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Figure 1. Restoration results of applying our method on a large structure consisting of 15 million points from Mawchu Llacta in Peru. The
structure is completed and displayed over the original site for visualization.

Abstract

Point cloud completion helps restore partial incomplete
point clouds suffering occlusions. Current self-supervised
methods fail to give high fidelity completion for large ob-
jects with missing surfaces and unbalanced distribution of
available points. In this paper, we present a novel method
for restoring large-scale point clouds with limited and un-
balanced ground-truth. Using rough boundary annotations
for a region of interest, we project the original point clouds
into a multiple-center-of-projection (MCOP) image, where
fragments are projected to images of 5 channels (RGB,
depth, and rotation). Completion of the original point cloud
is reduced to inpainting the missing pixels in the MCOP im-
ages. Due to lack of complete structures and an unbalanced
distribution of existing parts, we develop a self-supervised
scheme which learns to infill the MCOP image with points
resembling existing ”complete” patches. Special losses are
applied to further enhance the regularity and consistency of
completed MCOP images, which is mapped back to 3D to
form final restoration. Extensive experiments demonstrate
the superiority of our method in completing 600+ incom-

plete and unbalanced archaeological structures in Peru.

1. Introduction
Point clouds are important for a wide range of vision ap-
plications including autonomous driving, real-estate walk-
throughs, pre/post-disaster understanding, and digital ar-
chaeology and historic preservation (e.g., [6, 13, 26, 35]).
Effective algorithms for learning and understanding point
clouds have been developed and validated on synthetic
clean shapes [27, 39, 45]. However, for modeling large out-
door real world objects raw point clouds are sparse, noisy,
and incomplete. The incompleteness stems from either oc-
clusion (e.g., samples are behind a wall or tree) or miss-
ing surfaces (e.g., archaeological remains, post-disaster),
which results in different probability distributions of point
samples. Hence, point cloud completion for datasets that
include significant missing surfaces/areas of large objects,
and also lack ground-truth data, is a critical and necessary
task. Such 3D reconstructions are vital to understanding the
structuring of spaces within archaeological settlements and
for modeling social dynamics in the past.



To complete point clouds, prior works [4, 5, 16, 24, 37,
38] have attempted to fill-in the partial point clouds using
supervised, unsupervised, or self-supervised learning meth-
ods. Supervised learning rely on the presence of ground-
truth and labeled input-output pairs. Unsupervised learn-
ing omit labeled input-output pairs but still expect ground
truth (e.g., examples of complete models spanning the dis-
tribution space). Self-supervised learning does not assume
ground truth and generates supervision signals itself (e.g.,
additional self-masking [5, 24], consistency of multi-view
partial inputs [16], or similarity of curvatures [38]) from
fragmented data like KITTI [11] and MatterPort3D [3].
Self-supervision promises to be a good methodology to
complete datasets of large point cloud with significant miss-
ing data and no ground truth (of the missing surfaces).

In this work, we present a self-supervised point-cloud
completion approach for datasets targeted to archaeologi-
cal settings with a significant amount of missing surfaces
due to weathering, erosion, physical stress and human ac-
tivities [29], which would otherwise be extremely hard to
restore physically to their original appearance. As opposed
to prior methods (e.g.,[5, 16, 24, 38]), we are able to infer
point clouds varying from 50k to 2M points, with up to 95%
missing surfaces, and to produce colors/textures. Our ap-
proach relaxes the typical uniform-probability assumption
of missing points and instead extracts a probability from
the partially provided data. This benefits point completion
for more general, complex, and large-scale scenarios.

Our method stores points clouds using multi-center-of-
projection (MCOP) images and using patch-based self-
supervised inpainting. Instead of processing the point cloud
in full 3D, our approach uses an MCOP image to com-
bine points observed from multiple viewpoints along a path.
Such images are used to train a network using adversarial
loss of sampled patches against complete patches to gen-
erate completed patches. The image-based representation
scales well to point-cloud completion for millions of points
(e.g., see Fig. 1 and Fig. 8). Further [35], we use Poisson
reconstruction [17] on the completed point cloud to produce
a 3D visualization. Our experiments show that our method
not only out-performs previous self-supervised point cloud
completion methods, but also yields finer geometric details
than current self-supervised image inpainting methods for
similar (archaeological) settings and produces high-quality
completion of models with color data, even when far less
than half of the point samples are available.

Our main contributions include the following:
(1) we provide a novel multiple-center-of-projection

(MCOP) representation for point cloud data which
unlocks the potential for large scale and high quality
point cloud completion of extensive structures,

(2) we describe a patch-based point-cloud completion algo-
rithm for a 3D scene encoded into a MCOP image repre-

(a) Pixel distribution for ShapeNet cars from partial views.

(b) Pixel distribution for our archaeological sites from partial views.

Figure 2. Comparison of distribution of available points for in-
complete point clouds suffering from occlusion/partial view and
missing surfaces. The distributions are quite different and that of
our outdoor sites is clearly vertically unbalanced.

senting millions of points,
(3) using (1) and (2) we construct a self-supervised point

cloud completion scheme despite spatially unbalanced
point distribution and lack of ground truth data (as in the
case, at least, in outdoor archaeological settings), and

(4) we provide a large-scale 3D point-cloud dataset for im-
proving future methods having to complete acquisitions
with an extensive spatial range, millions of RGB points,
and high-levels of incompleteness.

2. Related Works
2.1. Supervised/Unsupervised Completion
Supervised point cloud completion generally requires com-
plete and clean point clouds at training time. Further, it is
assumed provided ground-truth data spans the distribution
of target objects. Voxel-based methods [8, 40] benefit from
3D convolution but are challenged with processing speed
and resolution. Point-based (e.g., [20, 27, 41, 43]) can adapt
better but neither method works well when ground-truth
data are not abundantly provided. Unsupervised point cloud



completion does not rely on paired point clouds. Chen
et al. [4] proposed an early unpaired point cloud com-
pletion method using auto-encoders. Other methods (e.g.,
[2, 22, 37, 44]) have made further improvements. However,
this approach still relies on abundant complete point clouds
during training and typically fails for uncommon, extensive
and/or highly incomplete objects (e.g., [9, 19]).

2.2. Self-supervised Completion

For some real world scenarios, such as urban environments
and archaeological sites, complete samples are costly or
unavailable. Self-supervised methods are specifically de-
signed to complete partial point clouds under such settings.
Mittal et al. [24] proposed the first learning-based self-
supervised method, PointPnCNet, which randomly masked
out small regions during training in order to predict both
the removed and the originally missing points. Hong et al.
[16] developed a closed-loop point cloud completion sys-
tem named ACL-SPC based on self consistency. Cui et al.
[5] partitioned the partial point clouds into three disjoint
groups, which served to improve performance. Wu et al.
[38] introduced a Pattern Retrieval Network to further find
similarities and subsequently densify the completion.

These methods pave the way for point cloud completion
without ground truth. Nevertheless, they still exhibit sev-
eral limitations: 1) the size of the point cloud is limited (i.e.,
10k or less); 2) the methods generally assume missing data
is caused by a limited field of view, which aggregates to
a uniform distribution of all the available points. For ob-
ject completion in outdoor and archaeological settings, the
missing data is usually caused by weathering, erosion, phys-
ical stress, and activities. This exhibits a heavily unbalanced
distribution, which misguides prior methods to overcomple-
tion/undercompletion (see Section 4); 3) the methods usu-
ally lack support for color, which is highly important for
downstream visualization and analysis applications. Our
approach tackles all three of these prior limitations.

2.3. Computational Archaeology

Computing is essential to archaeology and to cultural
heritage[33]. The Digital Michelangelo project [18] paved
the way for large-scale archaeological object digitization.
Later works addressed completion often by texture/image
inpainting [30], finding and exploiting symmetries [19, 23],
and/or a priori object databases [12, 14, 15, 34].

Despite the general success on reassembly of small scale
archaeological objects, current methods heavily rely on
prior knowledge like different types of symmetries and
scanned complete shapes. This does not hold true for large-
scale building structures, which also come with almost no
available ground truth. However, this is the scenario our
work addresses.

3. Method
For completing a target object, we first project its point
cloud Pin into 2D using our MCOP representation (Sec-
tion 3.1). Then, completing the original point cloud is re-
duced to inpainting the MCOP image I with an inpainter
C (Section 3.2), after which the completed shape Pout is
produced by reprojection R of the infilled MCOP image
Pout = R(C(I)). Finally, Poisson reconstruction [17] is
applied to form a water-tight mesh. An illustration of the
whole pipeline is given in Fig. 3.

3.1. Multiple Center of Projection Images
To exploit convolutional deep networks ability to process
millions of pixels, we construct a single MCOP image
I ∈ RW×H×5 to store the raw point cloud data as seen
from multiple viewpoints. The object can be represented as
an MCOP image in different ways based on the trajectory
and pose of the virtual cameras. For a faithful reconstruc-
tion of the original point cloud, we argue that by 1) moving
the camera along a trajectory around/through the scene and
2) setting the camera to look perpendicular to the trajectory
well preserves the scene’s fine details. Hence in our work,
a virtual camera flies around a target scene/object with its
viewing orientation set perpendicular to the flying direc-
tion. The pixel-wide columns from each captured image
(i.e., ”slits”) are concatenated to form the MCOP. Note that
the MCOP projection is not necessarily conformal [7].

The MCOP image has 5-channels so that each col-
umn/slit samples the color and distance to both ”side” and
”top” of the target object. Unlike the original MCOP repre-
sentation [28] which captures the side and top into different
columns, we include a (viewing) rotation angle so that both
parts are continuously placed into a single slit (Fig. 4d).

The rotation channel also enables shape manipulation.
As shown in supplemental, during generation the user can
specify different rotations to essentially change the wall
height or overall shape, enabling restoring and completing
the archaeological structures based on optional simple user
guidance.

Formally, we represent the total process as

I,M = MCOP (Pin,C) (1)

where C = {Cj |j ∈ [1, H]} are the cameras used for each
column of pixels, I ∈ RW×H×5 is the MCOP image, and
M ∈ RW×H is a binary mask defined by

Mij = 1[Iij4 < ∞] (2)

which is zero for pixels which do not intersect any point by
camera Cj at position (i, j).

3.2. Self-supervised MCOP Completion
Using MCOP image I , the completion for an object frag-
ment is achieved through infilling the missing pixels. We



Figure 3. General pipeline of our MCOP based point cloud completion method. The input point cloud is first projected onto a 2D image
with 5 channels (RGBD + rotation) using our MCOP representation. During training, a random sampling function fθ is applied on the
MCOP image to extract a group of local windows, which are trained against mostly complete local patches extracted from the dataset of
all structures in an adversarial way. For inference, the MCOP image and an outline of the desired shape (e.g., wall height) is passed to our
inpainting network adapted from [36]. The final completed point cloud is obtained by remapping the inpainted MCOP image back into 3D.

tackle the scenario of high-levels of incompleteness (e.g.,

(a) Original structure (b) Path (red) and scan lines (white)

(c) Traditional [28] MCOP Representation

(d) Ours: Color channel

(e) Ours: Depth channel

(f) Ours: Rotation channel

Figure 4. MCOP [28] representation. For (a), we sample along a
circular path while MCOP camera captures scan lines perpendicu-
lar to the path (b). Instead of the traditional MCOP image (c), we
capture a 5 channel image (d, e, f).

Figure 5. Histogram of random point cloud samples from the
Mawchu Llacta dataset, with high completion ratios at the top to
low-completion ratios at the bottom.

over 90% of the walls are missing over 90% of pixels) and
lack of ground truth. This results in the sampled point distri-
bution exhibiting a non-uniform distribution (e.g., see Fig.
2b and Fig. 5 – most points are missing in the top). These
problematic features still manifest in the MCOP images,
for which we resort to a self-supervision mechanism which



finds ”signals” in subsets of the MCOP images to use in
self-supervision during training.

Image generation and completion in self- and un-
supervised approaches have been addressed in the literature
[1, 21, 25, 42]. In these approaches, given partial obser-
vation of MCOP images D = {I1, I2, . . . , In} and cor-
responding mask dataset M = {M1,M2, . . . ,Mn} with
Ii,Mi = MCOP (Pi,C), i = 1, . . . , n, an observation
function fM : RW×H×5 → RW×H×5

fM(x) = Mk ⊗ x (3)

with Mk drawn at random from M would be applied on
the completer output O to generate a masked sample of the
completion with the masked pixels in x filled with a given
constant value (i.e., 0 in our case). In [25], the completer C
is then trained adversarially to complete images from D to
D′ = {I ′1, I ′2, . . . , I ′n)} through

I ′i = C(Ii) (4)

by making the masked observation of D′
M =

{fM(I ′1), fM(I ′2), . . . , fM(I ′n)} to be indistinguishable
from D.

However, directly applying the above would fail under
our targeted scenario where the distribution of available pix-
els in the image is heavily unbalanced (Fig. 2b). Because
few fragments have the upper part of the wall, the completer
C will learn to escape from adversarial penalty by simply
filling the upper part with a default value, as shown in Fig.
10b. It will not be heavily penalized under the masked ob-
servation of D′

M .
Instead, to provide effective supervision on both pixels

from bottom and top, we apply the following patch-based
observation function fw

fw(I, x, y) = I[x : x+ w, y : y + w] (5)

where x and y are the coordinates for the upper left corner of
the window and w is the fixed size of the patches. Despite
the sparseness and unbalanced data in the MCOP images,
there are smaller windowed samples of uniform complete-
ness. By carefully selecting the observation window size w,
we extract a new observation dataset Dw composed of all
such patches under observation fw. One choice would be
f64 with windows of no less than 95% completeness, whose
average distribution will be (nearly) uniform, and enable the
self-supervised strategy in [25, 42].

We empirically search for the optimal patch size w and
construct the patch ground truth dataset Dw based on the
data distribution. For each MCOP image I , we use a high
resolution image inpainting network derived from LaMa
[36] to obtain the output O through O = C(I). To en-
courage the completion to be genuine, a random patch o
observed by

o = fw(O, xi, yi) (6)

with xi and yi sampled from the image coordinates uni-
formly should be in the distribution modeled by Dw.
The observation patches are fed into the discriminator D
adapted from [31] to train adversarially against random
patches drawn from Dw to minimize the adversarial loss

Ladv = EI′∼D′ [(1− log(D(fw(C(I ′)))] (7)

while discriminator D is optimized by

LD = EI∼Dw
[D(I)] + EI′∼D′ [(1− log(D(fw(C(I ′)))]

(8)
Regularity Terms. To further improve the quality of the
generated MCOP images, additional loss terms are applied.
To drive completion to reproduce the input MCOP image
properly, consistency loss is applied on the known pixels as

Lcons = ||(O − I)⊗M ||2 = ||(C(I)− I)⊗M ||2 (9)

which encourages the completion to reproduce existing
MCOP regions. To correctly reproject O to a closed 3D
object, each column of pixels in the rotation channel of C
should sum up to the angle camera rotated, giving

Lreg = (

h∑
j=1

Oij − π)2 (10)

Appearance Consistency Terms. Due to the relative lim-
ited field of view of observation patches compared to the
original image size, additional effort has to be taken to en-
sure the consistency of patterns and textures at a larger re-
ceptive field. Inspired by texture synthesis works [10], we
use the pretrained VGG19 network to extract deep features
on adjacent patch pairs randomly extracted from comple-
tion O and minimize their correlations of features in order
to yield a similar appearance. The term is defined as

Lsim =
∑
ij

||G(fw(O, x1, y1))−G(fw(O, x2, y2))||2

(11)
where G computes the Gram matrix of deep features. The
optimization goal is defined as

L = Ladv + λconsLcons + λregLreg + λsimLsim (12)

where λcons, λreg and λsim are weights controlling the im-
portance of different terms.

3.3. Implementation Details
Based on the anticipated maximum height of structures, we
generally divide the objects to complete into resolutions
of R256×W×5 and R384×W×5, which maximizes the pixel
utility in the MCOP image for completion of 4 and 6 meter
maximum height structures. Two different types of rotation



channels are also preconstructed by making the rotation at
the expected height and fed jointly with the original RGBD
channels from the MCOP image. Noticing the influence of
fw on different resolutions, we apply D64 and D96 sepa-
rately on the above two distributions. To mitigate for ef-
ficient training with abundant self-supervision signals, we
precomputed the necessary patch statistics and store the de-
sired patches as an efficient way of accessing Dw.

To train the high resolution image inpainter C, we use
the proposed self-supervised scheme on MCOP images
with a batch size of 4 for 1 million iterations. We use the
Adam optimizer with an initial learning rate of 0.0003 and
decreasing by 2% every 600 iterations. The model is trained
on 4 NVIDIA V100 GPUs with NV-LINK for 3 days.

With the model properly trained, we feed the MCOP im-
ages of the target objects into C to get the completed MCOP
representation O, which is back projected into a 3D point
cloud. To mitigate for minor issues and facilitate down-
stream processing/visualization, we apply Poisson recon-
struction on the output to obtain a watertight mesh with col-
ors as texture and normals computed per pixel using finite
differences with the 4 neighboring pixels in MCOP.

4. Experiments

4.1. Dataset Construction
We conduct qualitative and quantitative experiments on
hundreds of point cloud datasets of buildings from three
real-world archaeological sites, namely Mawchu Llacta,
Huamanmarca, and Kuelap in Peru which suffer from heavy
erosion and are missing a significant portion. Each site is
reconstructed from multi-view high resolution UAV images
as in [32], consisting of billions of points in total. Point
clouds for individual walls/structures are extracted follow-
ing coarse annotations from archaeologists in our team. To
accommodate for efficient learning while not missing out
important texture and geometric details, we sample the orig-
inal point clouds with the proposed improved MCOP at a
resolution of 2 centimeters, at which the tallest and biggest
structure (as shown in Fig. 1) are represented within an
MCOP image of 384×9353. Since the original point clouds
exhibit visible shadows due to lighting or self-occlusion in
the input stage, we manually annotate out the shadowed re-
gions in the MCOP images and ”deshadow” them by either
histogram matching to unshadowed regions or masking out
the corresponding regions. Some important statistics for the
datasets are listed in supplemental. We name the datasets
Mawchu Raw, Huaman Raw and Kuelap Raw.

4.2. Quantitative Comparisons
Due to lack of ground truth, we randomly remove sets of
points from Mawchu Raw to synthesize a more incomplete
dataset Mawchu Incomplete. The removal is implemented

by applying random masks from D128 with completeness
ratio in between 20% to 80% at random positions in the
original MCOP images. As shown in Fig. 7, the masked
out regions could serve as the ground truth for quantitative
study when we train on Mawchu Incomplete only and eval-
uate against the masked out regions in Mawchu Raw. To
fully evaluate the reconstruction quality both in inpainting
and point cloud form, we measure the overall RGBD differ-
ences of the masked regions, patch/distribution similarity,
and Chamfer distance of reconstructed point cloud.

We compare our method on the aforementioned dataset
against several state-of-the-art methods. These methods
include self-supervised point-cloud approaches (ACL-SPC
[16] and P2C [5]), self-supervised image inpainting meth-
ods (UAIR [25] and SSII [42]) on the MCOP images
(i.e., MCOP+UAIR and MCOP+SSII). We also compare
against MCOP+SSII(Patch) which uses image-patch self-
supervision. ACL-SPC and P2C do not produce colors so
we omit those metrics for them.

Feature Type Texture Geometry

MAE↓

ACL-SPC N/A 0.172
P2C N/A 0.195

MCOP+SSII 0.206 0.143
MCOP+UAIR 0.259 0.149

MCOP+SSII(Patch) 0.209 0.145
Ours 0.189 0.136

SSIM↑

ACL-SPC N/A 0.085
P2C N/A 0.048

MCOP+SSII 0.236 0.291
MCOP+UAIR 0.173 0.261

MCOP+SSII(Patch) 0.213 0.278
Ours 0.246 0.353

PSNR↑

ACL-SPC N/A 15.06
P2C N/A 13.52

MCOP+SSII 11.79 17.18
MCOP+UAIR 12.37 16.54

MCOP+SSII(Patch) 11.65 17.10
Ours 14.28 17.87

FID↓

ACL-SPC N/A 211.69
P2C N/A 331.10

MCOP+SSII 203.85 184.84
MCOP+UAIR 192.45 158.79

MCOP+SSII(Patch) 179.05 169.06
Ours 90.81 128.41

Table 1. Quantitative comparison of completion quality using
image-level metrics. Our approach has the best performance
(shown in bold).

We first report metrics in image inpainting as shown in
Table 1. For each completed point cloud, we project it into
2D using our proposed MCOP representation and perform
image patch evaluation with the commonly used metrics of



(a) Inputs (b) P2C (c) ACL-SPC (d) UAIR (e) SSII (f) SSII(Patch) (g) Ours

Figure 6. Point cloud completion results of different methods on Mawchu Raw. We overlay completion onto input. More visualization
results can be found in the supplemental.

Figure 7. Demonstration of the construction of Mawchu Incom-
plete used in evaluation. Using the original MCOP image, we
randomly apply small masks from D128 onto random locations
producing an incomplete MCOP image.

MAE, SSIM, PSNR and FID based on 500 pairs of ran-
domly chosen windows covering the masked out regions.
Our method achieves the best performance in both geome-
try and texture of predicted point cloud in all metrics.

We further report the completion quality using the same
point cloud metrics as in [16], where we compute the Cham-
fer distance of prediction O and ground-truth part G in the
masked regions of Mawchu Incomplete as follows:

CD(O,G) =
1

No

∑
p∈O

min
q∈G

∥p−q∥2+
1

Ng

∑
q∈G

min
p∈O

∥q−p∥2

(13)

Method P↓ C↓ CD↓
ACL-SPC 91.07 35.00 126.07

P2C 11.33 12.24 23.57
MCOP+SSII 5.20 4.58 9.79

MCOP+UAIR 2.90 6.29 9.20
MCOP+SSII(Patch) 4.27 4.91 9.18

Ours 3.80 4.42 8.22

Table 2. Quantitative comparison of completion quality using
point cloud metrics: Chamfer distance (CD), precision (P), and
coverage (C) as used in [16] and in centimeters. Our method is
best or second best in all metrics.

where No and Ng are the number of points in O and G. The
first and second term are denoted separatedly as Precision P
and C following [16]. We achieve best or second best in all
metrics.

4.3. Ablation Study

MCOP representation. From Table. 1 and 2, methods
using MCOP as their base representation generally achieve
better performance by a large margin as compared to fully
point clouds based ones. The behavior is also interpretable
in Fig. 6, where P2C and ACL-SPC generate noisy and non-
uniform points around the input, whereas MCOP efficiently
regularizes the output point cloud to distribute along given
boundary.
Patch-level self supervision. We demonstrate using patch-



Figure 8. Example completion results from Mawchu Llacta and
Huamanmarca. The roof in the fourth row is generated with ad-
ditional synthesis for visualization purposes only. Completion re-
sults on Kuelap are included in the supplemental.

Figure 9. Demonstration of need for texture similarity term.

level self-supervision in Fig. 10. Given (a), directly ap-
plying UAIR on the completed patches would yield signifi-
cantly smaller supervision at the higher pixels compared to
the rest because of the unbalanced distribution of available
pixels (b), for which the completer simply learns to escape
adversarial penalty by infilling default pixel values at those
positions. SSII also suffers from the unbalanced distribution
and tends to produce blurry completions at pixels far from
known regions (c). Our patch-based scheme successfully

(a) MCOP input

(b) MCOP+UAIR output

(c) MCOP+SSII output

(d) MCOP+SSII(Patch) output

Figure 10. Demonstration of the necessity of applying patch based
self supervision for inpainting our MCOP images.

overcomes the unbalanced distribution and helps produce a
sharp completion everywhere (d).
Texture similarity. As shown in Fig. 9, completion with-
out texture similarity constraints produces inconsistent hor-
izontal and vertical patterns at a receptive field larger than
the observation window, leading to visual inconsistencies
as highlighted in red circles. By incorporating the texture
similarity term, the completer is able to maintain consistent
completion in both directions at the whole image level.

5. Conclusions and Future Work
We propose the first self-supervised point cloud completion
pipeline that handles large scale partial point cloud points
suffering from missing surfaces, which is common for
fragments in archaeological sites. By embedding the
original structure in 2D using multiple-center-of-projection
(MCOP) images, the approach can handle point clouds of
up to millions of points. Patch-based self-supervision with
texture similarity terms helps overcome the unbalanced
distribution of available pixels resulting from missing
surfaces. Results demonstrate our method performs best
quantitatively and qualitatively. Nevertheless, our work
relies on prior annotation for objects to collect high fidelity
MCOP images, which could influence the performance
and quality of point cloud completion. As future work, we
would like to extend our method to 1) be fully automated
to complete input fragments; 2) complete point clouds of
general objects at high resolution, and 3) improve shadow
elimination.
Acknowledgement This research is partially funded
by NSF Grant 2107096, 1835739 and 2411273.



References
[1] Ashish Bora, Eric Price, and Alexandros G. Dimakis. Am-

bientGAN: Generative models from lossy measurements.
In International Conference on Learning Representations,
2018. 5

[2] Yingjie Cai, Kwan-Yee Lin, Chao Zhang, Qiang Wang, Xi-
aogang Wang, and Hongsheng Li. Learning a structured la-
tent space for unsupervised point cloud completion, 2022. 3

[3] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-
d data in indoor environments. International Conference on
3D Vision (3DV), 2017. 2

[4] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired
point cloud completion on real scans using adversarial train-
ing. In Proceedings of the International Conference on
Learning Representations (ICLR), 2020. 2, 3

[5] Ruikai Cui, Shi Qiu, Saeed Anwar, Jiawei Liu, Chaoyue
Xing, Jing Zhang, and Nick Barnes. P2c: Self-supervised
point cloud completion from single partial clouds, 2023. 2,
3, 6

[6] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin
Tian, Ying Li, and Dongpu Cao. Deep learning for image and
point cloud fusion in autonomous driving: A review. IEEE
Transactions on Intelligent Transportation Systems, 23(2):
722–739, 2022. 1

[7] Sean Curry and A. Rod Gover. An introduction to conformal
geometry and tractor calculus, with a view to applications in
general relativity, 2015. 3

[8] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis, 2017. 2

[9] Aref Enayati, Luca Palmieri, Sebastiano Vascon, Marcello
Pelillo, and Sinem Aslan. Semantic motif segmentation
of archaeological fresco fragments. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1717–1725, 2023. 3

[10] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Texture synthesis using convolutional neural networks, 2015.
5

[11] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3354–3361, 2012. 2

[12] Robert Gregor, Ivan Sipiran, Georgios Papaioannou, Tobias
Schreck, Anthousis Andreadis, and Pavlos Mavridis. To-
wards automated 3d reconstruction of defective cultural her-
itage objects. In Proceedings of the Eurographics Workshop
on Graphics and Cultural Heritage, page 135–144, Goslar,
DEU, 2014. Eurographics Association. 3

[13] Lei Han, Tian Zheng, Yinheng Zhu, Lan Xu, and Lu Fang.
Live semantic 3d perception for immersive augmented re-
ality. IEEE Transactions on Visualization and Computer
Graphics, 26(5):2012–2022, 2020. 1

[14] Gur Harary, Ayellet Tal, and Eitan Grinspun. Feature-
preserving surface completion using four points. Computer
Graphics Forum, 33(5):45–54, 2014. 3

[15] Renato Hermoza and Ivan Sipiran. 3d reconstruction of in-
complete archaeological objects using a generative adversar-
ial network, 2018. 3

[16] Sangmin Hong, Mohsen Yavartanoo, Reyhaneh Neshatavar,
and Kyoung Mu Lee. Acl-spc: Adaptive closed-loop system
for self-supervised point cloud completion. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2023. 2, 3, 6, 7

[17] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the fourth
Eurographics symposium on Geometry processing, 2006. 2,
3

[18] Marc Levoy, Kari Pulli, Brian Curless, Szymon
Rusinkiewicz, David Koller, Lucas Pereira, Matt Ginz-
ton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The Digital Michelangelo
Project: 3D Scanning of Large Statues. Association for
Computing Machinery, New York, NY, USA, 1 edition,
2023. 3

[19] Er Li, Xiaopeng Zhang, and Yanyun Chen. Symmetry based
chinese ancient architecture reconstruction from incomplete
point cloud. In 2014 5th International Conference on Digital
Home, pages 157–161, 2014. 3

[20] Shanshan Li, Pan Gao, Xiaoyang Tan, and Mingqiang Wei.
Proxyformer: Proxy alignment assisted point cloud comple-
tion with missing part sensitive transformer, 2023. 2

[21] Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin.
Learning from incomplete data with generative adversarial
networks. In International Conference on Learning Repre-
sentations, 2019. 5

[22] Changfeng Ma, Yinuo Chen, Pengxiao Guo, Jie Guo,
Chongjun Wang, and Yanwen Guo. Symmetric shape-
preserving autoencoder for unsupervised real scene point
cloud completion. In 2023 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 13560–
13569, 2023. 3

[23] P. Mavridis, I. Sipiran, A. Andreadis, and G. Papaioannou.
Object completion using k-sparse optimization. Computer
Graphics Forum, 34(7):13–21, 2015. 3

[24] Himangi Mittal, Brian Okorn, Arpit Jangid, and David Held.
Self-supervised point cloud completion via inpainting. arXiv
preprint arXiv:2111.10701, 2021. 2, 3

[25] Arthur Pajot, Emmanuel de Bezenac, and Patrick Gallinari.
Unsupervised adversarial image reconstruction. In Interna-
tional Conference on Learning Representations, 2019. 5, 6

[26] Gabyong Park, Antonis Argyros, Juyoung Lee, and Woon-
tack Woo. 3d hand tracking in the presence of excessive mo-
tion blur. IEEE Transactions on Visualization and Computer
Graphics, 26(5):1891–1901, 2020. 1

[27] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space, 2017. 1, 2

[28] Paul Rademacher and Gary Bishop. Multiple-center-of-
projection images. In Proceedings of the 25th Annual Con-
ference on Computer Graphics and Interactive Techniques,



page 199–206, New York, NY, USA, 1998. Association for
Computing Machinery. 3, 4

[29] Avi Resler, Reuven Yeshurun, Filipe Natalio, and Raja
Giryes. A deep-learning model for predictive archaeology
and archaeological community detection. Humanities and
Social Sciences Communications, 8, 2021. 2

[30] M. S. Sagiroglu and A. Erçil. A Texture Based Approach to
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