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Abstract— Urban and environmental researchers seek to obtain
building features (e.g., building shapes, counts, and areas) at large
scales. However, blurriness, occlusions, and noise from prevailing
satellite images severely hinder the performance of image seg-
mentation, super-resolution, or deep-learning-based translation
networks. In this article, we combine globally available satellite
images and spatial geometric feature datasets to create a gen-
erative modeling framework that enables obtaining significantly
improved accuracy in per-building feature estimation and the
generation of visually plausible building footprints. Our approach
is a novel design that compensates for the degradation present in
satellite images by using a novel deep network setup that includes
segmentation, generative modeling, and adversarial learning for
instance-level building features. Our method has proven its
robustness through large-scale prototypical experiments covering
heterogeneous scenarios from dense urban to sparse rural.
Results show better quality over advanced segmentation networks
for urban and environmental planning, and show promise for
future continental-scale urban applications.

Index Terms— Building features, footprint, generative model-
ing, procedural modeling, satellite images.

NOMENCLATURE
S Network of segmentation phase.
G Network of generative upsampling phase.
D Discriminator network for G training.
E Reward network for G training.
A Input satellite image.
B Ground-truth building footprint mask.
L Loss functions, differed by subscripts.
Z Sociogeometric features.
S(A) Segmentation result of S, given A.
G(S(A), Z) Generated building footprints by G, given

S(A) and Z .

I. INTRODUCTION

OBTAINING global high-quality individual building fea-
tures at scale are needed by many urban and envi-

ronmental applications. The remote sensing community has
provided impressive methods using aerial images [1], [5], [12],
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[40], [53] and street views (e.g., [8], [9], and [10]) at local
scales. However, processing from satellite images (e.g., [9]),
which yields the potential of global coverage, suffers from
low-resolution blurriness, occlusions, and noise leading to
more challenging building modeling and feature estimation
tasks. The goal of this article is to use satellite images and
globally available spatial feature datasets in order to compute
accurate instance-level building features (e.g., building counts
and areas).

Prior work for estimating features from satellites often relies
on segmenting the images and estimating building features.
Recent image segmentation methods use a variety of deep
network structures (e.g., FCN [24] and U-Net [36]) to delineate
objects and a subset of these methods focus on separating-out
individual buildings (e.g., DeepMask [34], Mask R-CNN [14],
and YOLO [35]). However, the accuracy of the building
feature estimation using those end-to-end segmentation net-
works significantly relies on the quality of input images. One
explored option is to improve images using super-resolution
(SR). Image SR seeks to recover enhanced details from a
provided image (e.g., [2], [17], [18], and [19]). However,
the enhanced resolution is still not sufficient to obtain very
accurate building features. The blurriness and noise in satellite
images severely hinder the accuracy of segmentation, super-
resolution, and thus building feature estimation.

Our key observation is that our targeted urban and envi-
ronmental applications seek estimates of building count, area,
and shape. Since there are globally available geometric fea-
tures, such as approximate vegetation, population [37], and
approximate surface elevation [44], we take inspiration from
computer graphics and procedural modeling to define a gener-
ative synthetic modeling process. This process creates a high-
resolution building footprint layout from a provided satellite
image and estimates building features at a significantly higher
quality compared to prior works. Altogether, our framework is
able to overcome resolution, occlusion, and noise limitations,
as well as tolerate variations in satellite sensor measurements
(see Fig. 1).

As an example, we show a satellite image of Chicago
in Fig. 1(a), exhibiting typical low-resolution degradation
(e.g., lack of sharp corners, the unwanted merging of nearby
building structures, and multiple occlusions by trees and by
other buildings). A current state-of-the-art approach is to train
an end-to-end deep segmentation network based on high-
quality satellite datasets (e.g., U-Net [18], [36]) [see Fig. 1(d)].
One improvement is to use a customized SR method to
improve image quality (e.g., [50]) prior to image segmentation
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Fig. 1. Motivation: building footprint and feature estimation under blurriness, occlusions, and noise. (a) Example input satellite view from Chicago. (b) Our
GFBE method generated building footprint, and feature estimation of building counts (CT), total building area (TA), average building area (AA), and mean
relative error of the above three metrics (RE). (c) Ground-truth building footprint and features. (d) Results by deep segmentation networks [18]. (e) Results
by SR enhanced images [50]. Our GFBE method notably outperforms both methodologies.

[see Fig. 1(e)]. As shown, neither approach can yield the
imagery needed for accurate building feature estimation (e.g.,
these approaches cannot yield realistic building footprints,
perform sufficient resolution enhancement, and compensate for
occlusion). In contrast, our approach [see Fig. 1(b)] produces
significantly more accurate building feature estimation and
improved realism of the building footprint layout.

Our approach, generative building feature estimation
(GBFE), uses a novel two-phase framework, as shown in
Fig. 2. The first phase performs a semantic building segmen-
tation based on a U-Net structure [18]. The second phase
synthesizes a solution using a conditional generative deep
network and geometric features. Our results show superior
performance compared to various state-of-the-art approaches.
Our method beats a state-of-the-art segmentation network [18]
by 43.4%, 41.2%, and 44.0% and also beats a family of the
generative adversarial network (GAN)-based image translation
networks (see [22], [23], and [24]) by 14.3%, 9.5%, and
3.8% on L1 error of building count, total building area,
and average building area, respectively. Besides, our method
also significantly improves the visual plausibility of generated
building footprints compared to alternative solutions.

Our main contributions include the following:

1) a generative network for building footprint and feature
(e.g., building counts and areas) estimation from satellite
images and geometric features (both globally available);

2) a system producing good instance-level behavior of
building footprint and features despite extreme blurri-
ness and occlusions from satellite imagery;

3) a framework that is robust against extreme resolution
degradation and is extendable to more feature estima-
tions for additional urban planning applications.

II. RELATED WORK

A. Building Feature Estimation

Urban meteorology and urban planning focus on surface
building structures of developed cities. Many papers use a

variety of urban-based metrics of building layout to calcu-
late related meteorological or demographical predictions. The
WUDAPT [7] project calculates a series of urban canopy
parameters from the spacing, shape, height, and size of build-
ings. However, due to the limitation of available building
layout datasets, its metric relies on a lookup value table
designed for grid cells from kilometers to 100 m in size at
best. Many other urban projects utilize multiresource remote
sensing or GIS data for the calculation of urban canopy
parameters [16], [39], [47]. However, these works either esti-
mate a proxy for a large group of urban buildings or directly
use high-quality GIS datasets, which is not common for
most cities in the world. Urban building layout and features
play a significant role in these projects, but accessibility and
quality of such building layouts and features vary significantly.
We focus on enhancing the availability of building feature
estimation without assuming that detailed GIS datasets are
globally available.

B. Building Modeling and Segmentation

Urban procedural modeling has had much success in mod-
eling buildings and cities. Efforts have focused on building
generation (e.g., [29] and [30]), parcel generation (e.g., [48]),
and more. Each procedural model must be carefully crafted
needing a potentially time-consuming process. Thus, it is dif-
ficult to design procedural models for all building styles in the
world. Recently, Lu et al. [25] developed an exciting method to
synthesize ground-level urban images from satellite imagery.
These bottom-up approaches do yield detailed building/city
models but do not address segmentation.

Many varieties of segmentation methods have been applied
to images of buildings and urban structures. Approaches are
based, for instance, on fully convolutional networks [24],
encoder–decoder frameworks [18], region proposal and con-
volutional networks [6], [61], gated graph convolutional net-
works [42], and GAN-based pixel segmentation [41]. Some
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Fig. 2. GBFE: a visual summary of our proposed GBFE. During inference, the input low-resolution satellite images (A) are first processed by the segmentation
phase (S). Then, the intermediate results S(A) will be input into the generation phase (G), while geometric features (Z ) will be concatenated in the bottleneck.
The high-resolution generated results G(S(A), Z) will be output through feature extractors to get building features. During training, the intermediate results
are compared to low-resolution ground truth (BLR) for loss backpropagation to the segmentation phase. High-resolution ground truth (B) will be compared to
generated output to calculate reconstruction loss. Meanwhile, both ground truth and generated output are input into a discriminator network for judging input
images that are true or false and are input into the reward network for feature loss by comparing them to ground-truth building features. Both adversarial
learning losses, together with reconstruction loss, will be back propagated to the generative phase.

methods handle noise but are applied to medical volume
rendering (e.g., [51]). Such methods can achieve good perfor-
mance on urban scenario benchmarks, including Cityscapes [8]
and the INRIA Aerial Image Labeling Dataset [26], thus
demonstrating good pixel-based segmentation [10]. However,
the results of these top-down methodologies are highly depen-
dent on input data quality and resolution. Bischke et al. [4]
find that deep segmentation methods, in general, produce
lower resolution output than expected. Some methods suggest
upsampling strategies to potentially double the output resolu-
tion [49]. However, no segmentation method considers input
that is relatively very low resolution.

In this article, we position our goal in the middle of two
aforementioned tasks and use top-down deep generation to
effectively synthesize plausible results and also obtain good
bottom-up performance as per feature-level metrics.

C. Super-Resolution

Image SR seeks to recover higher resolution details from
a provided input image (e.g., [55]). Some SR methods use
residual blocks [15] to improve resolution [60] and others
use fully convolutional networks [54]. However, as shown in
our results section and comparisons, our segmentation goal is
different than SR, and SR alone is not sufficient. Other SR
methods (e.g., [2], [18], and [19] use adversarial learning. For
example, Menon et al. [28] use a GAN [11] to obtain up to
4× upsampling on manually downsampled images. However,
our task is more difficult than conventional SR tasks as we
deal with arbitrary and much more severe blurriness, and our
goal is to produce a high-quality segmentation that matches
instance-level building features.

Image completion aims to infill an arbitrary missing
region of an image with continuous content. Several methods

[56], [57], [63] use adversarial networks, but they cannot
recover details in extremely blurry colored images or highly
structured binary segmentation masks.

D. Image-to-Image Translation

Deep learning for image-to-image translation has yielded
impressive results (e.g., [19]). GANs have shown outstanding
abilities to learn distributions enabling multimodal style gen-
eration [65] and style transformation tasks [64]. Exact pixel
accuracy is not the objective for adversarial training but rather
mimicking a distribution (presumably of some realistic space)
by using a discriminator. Recent building mass modeling
applications also utilize multiple GAN-based style synthesis
models to reconstruct building facades [20]. Approaches in
3-D reconstruction [13] make use of the VAE-GAN structure
proposed by [22] and the AE-GAN [27]. The AE-GAN
combination benefits from learning a similarity function based
on features, which results in a more robust reconstruction
process. Recently, building footprint extraction and building
change detection applications have benefited from conditional
GANs [2], [38], [59]. Their works are closely related to our
building feature estimation tasks.

In our case, we propose using a generative method (e.g.,
a GAN) combined with a U-Net structure (e.g., a variant of
an autoencoder) to create the (most likely) building footprint
configuration in the input image. Collectively, our approach
is able to synthesize high-quality building footprints from a
relatively low-resolution satellite image.

III. METHOD

A. Structure Design

Based on the aforementioned thoughts, we investigated sev-
eral design options and arrived at the pipeline shown in Fig. 2
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(GBFE). We first segment incoming satellite image A into
S(A) by segmentation network S. Then, we train a generative
upsampling phase G to produce significantly higher resolution
building footprints. Generator G consists of two elements:
encoder GEn and decoder GDe. Particularly, we first transform
S(A) into deep latent space by the encoder. Then, we encode
and concatenate Z into latent space and generate high-quality
building footprints by the decoder. In this manner, we are able
to achieve generative upsampling of low-quality satellite image
segmentation to produce higher resolution footprints yielding
building shapes, counts, and areas much more similar to binary
ground-truth images B. Because focused instance-level metrics
(building counts and so on) are nondifferentiable by pixel-
level loss functions, we trained an instance-level metric reward
network E as an approximation of a differentiable metric
predictor to adversarially optimize those metrics. Apart from
the conventional discriminator D in adversarial learning, the
reward network E will be simultaneously trained against G.
Both networks aim to provide realistic visualization and better
instance-level behavior of generator G. We also experimented
with the latest Transformer mechanism by adding multihead
self-attention (MHSA) layers from [43], but it did not provide
a clear benefit (see Table III).

B. Segmentation Phase

The segmentation phase transforms a satellite image A ⊂

RH×W×b to its binary segmentation S(A) ⊂ RH×W (build-
ing or nonbuilding), where b is the number of bands in
the image of size H × W . The segmentation network is
derived from TernausNetV2 [18], which itself is a U-Net-based
structure [36]. Our basic convolution module is the residual
block from ResNet [15], which has outstanding comprehensive
learning ability and effective gradient propagation, especially
for deep network structures. We use WiderResNet-38 as the
encoder–decoder backbone [58] and fine-tune all training
parameters based on the performance of our satellite images.
Particularly, we find that a shallower but wider model struc-
ture will benefit low-resolution segmentation, while a deep
structure does not provide explicit benefits. Our final structure
consists of only 9.37% of the parameter volume in [18]
but provides better performance compared to the original
deep structure. Our dataset suffers from severe unbalanced
training of building and nonbuilding pixels, where build-
ing pixels are less than 20% of the total pixels. To this
end, we modify the loss function of [18] to a weighted
binary cross-entropy loss, where we emphasize the posi-
tive prediction term by λp. Thus, the ideal segmentation
network S∗ is to obtain the lowest bound of the loss
function

S∗
= arg min

S
− [λp B log S(A) + (1 − B) log(1 − S(A))].

(1)

We trained the segmentation phase first and froze it during
the training of the following generative upsampling phase. Its
segmentation output S(A) will be the input for the generative
upsampling phase.

C. Generative Upsampling Phase

Our generative upsampling phase is enlightened by an
image-to-image translation network pix2pix [19]. In our cho-
sen design, the generator’s input is a naive bilinear upsampling
(BLS) of the initial segmentation results S(A). This does
not add any fundamental information to the segmentation but
enables us to match the output resolution to that of the ground-
truth data (in our case, we upsample by 10×). Our generator
G consists of conventional layer settings similar to U-Net.
As described in Section III-A, the depth of GEn is such that
an input image S(A) is downsampled to size 1 × 1 latent
vector in the bottleneck layer. Specifically, we setup nine-time
convolution/downsampling for 512 × 512 input image. Feature
vector encoded by GEn and stand-alone geometric features Z
will be combined at the bottleneck of the network. By fine-
tuning to balance between network performance and parameter
volume, the length of the bottleneck latent vector is set as 512.
One of the key explorations is how to integrate the feature
vector Z , as shown in Fig. 4. Details will be discussed in
Section IV-D1. After bottleneck processing, the latent vector
is decoded by GDe, which is with the reverse structure as GEn
to ensure the identical size as the input image.

This generative upsampling phase learns to generate output
G(S(A), Z) as indistinguishable from B. Similar to condi-
tional GAN [19], the discriminator D will see both S(A) and
B during training, in addition to G(S(A), Z). Thus, our GAN
loss function is given as follows:

LGAN(G, D) = ES(A),B[log D(S(A), B)]

+ ES(A),Z [log(1 − D(S(A), G(S(A), Z)))].

(2)

Furthermore, a reconstruction loss in the generator LRec(G)

is one significant control mechanism to ensure similarity
between generated images G(S(A), Z) and ground truth B.
Prior research has found the L1 loss to lead to sharper results
compared to L2 loss. Also, for scenarios with unbalanced
foreground and background, such as a building segmenta-
tion, weighted classification loss can be used to empha-
size foreground accuracy and help produce sharper edges
(see [30]). Hence, we simultaneously use L1 and weighted
binary cross-entropy loss [see (1)] to keep G(S(A), Z) and
B similar.

As mentioned in Section III-A, we also wish to ensure
that the generated and upsampled results G(S(A), Z) have the
desired instance-level metric predicted by the reward network
E . Toward this, we train E by absolute error objective toward
instance-level feature values of ground-truth images B. The
reward network structure is based on the ResNet structure [15].
During generator training, we expect G to learn how to use
the geometric features to produce an output that exhibits
the ground-truth features C , which includes building count,
average building area, and total building area calculated from
ground truth B (see Section III-D). The loss function of this
reward network is given as follows:

LInt(G, E) = ES(A),C,Z∥C − E(G(S(A), Z))∥1. (3)

Authorized licensed use limited to: Purdue University. Downloaded on April 25,2025 at 06:26:12 UTC from IEEE Xplore.  Restrictions apply. 



HE et al.: GBFE FROM SATELLITE IMAGES 4700613

TABLE I
FEATURE CORRELATION: THE CORRELATIONS BETWEEN INPUT GEOMETRIC FEATURES (COLUMN) TO GROUND-TRUTH BUILDING FEATURES (ROW)

Altogether, our final target function for G is a weighted
combination of the three aforementioned losses

G∗
= arg min

G
max
D,E

[LGAN(G, D) + λRecLRec(G)

+ λCLInt(G, E)] (4)

where hyperparameters λRec and λInt control the relative impor-
tance of each loss component.

D. Features

The sociogeometric features help steer our generation pro-
cess. They consist of social features and geometric features.
Social features include population, elevation, and vegetation
index (see Fig. 3), which are globally available extrinsic
features (e.g., they are provided by external sources). We list
those features in the following.

1) Population: We use the global LandScan [37] population
dataset at 1-km resolution.

2) Elevation: We use ALOS Global Digital Surface Model
with 30-m resolution [44]. In order to normalize het-
erogeneous ground elevation values across the world,
we calculate a relative elevation by truncating the aver-
age of the lowest 5 pixels in each input image. Then,
calculate mean relative elevation values for each patch,
which should correspond to the average building height.

3) Vegetation Index: We compute the normalized difference
vegetation index (NDVI) using the four bands of the
input satellite images (3-m resolution; see Section IV-A)
by the method of [3].

Geometric features include building count, average building
area, and total building area, which are intrinsic features calcu-
lated from each segmented image S(A) after the segmentation
phase. It is also globally available given our input satellite
images. These are listed as follows.

1) Building Count: The total number of physically sepa-
rated buildings in a patch of the satellite image.

2) Average Building Area: The average area of buildings
in a patch of the satellite image.

3) Total Building Area: The total building coverage area in
a patch of the satellite image.

The selected features are all in raster format. Datasets
that hold coarser resolution than desired will be nearest-
neighbor upsampled. All aforementioned sociogeometric will
be encoded and injected into the bottleneck of the generative
network. Meanwhile, the ground-truth building count and area
values will be used to train the reward network E . Table I
shows the correlation between input sociogeometric features
and ground-truth building features. In other words, the pop-
ulation, elevation, vegetation index, building count, and area
in S(A) are able to help generate an upsampled image having

Fig. 3. Sociogeometric features: we show the sociogeometric features
(of Chicago) where pixel brightness indicates amount. (a) Population values.
(b) Elevation values. (c) Vegetation index values.

Fig. 4. Different injections of feature vector Z . (a) Concatenate Z with
input S(A). (b) Concatenate Z at the bottleneck layer. (c) Concatenate Z at
the first input layer. (d) Concatenate Z with all encoding layers.

building footprints with the ground-truth building count and
area. For example, a low elevation, high population, and small
building area can imply that the buildings in the initial seg-
mentation are unnecessarily partitioned or partially occluded
(i.e., the low residential buildings must be big enough to
contain all the people). The generator could “join” segmented
buildings and/or reduce the space between them, producing
closer to ground-truth values for building count/area—other
such intuitive scenarios can be developed. It is the goal of the
generator’s learning process to correlate feature values with
image generation.

Inspired by Zhu et al. [66] and Mirza and Osindero [31],
we evaluate four different ways to encode features into our
generator (see Fig. 4): 1) we expand Z with a length of n to
H × W × n and then concatenate it with S(A) to make a
H × W × (n + 1) tensor as input of generative upsampling
phase; 2) we concatenate Z with bottleneck vector of G;
3) we expand and inject Z to the first convolutional layer of G;
and 4) we expand and inject Z to all convolutional layers of
G. Section IV-D1 contains a summary of experimenting with
these four options. We find that 2) provides the best result.

IV. EXPERIMENTS

A. Dataset and Implementation Details

We use 3-meter-per-pixel (mpp) resolution four-band (RGB
and NIR) Planetscope imagery [46] as our input satellite
images. The imagery is obtained daily and globally. All
imagery is georegistered and because of the abundancy of the
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data; Planetscope provides simple filters that enable obtain-
ing cloud-free imagery (<1%) and captures during summer
months to reduce sensor seasonal biases. The ground truth
used is the INRIA Aerial Image Labeling Dataset [26], which
is at 0.3 mpp. The ground-truth dataset contains five cities
(i.e., Austin, Chicago, Kitsap, Vienna, and Tyrol) and covers a
total area of 405 km2. For training and validation convenience,
we tile the input satellite images into 200 × 200 pixel tiles
and use them for the segmentation phase. For the generative
upsampling phase, we further tile the input dataset down to a
size of 50 × 50 and then bilinearly upsample it to 500 × 500,
which effectively corresponds to the resolution of the INRIA
dataset. This is equal to a physical size of 150 × 150 m2.
During training, all image sizes will be padded to the nearest
power of 2.

We split the INRIA dataset into a training set (13 235
pairs or about 80%) and a validation set (3309 or about
20%). Our GBFE is trained sequentially phase by phase.
We first train the segmentation phase S with our satellite
images and nearest-neighbor downsampled ground truth (both
3 mpp). Various data augmentation strategies are used to pre-
vent overfitting, including random resizing, cropping, rotation,
and random adjustment of brightness, contrast, and gamma.
Second, we bilinearly upsample S(A) to the resolution of
the ground-truth segmentation (0.3 mpp) and then utilize it
as input to train the generative upsampling phase. For each
bilinearly upsampled input patch, we trained it by ground-truth
building footprint B and ground-truth features C (building area
and count). During a single iteration of adversarial training,
weight updating is conducted in turn. We first update discrim-
inator D with B and then update reward network E with C .
After that, we update generator G by back propagation of
different losses in (4) based on its output G(S(A), Z). We also
implement the aforementioned data augmentation except for
spectral adjustment when training G.

Training time for GBFE was about 40 h on a PC with
an NVIDIA RTX 2080 GPU Card. Typically, we trained for
200 epochs and used Adam optimizer [21] with learning
rate of 0.0002 and momentum parameters β1 = 0.5 and
β2 = 0.999. The loss function weight settings are given as
follows: λp = 2.25, λRec = 100, and λC = 100.

B. Evaluation Metrics

Since a prominent use of urban satellite segmentation is
for urban planning and meteorology applications, we use
building count and area as instance-level metrics. Specifically,
we compute the L1 errors of m ∈ {building number, total
building area, average building area} as follows:

L1(m) = EG,S{∥Cm − Intm(G(S(A), Z))∥1]} (5)

where Intm means the function to calculate m from GBFE
output G(S(A), Z) and Cm is the corresponding metric ground
truth. For better illustration across different magnitudes among
metrics, we also include absolute predicted values of m into
our analysis, together with its ground-truth values. Generally,
the closer the predicted value that we obtain compared to the
ground truth, the better GBFE performs.

Fig. 5. GBFE examples: GBFE overcomes extreme blurriness and
occlusions.

We understand that higher pixel accuracy relates to higher
instance-level accuracy, but they are not linearly related. For
instance, a segmentation with the same building shapes as
ground truth but shifted a certain distance will result in
low pixel-level accuracy but high instance-level accuracy.
In our case, instance-level metrics and realistic building shapes
are desired by our targeted urban applications. Nevertheless,
we still include the F-1 score and Intersection over Union
(IoU) in our results, as a reference.

C. Comparisons

Some visual results of GBFE on multiple satellite image
tiles are shown in Fig. 5. We compare GBFE to a variety of
alternative approaches. In particular, we compare to combina-
tions of U-Net [18] for semantic segmentation, pix2pix [19],
CycleGAN [64] or BicycleGAN [65] for image transforma-
tion, and ESRGAN [50] for SR. Since our GBFE task is
not equivalent to any of those networks, we compose the
network into different sequential combinations that perform
a fair comparison to ours.

The seven combinations and a reference solution that we
compare are described in the following. All of the networks
have been trained with our dataset and use the same tilings
and resolutions at the input and the output as our approach,
except the reference solution (ResNet) configuration, which
only outputs predicted values. Each network is fine-tuned
multiple times until no explicit qualitative or quantitative
improvements, and we use their best performing solution.

1) U-Net + BLS: We apply U-Net-based segmentation
followed by a BLS.

2) ESRGAN + U-Net: We perform GAN-based SR fol-
lowed by U-Net-based segmentation.

3) U-Net + ESRGAN: We apply U-Net-based segmentation
followed by GAN-based SR.

4) BLS + pix2pix: We perform BLS followed by pix2pix-
based image translation.

5) U-Net + BLS + pix2pix: We apply U-Net-based
segmentation followed by BLS and pix2pix image
translation.
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Fig. 6. Comparisons (qualitative): GBFE generated footprints compared to seven alternative approaches. Images from each row correspond to the same
input patch. Images from each column are generated by the same model combination labeled above. GBFE results are highlighted by a red label and a green
box. Note that combinations of U-Net with image translation network family (pix2pix, CycleGAN, and BicycleGAN) conduct BLS during processing; it is
not shown in the label to save space.

TABLE II
COMPARISONS (QUANTITATIVE): GBFE COMPARED TO SEVEN ALTERNATIVE APPROACHES USING OUR EVALUATION METRICS. WE ALSO SHOW A

RESNET-BASED PREDICTION OF BUILDING COUNT AND AVERAGE AREA (NO IMAGE OR BUILDING SHAPES ARE OUTPUT); THIS SERVES AS A

REFERENCE TO THE PREDICTION ACCURACY POTENTIAL

6) U-Net + BLS + CycleGAN: We apply U-Net-based
segmentation followed by BLS and CycleGAN.

7) U-Net + BLS + BicycleGAN: We apply U-Net-based
segmentation followed by BLS and BicycleGAN.

8) ResNet Prediction: We apply ResNet [15] to directly
predict values of building counts, total, and average
building area. This configuration does not produce an
image nor building shapes, but we include as a reference
of an approximation of the prediction accuracy potential.

Table II and Fig. 6 contain quantitative and qualitative
results of our comparisons. The results show both quantita-
tively and qualitatively that our approach outperforms all the
above combinations in terms of building area and building
count errors. As quantitatively compared to a straightforward
U-Net segmentation, our GBFE beats it by 43.4%, 41.2%,
and 44.0% improvement on L1 error of building count,
total building area, and average building area, respectively.
GBFE also performs similar quantitative improvements toward
ESRGAN alternatives. Qualitatively, U-Net and ESRGAN
generate blobby and joint building footprints where each
building is impossible to be visually distinguished. Regarding

the GAN-based image translation network family, our GBFE
also outperforms the best rival “U-Net + BLS + pix2pix” by
14.3%, 9.5%, and 3.8% on L1 error of building count, total
building area, and average building area, respectively. We rec-
ognize this improvement from the usage of sociogeometric
features and adversarial rewards’ network.

Significant improvements focus on visual quality and plau-
sibility of qualitative results (see Fig. 6). Specifically, the
result of “U-Net + BLS + pix2pix” at the first row wrongly
splits long, and thin buildings into several smaller ones like
tiny buildings in the upper right corner. While GBFE is
able to not only keep the shape of a long building, it also
correctly splits joint tiny buildings appearing in the same
patch. At the second and the forth row, GBFE provides
better splitting capability than any other alternatives. In the
third row, only GBFE is able to correctly complete missing
buildings ignored by initial segmentation to form a reasonable
community. Particularly, for the BicycleGAN alternative, its
results suffer model collapse by some testing patches where
nonbuilding prediction covers the entire patch (the third row
in Fig. 6). Our method is not dominant in pixel-level errors
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Fig. 7. Ablation study (qualitative): the qualitative results of the four options to inject feature vector Z into GBFE with the best being option “b”.

TABLE III
ABLATION STUDY (QUANTITATIVE): WE SHOW THE QUANTITATIVE RESULTS FOR THE FOUR OPTIONS TO INJECT FEATURE CHANNELS INTO GBFE.

WE ALSO SHOW RESULTS OF REMOVING VARIOUS COMPONENTS OF OUR METHOD

(e.g., F-1 and IoU). However, several results holding better
pixel-level accuracy are mainly caused by arbitrarily predicting
all possible pixels as building. They cannot provide plausible
building contours for further 3-D modeling nor reasonable
building statistics for urban planning applications. For ResNet
reference, it is a much easier task to only predict values of
building-related metrics compared to generating sharp 2-D
building footprints. However, there are no explicit statistical
improvements compared to GBFE performance. Hence, GBFE
achieves our goal that is to generate a plausible upsampled
building segmentation from relatively low-resolution input.

A qualitative comparison to Microsoft building footprints
dataset [29] in Chicago is shown in Fig. 8. This dataset is
the building segmentation result by EfficientNet [45] based on
very-high-resolution satellite imagery (0.3 mpp). Our GBFE
produces qualitatively competitive building footprints even
based on satellite imagery with 10× lower resolution (3 mpp).

D. Ablation Studies

1) Feature Injections: We experimented with injecting the
feature-based latent vectors into different parts of the generator
(as shown in Fig. 7). Table III contains the quantitative results
of the four different strategies. Option (b) seems to perform
best both quantitatively and qualitatively. In the first row of

Fig. 8. Qualitative comparisons to Microsoft building footprints: the
qualitative comparisons between GBFE and Microsoft building footprints
dataset [29] in Chicago.

Fig. 7, option (b) generates a plausible community of building
footprints better than option (a). In the third row, option (b) is
the only one that can split two joint buildings in the lower part
of the patch. Thus, we chose the best strategy concatenating
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Fig. 9. Robustness test: we compare GBFE to ground-truth reference curves for several forms of image degradation. (a), (e), and (i) Upsampling performance
curves on total building area, building count, and average building area metrics. (b), (f), and (j) Three performance curves under dilation and erosion.
(c), (g), and (k) Three performance curves under only dilation. (d), (h), and (l) Three performance curves under only erosion. GBFE shows better robustness
in all cases.

Fig. 10. Qualitative results of robustness test: the qualitative results of GBFE performance on resisting specific degradation. Orange box: downsampling
only. Red box: dilation and erosion. Green box: dilation only. Blue box: erosion only.

the Z feature vector directly into the bottleneck layer of the
generator.

2) Structure Alternatives: In another experiment,
we removed some GBFE components and/or modified loss
functions and then retrained the network. The performance
decrease compared to the original GBFE indicates the
contribution belonging to removed/modified structures or
functions.

First, we removed the building feature reward network E in
GBFE. For each of the four options of feature Z injection,

we removed E from each and retrained our GBFE as per
the following equation. The target function is now given as
follows:

G∗
= arg min

G
max
D,E

[LGAN(G, D) + λRecLRec(G)]. (6)

Second, we removed the reconstruction loss LRec term from
the best performing GBFE. The new target function is given
as follows:

G∗
= arg min

G
max
D,E

[LGAN(G, D) + λCLInt(G, E)]. (7)
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Fig. 11. Large-scale prototypical application. (Left) Experiment region is covered by pink. The black contour indicates the boundary of Belgium, Europe.
The approximate locations of the three sampled patches are indicated by red, green, and blue points. (Right) Qualitative results of three sampled patches.

The quantitative results of the aforementioned studies are
shown in Table III. Results indicate that reward network
E (“GBFE(b) - E”) most improves the accuracy of GBFE,
while reconstruction loss LRec (“GBFE(b) - Rec loss”) also
significantly contributes to the final performance of GBFE.
In particular, removing L1 loss and using only weighted binary
cross-entropy (“GBFE(b) - L1”) will cause overprediction of
both building count and building total area, while removing
weighted binary cross-entropy loss (“GBFE(b) - BCE”) will
cause notable F1 score and IoU decreases. We include both
elements of reconstruction losses to provide a plausible pre-
diction of building pixels in an unbalanced prediction task
(nonbuilding pixels dominate over building pixels).

Furthermore, we also tested the latest Transformer self-
attention mechanism by replacing the bottleneck of GBFE with
MHSA layers from the Transformer-based network [43]. The
quantitative results in Table III (“GBFE(b) + MHSA”) do not
indicate a clear overall performance improvement with MHSA.
Besides, modified self-attention layers harm the training effi-
ciency of GBFE and amplify the instability of performance
compared to the original setting. We infer this is caused by
the common disadvantage of Transformer-based networks that
encode a structured 2-D matrix into a 1-D vector. Compared
to conventional convolution that preserves end-to-end spatial
registration across layers, MHSA sacrifices spatial information
and results in reduced performance stability; meanwhile, its
global attention processing increases the calculation burden.

E. Robustness

1) Upsampling Performance: Our targeted satellite imagery
typically includes blobby building shapes, adjoining buildings,
and the disappearance of small buildings. To evaluate our
effective upsampling performance, we utilized a bilinearly
downsampled ground-truth segmentation image of 0.3 mpp
up to 50× lower resolution as input and implement pretrained
generative upsampling phase of GBFE to get generated output.
We measured the ability to recover the feature values for
total building area, building count, and average per-patch
building area. Taking building count as an example, when

downsampling gets worse, its value will draw a decreasing
degradation curve. Our GBFE should draw a higher curve to
prove its upsampling performance. Since evaluating the entire
validation set would average out performance fluctuations,
we evaluated a randomly sampled set of eight patches from
Austin and Chicago. In each graph of Fig. 9(a), (e), and (i),
we show the result using GBFE and the reference result
of computing feature values directly on the downsampled
ground truth. In all cases, GBFE outperforms the ground-truth
reference. In particular, for building counts [see Fig. 9(e)] and
average per-patch building area [see Fig. 9(i)], GBFE is able
to recover almost the same feature values at a downsampling
of 25× as at the original resolution, while the reference
curves show severe degradation after only 2× downsampling.
Between 25× and 50× downsampling, GBFE does show
performance degradation. For total building area performance
[see Fig. 9(a)], neither GBFE nor reference shows great
degradation, but, upon close inspection, GBFE outperforms
slightly. Sampled qualitative results of downsampling 5×,
10×, 20×, and 50× are shown in orange box of Fig. 10.

2) Degradation Compensation: Segmentation using our
satellite images shows nearby buildings being joined and
building footprint sizes enlarging or shrinking. To evaluate
the ability of GBFE to compensate for these degradations,
we perform an experiment with different amounts of image
morphological operations. Similar to the prior upsampling
experiment, we process the same patch set. We first downsam-
ple 0.3 mpp ground-truth patches 10× to mimic the general
downsampling degradation of input patches. Then, the patches
are processed with different levels of dilation and erosion,
while the input feature vectors are kept the same. We also
do the same processing on ground-truth data as a reference.
Results are shown in Fig. 9(b)–(d), (f)–(h), and (j)–(l). Red
curves show GBFE performance, while blue curves show
ground-truth references. Overall, GBFE demonstrates better
robustness to degradation by maintaining flatter (e.g., more
horizontal) curves as degradation levels increase compared to
the reference ground-truth data. In particular, GBFE essentially
shrinks dilated footprints, enlarges eroded footprints, and splits
connected footprints in order to maintain more stable total
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TABLE IV
VARIANCE SUPPORT: WE SHOW THE PERFORMANCE OF A SINGLE GBFE FOR ALL PATCHES VERSUS MULTIPLE GBFES (ONE PER CLUSTER TYPE).

NO SIGNIFICANT VARIATIONS ARE OBSERVED BETWEEN THE TWO OPTIONS

building area, building counts, and average per-patch building
areas. When morphological operations reach a processing
width of about 25 pixels, most building footprints are joined
or eliminated; thus, GBFE and the reference curves tend to
perform similarly. Samples of the qualitative results under
morphological degradation widths of 5, 10, 15, and 20 pixels
are shown in the red, green, and blue boxes of Fig. 10.

3) Variance Support: The satellite image patches exhibit
significant variance in building counts, average area, and
shapes which affect the degradation patterns. One option that
we explored is clustering similar style patches and training
one GBFE for each cluster type. To perform this, we used
K-Means clustering to partition all patches into three clusters
(C1, C2, and C3) using a set of features, including average and
total building area, building counts, rectangularity of building
shapes, and whether buildings have an interior plaza. Then,
we train a GBFE for each cluster. However, we observed no
significant improvement in performance (see Table IV). This
implies that a single GBFE appears to be sufficiently robust
to handle the variance in building configurations encountered.

F. Large-Scale Prototypical Application

One use for our automated method is to perform large-
scale building footprint segmentation. To this end, we apply
our method to a large continuous testing region located in
Belgium covering 91.11 × 59.33 km [see Fig. 11 (left)]. The
experiment region includes dense urban areas of Brussels and
largely rural and mountain areas with sparse buildings. The
ground truth is from a cadastral dataset, which may include
much more errors than that from the INRIA dataset. In contrast
to the INRIA dataset, which is sampled from a central urban
area, the Belgium experiment region majorly covers the rural
area, leading to a significant difference in data distributions in
the two datasets. We first fine-tuned the segmentation phase
with only 8% of the experiment region for better segmentation
accuracy. Due to more heterogeneous satellite images and
potential errors in the ground truth, segmentation performance
has lower accuracy than the INRIA dataset.

Regarding the generative upsampling phase, though our
GBFE pretrained by Spacenet already generates reasonable
results, we conducted a fast fine-tuning using the same training
set used by the segmentation phase. Final qualitative results are
shown in Fig. 11 (right). Quantitatively, we achieve L1 errors
of building count, total building area, and average building
area as 2.69, 507.19 m2, and 145.43 m2, respectively. Those

better values are at least partially due to the large-scale dataset
holding lower building counts and smaller building areas
compared to that from the INRIA dataset. We also attempted
multiple GBFE fine-tunings in the same way described by
Section IV-E3, but there was no explicit improvement com-
pared to a single GBFE fine-tuning. Altogether, the robust
performance of GBFE on large-scale applications supports our
ambition of continental-scale application in the near future.

V. CONCLUSION

We have presented a GBFE method for satellite imagery.
Satellite imagery suffers from blurriness, occlusions, noise,
and resolution degradation, making it difficult to produce
accurate footprints with precise building shapes, counts, and
areas. Our methodology serves to improve the building feature
estimation progress by augmenting a segmentation with a gen-
erative engine, driven by sociogeometric features, so that the
output is notably more realistic and detailed while also exhibit-
ing the expected instance-level building features. We have
compared our approach to a variety of alternative approaches
and have shown the superior performance of our method. Our
method beats a state-of-the-art segmentation network [18] by
43.4%, 41.2%, and 44.0% and also beats a family of GAN-
based image translation networks (see [22], [23], and [24])
by 14.3%, 9.5%, and 3.8% on L1 error of building count,
total building area, and average building area, respectively.
We anticipate our approach can be transferred to other seg-
mentation tasks suffering from low-quality input. The entire
framework is extendable for more sociogeometric features and,
thus, for further applications in urban planning, meteorology,
and more academic communities.

Nonetheless, our method does have some limitations. One
notable limitation is pixel-level accuracy. Since our approach
is fundamentally to generate (i.e., hallucinate) the unob-
served detail, our strategy cannot guarantee good pixel-level
performance.

As future work, we see several avenues. First, there are no
constraints, ensuring that the output segmentation is architec-
turally sensible—we will investigate how such constraints can
be added. Second, we would like to explore the possibility
of outputting a segmentation with building height estimations
derived from the combination of the satellite image and the
feature data. Third, since we train GBFE using satellite images
from a variety of cities and, thus, satellite sensors; our two-
phase framework has some robustness to variations in sensor
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measurements and bias. Nonetheless, we leave to future work
investigating how well this generalizes and how to improve
robustness for transferring our pretrained system or quickly
fine-tuning for the continental-scale task.
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