Knowledge Cubes

A Proposal for Scalable and Semantically-Guided Management of Big Data

Amgad Madkour, Walid G. Aref, * Saleh Basalamah

Purdue University, USA
* Umm Al-Qura University, KSA
Motivation

• **Understand the query intent**
 - **Query:** “Michael Jordan Bio”
 • Athlete (Basketball, Baseball) ? Professor (EECS Berkley) ?
 - Understanding the semantics of the name and Bio

• **Utilize heterogeneous sources to answer complex queries**
 - **Query:** “Michael Jordan Bio”
 • Web ? Encyclopedia ? Social Media ? Most Accurate Source ?

• Architecture that **scales** well to accommodate Big Data sources
Vision

Building systems that are guided by the data semantics that includes topical, contextual, spatial and temporal aspects

• **Query:** “Michael Jordan Bio”
 - University campus → Spatial
 - Statistics building → Contextual
 - “Michael Jordan”, “Bio” → Topic
 - Recently updated “Bio” → Temporal
Knowledge Cubes

• A database instance capable of storing, analyzing, and searching data
 – Intelligent → Ingests data and presents accurate answers
 – Adaptive → Structurally evolves over time

• Established based on semantic aspects:
 – Topical, Contextual, Spatial, or Temporal

• Specializes in handling data only relevant to its semantics

• Uses Linked Data as its main building block with RDF as its data model
 – All data in <Subject, Predicate, Object> format
Knowledge Cubes

Architecture of Knowledge Cubes
Founding Principles

• **Structural Evolution**
 – Evolves based on its newly attained size or semantic aspect by re-partitioning dynamically in an unsupervised fashion

• **Temporal Evolution**
 – Organizes its own data temporally using a time-roadmap

• **Analytic Distribution**
 – Distributes analytic load across multiple knowledge cubes and then communicates the results back according to relevance
• **Discovery of Data Sources**
 - Maintain and create relationships among data sources
 - **Ex:** Probe the web for relevant data web sources and link them based on their semantics
• **Catalog**
 - Maintains all information related to data sources
 - **Ex:** A catalog entry might include Wikipedia so we maintain its meta-information (last-updated etc.)
Architecture

- **Data Sources Update and Extension**
 - Integrate newly acquired data in an unsupervised manner
 - **Ex:** A data source indicates that a certain <Subject> (ex: Bush) is no longer president
• **Information Extraction**
 - Employs text analysis to extract and learn from structured and unstructured text
 - **Ex:** Extract \(<\text{Subject},\text{Predicate},\text{Object}>\) using unsupervised techniques
Architecture

- **Cube Awareness**
 - Provides structural or data-level updates to the cube
 - *Ex:* New cube has been created that handles data about basketball
Architecture

- **Search and Querying**
 - Constructs to understand the semantics of the query terms
 - **Ex**: Providing a SPARQL and Geo-SPARQL query capabilities
Architecture

- **Data Store and Indexing**
 - Efficient and scalable storage and indexing mechanisms over RDF triples
 - **Ex:** Connect to Relational DBMS, Triplestore or other RDF data store
Challenges

- **Semantic Interpretation**
 - Interpretation of ambiguous or imprecise data
 - **Ex:** Weather data (Is the data in Celsius? Fahrenheit?)

- **Uncertainty**
 - Attach a truth value to the extracted data
 - **Ex:** 90% confident that this is Bush (President) and not Bush (Band or Plant)

- **Data Partitioning Scheme**
 - Defining an efficient scheme for partitioning
 - Based on Named Entity Type (Sport, Organization, Name)? Time? Spatial?
Challenges

● Storage and Indexing
 − Choice of storage scheme
 • Ex: Triplestores, Vertically-partitioned tables, schema-specific systems, Other?

● Communication among Cubes
 − Define a protocol that considers the overhead of contacting and retrieving content from other knowledge cubes
 • Ex: How many cubes should we contact to give a precise answer?

● Data Change Frequency
 − Identify when a knowledge cube updates its Linked Data
 • Hourly? Weekly? On-Demand?
Summary

- An architecture driven by **data semantics** called Knowledge Cubes

- The data semantics includes **spatial**, **temporal**, **topical** and **contextual**

- Knowledge cubes founding principles include **structural evolution**, **temporal evolution** and **analytic distribution**

- A Knowledge cube aggregates and responds to queries only **relevant** to its data semantics