d
E|(3(@) - 9(@))*] < 5 (L*var(2) — ¢?r).
n
When the distribution of Z is symmetric, this simplifies to
E {(g(m) - g(:c))ﬂ < fvar(Z)(L?—c?). Furthermore, if the
domain of x is a compact set X with volume vol(X) > 0,

e
< \/JE JIERCRE ¢
< \//dear(Z);i2 —)d_ _ \/dvar(Z)voléiL()(LQ —)

E[[g - gl-]




where (a) is due to Jensen’s inequality and (b) follows from
Tonelli’s theorem. This proves the bound on E[||g — g[l2]. O

VI. PROOFS OF CONCENTRATION OF MEASURE RESULTS
A. Proof of Proposition 9

Proof. Recall that for Yi,...,Y, iid. with zero mean,
var(Y;) = s2, and |Y;| < M as. [17]:
t2/2

1>t) < S —
P<ZX1 _t> _ZGXP( n82—|—Mt/3)

i1
Next, take Y; = X; + X; 1. Then, var(Y;) = 2(¢? — 7) and

|Y;| < 2K a.s., thus
> t)
t2/2

IP’( 21&) :p<
2n(o? — 1) + 2Kt/3> ’

2n n
> X DY
=1 =1
< 2exp (
yielding the desired inequality. Note that this is tighter than the
usual Bernstein’s inequality when ¢/n is dominated by o2/K
as is the case in the sub-Gaussian regime. O

B. Proof of Proposition 10

Proof. Since Y is symmetric with respect to —K /2 and Z is
symmetric with respect to K /2, the existence of such Y and
Z is equivalent to

Fla)+ F(-K —z) <1< F(z)+ F(K — z) 3)

for all |z| < K. Thus,

X+aX)=X+F ' (1-F(X))
CX PR - X)) B K

where (a) holds due to 1 — F(z) < F(K — z). Similarly,
X + a(X) > —K as. The two necessary conditions follow
immediately from plugging x = K/2 or x = —K/2 in (3)
(alternatively, observe Fy (—K/2) = Fz(K/2) =1/2).

The first sufficient condition implies that F'(x) > 1/2 for all
x>0 and F(x) < 1/2 for all < 0, which implies (3). The
other two sufficient conditions both imply that Y < X X Z
with Y ~ Unif(—K,0) and Z ~ Unif (0, K). O

C. Proof of Proposition 13

We begin with a key lemma that analyzes the Lipschitz
constant of g.

Lemma 16 (Lipschitz constant of antithetic sum). Let f :
R™ — R be an L-Lipschitz (under (P-norm) and c—lstrongly
isotonic function. Then, g(x) = (f(z) + f(—x))/2" 7 is (L—
¢)-Lipschitz continuous.

Proof. Given some © = (z1,...,%,) and ¥y = (y1,...,Yn)
with ||z —y||, = d, let m = (max(z1,y1), ..., max(z,,yn))
be the coordinate-wise maximum of x and y. Then, m > x

and m > y. Next, let |m — |, = a and ||m — y||, = b.
Note that ||(a, b)||, = d. Then,

f(®) = f(y) = f(x) — f(m) + f(m) — f(y)
(a) (b)
< —ca+ f(m) - f(y) < —ca+ Lb,

where (a) follows from m > x and c-strong isotonicity, and
(b) follows from L-Lipschitzness. Similarly, we can show that
f(@)— f(y) > —La+cband ca— LB < f(~x) — f(—y) <
La — ¢b. Thus,

[f(@) = f(y) + f(—z) = f(—y)| < (L —¢)(a+ D),

which implies that

“

l9(z) — 9(y)| =

@ a+b®
< 7 = (L =o)lle —yllp,

where (a) follows from (4) and (b) is Ei}le to Holder’s inequality
|a+ 0] < [[(a,0)[,I(1, D2, =277 ||(a, b) - N

With Lemma 16, proving Proposition 13 is straightforward.

Proof of Proposition 13. Per the standard Gaussian concentra-
tion inequality for Lipschitz functions [55], if f : R™ — R is
L-Lipschitz and X ~ N(0,1)",

PFX) ~ BLACK 2 ) < 2w (57 ).

Applying this to g, which is (L — c)-Lipschitz under ¢?> norm
due to Lemma 16, immediately yields the desired result. [

VII. PROOFS OF STOCHASTIC OPTIMIZATION
A. Proof of Theorem 14

This proof adapts standard ideas from, e.g., [60]-[62],
which bound the error for a single iteration and then take
the expectation with a telescoping sum. We begin by proving
the following lemma.

Lemma 17 (Single iteration error bound). If n < % we have

Ay —Ez [A L
( t T}Zt[ t+1])+7"7(0_2_627_dp)’

forallt € {1,...,T}, where Ay = f(x;) — f(x*) > 0.

IV ()2 < 2

Proof. By smoothness we have
L
F(@e1) < fl@e) + V@) (®er1 — @) + Sl — a3
Ln?
= fl@e) — 1V F (@) G+ Gl

where G = (g(x¢, Z;) + g(x+,a(Z;)))/2. Adding and sub-
tracting V f(z;) from nV f(z;)TG,, we have

NV f(@) (G = V f(z) + V f(1))

=V (@)l + 0V (@) (G — V f(=0)).



This result then yields
f@e1) < fl@) —nllV f(@)l3—nV f () (Ge—V f (1))
+ 216,V f @)+ V @l

Let us take the expectation Ez, [-] (with respect to Z; condi-
tioned on Z1,..., Z;_1) on both sides to obtain

Ez, [f(xt+1)]

< fla) =0V H @)} 1V (@) B (G~ V f(w)
e 1G - V@) + V@]
S ICORINAICHIE
Y19 @l + 216 - Vs )
2 @) - (1- ) 10 sl + 5 ST

where (a) follows from the unbiasedness of our oracle g (and
by extension G,), and (b) follows from Theorem 6. Letting
n< - such that 1 — M 2 , subtracting f(x*) to both sides,
and rearrangmg completes the proof. O

Next we, use Lemma 17 to show Theorem 14.

Proof of Theorem 14. From Lemma 17, we take the expecta-
tion with respect to Z1,..., Z to obtain

Ez,...z: [V f(@)]l3]
2IE Ay — A L
< zl,...,ZTE7 t t+1] + 777(02 . cQpo),

using the fact that each Z; is drawn i.i.d. from Pg. Averaging
over t, we obtain

7 ZEzh - IV F(o)]3]
(Al — EZI:Nw T[At+1D L77

Let & be a random vector such that P(& =
by tower expectation,

2

— crdp) .

x;) = 1/T. Then,

IEth,ZT,A [”Vf

ZEZh wZ

[At+1] > 0 completes the proof.
O

+ IV f(z)]I3] -

Using the fact that Ez, .z,

B. Proof of Theorem 15

Proof. This proof adapts standard ideas from, e.g., [63
For simplicity, let

1, [64].

9(x, Z) + g(z, a(Z))

5 .
Note that Ez[G(x, Z)] = Vf(x) and varz[G(z, Z)] =
(0% — c*rpd) /2. From V f(z*) = 0 and L-smoothness, we
have ||V f(z)||3 < L? ||z — «*||3. Thus,

Gz, Z) =

0% — Prpd
Ezl|Glx. Z)|l3) < L? | e

— |3+

In addition, from strong convexity, we have

%12
fla) - ) > 2T

(6)

Then, letting §; denote ||z; — x* Hg for simplicity, we have
Opp1 = |2r — 2" — G (24, Zt)”;
=6 — 2@ — &) Glay, Z0) + 0* |Gy, Z0) |5 -
Taking the expectation with respect to Z;, we have
Ez, [0¢+1]
= b, — 2n(@: — @*) "V f (@) + *Ez, |G (@i, 203

() o2 — 2rpd
< (1+ L2n)6, — 2n(xs — )TV f(a0) + 2%
(b . 0% — c*rpd
< (L—nu+L2n?)8, — 2n(f () — f(z*)) + an
() o2 — 2rpd

< (1= 2+ L), + 1 T2 @

2 b
where (a) follows from (5), (b) follows from strong convexity,
and (c¢) follows from (6). Thus,
E)Zl, 2 [Ot+41]
< (1—2np+ L)',

t—1
,0% —c2rpd

- . 2 2yi
+1 #;(pzme (%)
) o2 —c2rpd
<(1-2 L*n?)'6, + p———==
< (I —=2nu+ L") Iy
© o2 — c?rpd
< (1= np)'oy + 17—
2
where (a) follows from multiple applications of (7), and (b)
and (c) follow from 7 < ;1/L?, completing the proof. O

VIII. CONCLUSION

In this paper, we defined the antithetic index, explored its
properties and connections to various concepts in optimal
transport and signal processing, derived strong antithetic
variance reduction inequalities, and demonstrated how they can
be used to improve theoretical results on sampling methods.
Note that our approach is not limited to the examples explored
in this paper, and can be used to improve the variance
dependence of any method that relies on sampling a known
distribution. Moreover, although we only investigate the i.i.d.
setting for simplicity when deriving multivariate inequalities
such as Theorems 5 and 6, this restriction can be loosened by
allowing variables to have different antithetic indices. When
the underlying distribution is unknown, existing distribution
estimation methods could potentially be used to estimate the
CDF from the sample data so that antithetic variates can be
generated. In addition, although we impose anti-Lipschitzness
or strong isotonicity in order to guarantee quantitative gains
in antithetic variance reduction, it is worth considering finer
measures of the degree of non-linearity of quantile functions
to loosen this restriction. We leave these directions of research
to future work.



APPENDIX A
PROOF OF PROPOSITION |

Proof. First, if u is positive, for all * > y with & # y we
have uT(x — y) > 0. Thus, if g(x)u is a monotone operator,

(9(@)u — g(y)w)" (x —y) = (9(x) — g(y)u" (x —y) >0,

implying that g(x) — g(y) > 0, establishing that g is isotonic.
Next, we proceed to the strongly monotone case. Suppose

there exists some positive vector u € R? such that g(x)u is a

c-strongly monotone operator. Then, we have by definition

(9(x)u—gy)u)" (x —y) > cllz —y|3 > clz —y|%

for all z,y € R™. If > y, then

(9(x)u—gy)u)" (. —y) = (9(=) — g(y)u" (z — y)
< (9(=) — g(v)llull1llz — ylloo,

and thus (g(z) — () [l | — ¥l > el — y|%, which
implies that g(x) — g(y) > (¢/||u|l1)]|x — Y||co- Therefore, g
is ¢/||ul|1-strongly isotonic. O

APPENDIX B
STOCHASTIC DOMINATION PROOF OF ANTITHETIC
SAMPLING

Chebyshev’s association inequality is not the usual approach
to derive the antithetic variates method for variance reduction
[16] (also see [7], [22], [24]). Since proofs for the vanilla
antithetic variates method can be difficult to find in the Monte
Carlo literature, we provide a self-contained alternative proof
for it that completes partial arguments presented in various
formal and informal sources. We reiterate that although the
ensuing result is known, the presentation below is complete
and potentially more palatable to a statistical signal processing
audience.

Proposition 18 (Antithetic Variates [7]). Given a uniform
random variable U on the interval [0,1] and any monotone
non-decreasing functions f : [0,1] = R and ¢ : [0,1] —» R,
we have cov(f(U),g(1 —-U)) <0.

Proof. First, we may assume that f and g have codomain
Ry, ie., f : [0,1] - R4 and g : [0,1] — R4, without
loss of generality. Indeed, f(0) = mingc(o 1) f(t) and g(0) =
min,e[o,1] 9(t), and we can construct monotone non-decreasing
functions f : [0,1] = R, f(t) = f(t)+ f(0) and g : [0,1] —
R4, g(t) = g(t) + ¢g(0) such that cov(f(U),g(1 — U)) =
cov(f(U),g(1 = U)).

Define the PDF p on [0, 1] such that p(t (t)/ fo
(for ¢ € [0, 1]), where the normalization constant must be ﬁnlte
as f is bounded. Let P : [0,1] — [0,1], fo
denote the corresponding CDF. Since p is monotone non-
decreasing, P is convex. Hence, we have P(t) = P((t)1 +
(1 —1¢)0) < tP(1)+ (1 —¢)P(0) = ¢t for all t € [0,1],
because P(0) = 0 and P(1) = 1. This implies that the
CDF P (first-order) stochastically dominates the CDF of U.
Since [0,1] 5 ¢t — g(1 — t) is monotone non-increasing, this

dominance yields the following monotonicity relation between
the expected values of g(1 — t) with respect to p and U:

/Op(t)gu—t)dtgfo g(1—tydt,

where the integrals are finite because f and g are bounded.
Equivalently, we have

1
- / (g1~ yat

/ F(t)dt / g(1 — t)dt = E[f(U)] Elg(1 - V)],
().

E[fU)g(1 -

i.e., cov(

g(1=U)) <0, which completes the proof. [
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