
Tree Instance Segmentation with Temporal Contour Graph

Adnan Firoze Cameron Wingren† Raymond A. Yeh Bedrich Benes Daniel Aliaga
Department of Computer Science, Purdue University

Department of Forestry and Natural Resources†, Purdue University
{afiroze, cwingren, rayyeh, bbenes, aliaga}@purdue.edu

Input Human Annotation Ours
Figure 1. Tree Instance Segmentation. A flyover from a UAV and the corresponding tree instance segmentation during green leaf season
when the tree crowns are most similar to their neighbors, and occlusion is complex adding to the difficulty in segmentation.

Abstract

We present a novel approach to perform instance seg-
mentation and counting for densely packed self-similar
trees using a top-view RGB image sequence. We propose
a solution that leverages pixel content, shape, and self-
occlusion. First, we perform an initial over-segmentation
of the image sequence and aggregate structural character-
istics into a contour graph with temporal information incor-
porated. Second, using a graph convolutional network and
its inherent local messaging passing abilities, we merge ad-
jacent tree crown patches into a final set of tree crowns. Per
various studies and comparisons, our method is superior
to all prior methods and results in high-accuracy instance
segmentation and counting despite the trees being tightly
packed. Finally, we provide various forest image sequence
datasets suitable for subsequent benchmarking and evalua-
tion captured at different altitudes and leaf conditions.

1. Introduction

Trees in forests are tightly spaced, partially overlap-
ping 3D objects with complex boundaries. Tree instance
segmentation is critical in several domains. For exam-
ple, ecosystem services and agriculture need to segment
and count trees in large areas in order to obtain informa-
tion about the ecological balance, environmental health,
and timber inventory. Counting trees from the ground per-

spective is inefficient, does not scale, and is challenging to
automate because of many occlusions with branches and
low accesibility. In this paper, we address tree instance
segmentation and counting using overhead RGB image se-
quences captured by unmanned aerial vehicles (UAVs), es-
pecially during the green-leaf season when trees are most
self-similar; see Fig. 1 for an illustration.

There is significant prior work in segmentation and
counting, particularly in the field of instance segmentation.
While some approaches make use of LiDAR or RGB-D im-
ages (see the survey paper [?]), we focus on using easier-
to-obtain uncalibrated RGB image sequences. Prior works
based on uncalibrated RGB images can be largely organized
into three groups. The first group seeks to count individual
objects. These approaches often use density estimation and
do not focus on segmentation [? ?]. The second group
of methods relies on convolutional neural networks (CNNs)
applied directly to image pixels, such as Mask R-CNN [?
]. However, in the case of abutting and self-similar ob-
jects, e.g., trees, distinguishing individual instances is hard.
The third group of techniques (e.g., ? ?]) model object
contour as a graph, where each pixel corresponds to a node,
and makes use of graph convolutional networks to complete
individual contours; nevertheless, abutting and self-similar
instances also hinder these methods. Yet other methods,
such as those in digital forestry research, exploit domain-
specific features such as assumed differences between tree
species or fall leaf coloring (i.e., during one brief time pe-
riod of the year, the leaf color of adjacent crowns is often

Contour Graph (Sec. 3.1) Contour Merging (Sec. 3.2)

Edge Classification

Merge Nodes?

Self-
occlusion
Features

Pixel
Features

Shape
Features

GCN

Figure 2. Pipeline: The input image sequence is analyzed. Initial contours and features are detected and organized into a contour graph
that is refined by merging edges and nodes, resulting in the final output mask.

different).
Our approach is motivated by a key observation that two

tree crown leaf patterns tightly packed together are highly
similar, and additional features beyond leaf patterns are nec-
essary to perform segmentation. Hence, we consider fea-
tures based on the tree crown shape because it is unlikely
to observe a rectangular tree crown. Beyond shape features,
we also use the changing self-occlusion patterns captured in
the different frames to aid segmentation.

At a high level, our proposed approach simultaneously
exploits pixel content, shape, and self-occlusion, which
collectively define a graph-based structure that we call a
contour graph. Each node corresponds to an initial over-
segmentation of a tree crown fragment; i.e., each node cor-
responds to a region enclosed by a closed contour. We
then learn features on this contour graph via graph convolu-
tional network (GCN) to determine which nodes should be
merged. Our method decides whether two nearby regions
correspond to the same tree crown. Notably, a tree crown
fragment is subject to various simultaneous features that we
can exploit to discern one tree crown from another, even if
one tree crown is of the same species and has a very similar
leaf pattern and color to an adjacent tree crown. Altogether
this leads to an instance segmentation method that can pro-
cess overhead RGB image sequences of dense forests even
when all leaves are mostly similar in color during summer.
See Fig. 2 for an overview of our approach.

When creating and evaluating model performance, we
are not aware of suitable databases on dense forests with
subsequent frames. To address this: (a) We leveraged de-
velopmental tree models [? ?] to produce a synthetic
dataset with annotated tree crowns (5,157 trees in total); (b)
We manually labeled real-world image sequences captured
by UAV over three large forests (6,527 trees in total), col-
lectively spanning approximately 3,680,000 m2. We will
make our self-collected datasets publicly available.

On these datasets, we show that the proposed method
achieves a segmentation accuracy of 73.6 and a count accu-
racy of 89.8% on average, which is compared to multiple
recent instance segmentation approaches.

Our main contributions include:
• an instance segmentation method to robustly process

densely packed trees where the instances are abutting,
partially overlapping, and self-similar,

• tree crown counting, which is beneficial to ecosystem
services and digital forestry, and

• a curated dataset of multiple labeled and unlabeled
temporally continuous dense forests suitable for future
research.

2. Related Work
Counting Methods. Instance segmentation and counting
have been pursued by various approaches, including meth-
ods using input data beyond uncalibrated RGB image se-
quences. Counting methods use stochastic mechanisms to
estimate the number of instances. For example, ?] use
RGB-D data and density estimation to distinguish instances
at a relatively low resolution of individuals in a dense crowd
of humans. ?] perform a density-based estimation of trees
but use 12 months of satellite data. ?] use RGB-thermal
imagery to perform crowd counting using a multi-modality
deep network and exploiting the thermal signatures of hu-
mans. In our case, each instance is relatively larger (i.e., oc-
cupies many pixels). Thus resolving them is not a challenge
because of limited resolution but rather difficult due to simi-
larity, semi-transparency, tight spacing, and partial overlaps
with complex boundaries. A density-based method would
be too inaccurate and would not provide a segmentation.
Detection and Instance Segmentation. Object detection
methods largely fall into two-stage and single-stage meth-
ods. Two-stage detection, such as Faster R-CNN [?] and
Fast R-CNN [?], predict object masks based on region pro-
posal and bounding box regression heads using features ex-
tracted from convolutional neural networks (CNN). Single-
stage detection [? ? ? ? ?], bypasses the regional pro-
posal stage. Notably, YOLO-based methods [? ? ? ?]
achieve efficient detection of objects in real-time. Never-
theless, when applied to abutting and self-similar content,
e.g., tree crowns, the precision of these approaches is low

Contour
Area
(CA)

Bounding Box (BB)

Extent = (CA/BB)

Contour
Area
(CA)

Convex Hull Area (CHA)Solidity = (CA/CHA)

Bounding Box (BB)

Aspect Ratio = (w/h)

Width (w)

Height (h)

Contour
Area
(CA)

Convex Hull

Deviation = Blue arrows

= Convex Hull
= Contour

= Convex Hull
= Contour

Figure 3. Shape Features. Illustration of the extracted shape fea-
tures, including extent, aspect ratio, solidity, and deviation.

for tree counting.
Many instance segmentation methods [? ? ? ? ? ?

? ?] have been developed. Earlier works use CNN fea-
tures and build on the detection methods, e.g., Mask R-
CNN [?]. More recently, several transformer-based in-
stance segmentation methods [? ? ?] have been proposed
as well, for instance, for instance, SwinTransformer [? ?
] uses a transformer-based backbone together with Mask
R-CNN. Some methods use graph convolutional networks
(GCN) to perform instance segmentation [? ?]. For ex-
ample, ?] models a graph corresponding to a sequence of
pixels (nodes) defining the contour (connectivity) of object
instances aiming to model occlusions among the objects.
Different from our approach, we define a node to be the
“region” enclosed by a contour and exploit the change in
“self-occlusion”, through time, within each object (i.e., tree
crown). In this work, we compare several of the recent in-
stance segmentation methods, including Mask-RCNN with
ResNet and Swin-T backbone [? ?], TraDes [?], and
BoundaryFormer [?].
Digital Forestry and Remote Sensing often use CNNs
(e.g., see summary by ?] on remote sensing) and exploit
domain-specific characteristics. One methodology is to ac-
quire LIDAR data from ”underneath” the tree crowns using
UAVs [?]. The data can be used to measure trunk diame-
ter and counts, but unfortunately, it does not scale as flying
through large dense forests is a significant challenge. An-
other strategy is to use NDVI, an image-based vegetation
index, to distinguish vegetation from non-vegetation. How-
ever, this index cannot separate one tree crown from an-
other. Another application is tree classification, which also
relies on CNNs [?] and the instance segmentation of trees
is suggested as future work.

Other approaches exploit the visual differences between
tree species. For example, ?] uses a CNN and UAV cap-
tured overhead RGB data to segment and classify trees.
However, the segmentation component of this work is done

𝑰𝑛𝑰𝑛−1
motion

fov

Occlusion Occlusion

Figure 4. Self-Occlusion. Consecutive frames In−1 and In from
the moving UAV capture slightly different self-occlusion patterns.

in the peak fall season (when leaves of adjacent trees are
most likely a different color) and then subject to manual
correction to determine a good set of segmented trees. They
claim accurate instance segmentation of trees as a challeng-
ing task for future work.
Tree modeling has a long history in computer vision and
computer graphics [?]. Early methods focused on fractal-
based approaches [? ? ?], and later methods simulate
botanical plant model [?] development [? ? ?], in-
cluding competition for resources [? ?], climbing veg-
etation [?], ecosystems [?], or plants interacting with
wind [?] or fire [?]. Synthetic tree models are perceived as
highly realistic [?] and provide sufficient details to bridge
the simulation-to-real gap for vision-based approaches. We
leverage these tree models to help develop the approach pre-
sented in this paper.

3. Tree Crown Instance Segmentation
We formulate our problem as computing a set of in-

stance segmentation masks for an uncalibrated input im-
age sequence. The input image in a sequence is denoted
by Ik ∈ (I1, . . . , IN) and the corresponding set of pre-
dicted instance segmentation masks for Ik is denoted by
Mk = {Mt,k ∀t ∈ Tk} for the tree crowns t ∈ Tk in the
current frame Ik. Each segmentation mask of a tree crown
is represented by a set of pixels Mt,k = {(u, v)}. Our
approach creates a contour graph representation capturing
an initial over-segmentation of the forest and formulates
the prediction of tree crown masks as merging the over-
segmented regions.

3.1. Contour Graph Creation

We create a graph-based data structure G = (C, E) (con-
tour graph) for assisting with differentiating tightly-spaced
and highly-similar tree crowns. The contour graph readily
stores different types of feature sets and supports merging
nodes via edge collapse operations.

Input Image In

C1

C2
C3

Contours C

Merge?
Merge?

Merge?

1

3
2

Edge Classifica"on

1

Merged Node Output Mask Mt

Figure 5. Merging Process: Illustrative presentation of our process to/from contour and graph spaces to merge noisy contours using edge
classification (detailed in Sec. 3.2).

Contour Graph Construction. We create a graph where
each node corresponds to a closed contour Ct = {(u, v)},
i.e., the set of pixels of a tree crown fragment in the image.
Two contours (nodes) have an edge between them (Ci, Cj) ∈
E , if they are adjacent to each other in the image.

We extract the initial contours by using deep edge de-
tection [?] that produces an edge map with plausible tree
crown fragments. The extracted edge map is often noisy so
we apply Guo-Hall algorithm [?] to skeletonize the edge
map. Then, a simple polygonal contour can be used to rep-
resent the pixels of each closed region (i.e., each tree crown
fragment). In the following, we discuss how to extract three
feature set types that are stored within each node.
Pixel Features represent the pixel content within a contour.
We use the following features: Patch pixels: we extract the
center p × p RGB image patch within each contour, using
p = 30; Pixel similarity: for a contour, we compute the
similarity of its center patch to the center patches of neigh-
boring contours. We measure similarity using LPIPS [?]
which corresponds highly to human perception.
Shape Features. We capture the geometric shape features
of a contour (see Fig. 3) including its area, i.e., |Ci|, extent
given as the ratio of contour area to its bounding rectangle
area, aspect ratio of Ci’s bounding box, solidity given by the
ratio of the area to the contour’s convex hull, and deviation
of a contour from its convex hull.
Self-occlusion Features. We capture the self-occlusion pat-
tern of a contour. Fig. 4 depicts a scenario of two adjacent
trees. The pattern of how the leaves and branches of the
left tree exhibit their occlusion relationship as the image se-
quence was captured is likely different than the pattern of
the right tree. This is true for trees of different species but
also for trees of similar species. Although both branching
patterns of adjacent trees originate from approximately the
middle of the tree crown, they are not the same pattern. The
optical flow of the pixels within each tree crown fragment
can be compared and thus used to help differentiate one self-
occlusion pattern from another.

We use the Gunnar-Farneback [?] optical flow algo-
rithm between images In and In−1. We then extract the

center p× p patch from the flow map to create the flow fea-
ture vector for each contour.

3.2. Contour Merging

With the contour graph constructed, we observe that a
single tree crown is often split into multiple contours. In
other words, to predict accurate instance segmentation, one
would need to merge these contours (Fig. 5). Hence, we
formulate contour merging as an edge classification prob-
lem on a graph.
Edge Classification. For a set of contours C, we represent
whether pairs of contours belong to the same instance via a
matrix Y ∈ {0, 1}|C|×|C|, where Yij = 1 indicates that con-
tours Ci and Cj should be merged. Given a contour graph in-
put, we aim to build a model that predicts this merge matrix.
We formulate this task as an edge classification problem of
the contour graph.

We have extracted various features associated with each
node in the graph (Sec. 3.1). We concatenate these features
into a node feature matrix H0 ∈ R|C|×d. Next, we repre-
sent the edges via an adjacency matrix A ∈ [0, 1]|C|×|C|.
Graph Convolution. Using a graph convolution layer [?
], we perform L rounds of message-passing to aggregate
information from each node’s neighborhood:

H(l+1) = f
(l)
GCN(H

(l)) = σ
(
ÃH(l)W (l)

)
, (1)

where Ã denotes the degree normalized adjacency matrix,
σ denotes an element-wise non-linearity, and W (l) denotes
the trainable weights at the lth layer.

To create the edge features for classification, following ?
], we average the Lth node features H(L) for the pair of
nodes in an edge (Ci, Cj):

Eij =
1

2

(
H

(L)
i +H

(L)
j

)
. (2)

Given the edge features Eij , we predict whether a pair of
nodes should be merged using a multi-layer perceptron, i.e,

Ŷij = MLP(Eij) ∀(Ci, Cj ∈ E). (3)

a) b) c) d)

e) f) g)

Figure 6. Tree Models. Examples of synthetic trees: a) acacia, b)
apple, c) birch, d) maple, e) oak, f) pine, and g) willow).

To train this model, we minimize the binary cross-entropy
loss between the predicted merge matrix Ŷ and the ground
truth merge matrix Y over the edges:

L = −
∑

{(i,j):Aij=1}

Yij log(Ŷij) + (1− Yij) log(1− Ŷij).

Finally, we merge the contours according to the pre-
dicted merge matrix Ŷ and output an instance mask for
each of the merged contours. In other words, for a tree t,
the predicted mask is the union of all pixel locations within
merged contours, i.e.,

Mt =
⋃

j:Ytj=1

Cj . (4)

3.3. Collection of Datasets

We have prepared four datasets to develop and
evaluate our method. We have made the synthetic
and real-world dataset (with videos) publicly available.
Please visit https://github.com/adnan0819/Tree-Instance-
Segmentation-using-Temporal-Structured-Images.
Synthetic Dataset. A first dataset is created synthetically
and enables us to control the density, species, and coloring
of the trees. We use the algorithm for plant competition for
resources [?] implemented as a developmental model [?
] controlled by user-defined parameters [? ?] and its
realism has been validated by a prior large user study [?].
The trees have been placed by ecosystem simulation [? ?].
Our implementation supports acacia, apple, willow, maple,
birch, oak, and pine trees (see Fig. 6). We can generate
terrains of arbitrary size full of trees.
Real-world Datasets. We have prepared three real-world
forest datasets. Forest A (Martell Foret, West Lafayette,
IN) was collected by our team with a UAV flying over a
large forest and we made this dataset available publicly. To
our knowledge, it is the largest and most comprehensive
UAV-captured overhead image sequence dataset for forest
research. Moreover, although not used here, each image in-
cludes georegistered coordinates of the camera location.

Methods GT Pred. Acc. ↑
YOLOv7 2172 3442 41.5
YOLOv7 + Flow 2172 3134 55.7
YOLOv7 + Flow (Med.) 2172 3016 61.1
YOLOv7 + Flow (Mean) 2172 2838 69.3
Ours 2172 2373 90.7

Table 1. Preliminary experiments. Count accuracy on synthetic
forest verifying the effectiveness of capturing self-occlusion using
optical flow. Med. and Mean correspond to thresholding the opti-
cal flow based on the median or mean magnitude.

The UAV was piloted by a trained forestry pilot and used
two cameras: DJI P1 and DJI H20T. Three distinct forest re-
gions were captured using 23 flights and covering approx-
imately 368 hectares (3,680,000 m2) in total. The image
sequences were captured at 80m, 100m, and 120m altitudes
with the camera sensors pointing straight down (i.e., nadir).
The DJI P1 camera had a field of view (FOV) of 63.5◦, and
DJI H20T had a FOV of 82.9◦. All flight speeds were 5m/s.
Each image has a resolution of 3,840 × 2,160 pixels and
was captured at the rate of 60 images per second.

To evaluate the generalization capability (i.e., out-of-
distribution), we collected Forest B (Kentucky Ridge State
Forest, KY) and C (Olympic National Forest, WA) from
Google Earth. We annotated twenty images at 832 × 732
pixels with tree crown information. Forest B and C are
only used for validation. Notably, these forests have differ-
ent characteristics. Forest A has a combination of natural
and plantation vegetation and combines both deciduous and
coniferous species like white oak, black cherry, red oak, etc.
In contrast, Forest B contains more color variation with-
out any plantation-type forest with species like sugar maple,
tulip poplar, various oaks, hemlocks, etc. Differently, Forest
C contains both seasonally changing and evergreen species.
These differences in datasets B and C make them suitable
for out-of-distribution evaluation.

4. Results

We evaluate our proposed approach using the Synthetic,
Forest A, B, and C datasets. We report on the task of tree
crown instance segmentation and counting. Note that in-
stance segmentation systems trivially generalize to count-
ing by predicting the number of detected instances. Beyond
quantitative comparisons with baselines, we also conduct
ablation studies verifying the efficacy of our proposed com-
ponents and qualitative demonstrations.
Experiment Setup. For synthetic data experiments, we
use 80% of the data to train and report evaluation metrics
on the remaining 20%. In real-world experiments, we train
on Forest A also using an 80-20 train and validation split.
Using the same model trained on A, we report performance

https://github.com/adnan0819/Tree-Instance-Segmentation-using-Temporal-Structured-Images
https://github.com/adnan0819/Tree-Instance-Segmentation-using-Temporal-Structured-Images

Methods Synthetic Forest Forest A Forest B Forest C
AP ↑ AP50 ↑ AP70 ↑ AP ↑ AP50 ↑ AP70 ↑ AP ↑ AP50 ↑ AP70 ↑ AP ↑ AP50 ↑ AP70 ↑

Mask-RCNN (ResNet) 27.1 53.6 50.1 33.4 57.3 54.1 39.2 58.8 56.1 35.1 57.9 58.4
Mask-RCNN (Swin-T) 59.8 70.2 68.3 64.6 74.1 70.5 69.5 77.3 72.4 63.2 72.6 70.3

TraDeS 61.1 55.2 64.4 58.1 71.3 66.8 63.7 73.9 70.5 59.6 70..4 64.1
BoundaryFormer 56.3 65.1 57.5 60.9 72.9 66.2 64.1 73.4 69.2 58.9 71.2 61.8

Mask2Former 62.4 65.2 63.9 59.7 64.1 63.2 64.1 67.5 63.8 61.9 63.1 62.9
MS-RCNN 66.2 68.4 65.8 64.8 71.3 68.5 66.4 70.2 69.3 64.2 69.3 65.8

OCISIS 59.1 63.5 61.8 55.7 58.6 58.1 60.8 68.2 66.8 60.2 62.8 60.9
SLIC (Superpixel) 23.7 27.3 24.2 20.7 24.8 23.6 22.5 27.3 23.7 20.1 27.5 24.6

Aerial Laser 71.1 72.9 70.8 70.4 75.2 71.1 65.1 68.2 66.8 65.3 68.7 64.8
Ours 74.6 73.1 69.5 74.5 81.6 72.8 69.8 76.2 71.5 70.1 75.4 72.5

Table 2. Segmentation. Comparisons of segmentation performance to prior instance segmentation baselines.

Methods Synthetic Forest Forest A Forest B Forest C
GT Pred. Acc. ↑ GT Pred. Acc. ↑ GT Pred. Acc. ↑ GT Pred. ↑ Acc. ↑

Mask-RCNN (ResNet) 5157 3291 63.8 2314 1691 73.1 2041 1281 62.8 2172 1403 64.6
Mask-RCNN (Swin-T) 5157 4275 82.9 2314 1816 78.5 2041 1655 81.1 2172 1791 82.5

TraDeS 5157 4131 80.1 2314 1987 85.9 2041 1596 78.2 2172 1611 74.2
BoundaryFormer 5157 3981 77.2 2314 1950 84.3 2041 1549 75.9 2172 1713 78.9

Mask2Former 5157 3290 63.8 2314 1708 73.8 2041 1601 78.4 2172 1681 77.4
MS-RCNN 5157 3527 68.4 2314 1886 81.6 2041 1645 80.6 2172 1752 80.7

OCISIS 5157 4373 84.8 2314 1969 85.1 2041 1643 80.5 2172 1822 83.9
SLIC (Superpixel) 5157 8142 42.1 2314 3566 45.9 2041 3298 38.4 2172 3521 37.9

Aerial Laser 5157 4399 85.3 2314 1960 84.7 2041 1639 80.3 2172 1887 86.9
Ours 5157 5636 90.7 2314 2510 91.5 2041 1771 86.8 2172 2384 90.2

Table 3. Counts. Comparisons of tree crown count performance to prior instance segmentation baselines.

on B and C to evaluate out-of-distribution generalization.
Evaluation Metrics. We follow the evaluation protocol
from the prior work [?]. For tree instance segmentation, we
report the mask Average Precision (AP) averaged over dif-
ferent intersection-over-union (IoU) thresholds and at IoU
thresholds of 0.5 and 0.7, denoted as AP50 and AP70 re-
spectively. For tree counting, we report the raw number of
counts and the count accuracy, which is expressed as a per-
centage denoted by Acc.
Baselines. We compare our approach to the following
instance segmentation methods: Mask-RCNN based on
ResNet [?], Mask-RCNN based on the recent trans-
former backbone (Swin-T) [?], Track-to-Detect-and-
Segment(TraDeS) [?], BoundaryFormer [?] (a recent
mask-supervised polygonal boundary approach to instance
segmentation using transformers), Mask2Former [?], Mask
Scoring RCNN [?], Object Counting and Instance Segmen-
tation with Image-level Supervision [?], SLIC (superpix-
els) [?], and Aerial Scanning Using Laser and Deep Model
(a model specific to trees) [?].

4.1. Synthetic Data Experiments

Preliminary Experiments. We used our synthetic data to
aid the development of our method. In particular, we used it
to understand the impact of determining the change in self-

occlusion, and we experimented with several settings using
our synthetic dataset.

First, we varied the density of the tree crowns in the
dataset until YOLOv7 [?] had difficulty in determining
the tree crown count (see Tab. 1).

Second, we used the graphics rendering engine to de-
termine the ground truth optical flow as a virtual UAV
flies over the same dense synthetic forest. We extended
YOLOv7 [?] to include this flow data as an indicator of
changing self-occlusion patterns. Specifically, we incorpo-
rate flow as additional channels to the input.

We found that different optical flow thresholds led to im-
proved count accuracies. Hence, Tab. 1 reports the counting
performance using flow when not thresholded, thresholded
by the median and the mean. The incorporation of the op-
tical flow improves the performance by 33%. However, the
counting performance of YOLOv7 remains unsatisfactory.

To further improve performance, we developed our
method to include pixel content features, shape features and
changed the underlying model to the graph-based approach
described in Sec. 3 – this produced the highest count accu-
racy of 90.7%, as seen in Tab. 1. In contrast, the next best
model, YOLOv7+Flow(mean), achieves a count accuracy
of only 69.3%.
Quantitative Results. We compared the count accuracy

Human Annotation Ours Swin-T TraDes

Fo
re

st
A

Fo
re

st
B

Fo
re

st
C

Figure 7. Qualitative comparisons. Comparisons of our approach vs. Swin-T and TraDes. We observe that our approach produces
instance segmentation masks that more closely match the human annotation. Comparisons to more baselines are illustrated in the Appendix.

of our method using the synthetic dataset to our baselines
in Tab. 3 (first three columns). We observe that Mask-
RCNN (Swin-T) is the best-performing baseline with a
count accuracy of 82.9%, followed by TraDeS with 80.1%,
BoundaryFormer with 77.2%, and Mask-RCNN (ResNet)
with 63.8%. Our method outperforms all baselines in count
accuracy with 90.7%. We also compared the AP per-
formance of using the synthetic dataset to our baselines
in Tab. 2. Our method again outperforms all the baselines.

4.2. Real-World Data Experiments

We also conducted experiments on our multiple real-
world forest datasets. Tab. 2 contains the AP comparisons to
the baselines. Our approach outperforms all methods in all
forests except for AP50 and AP70 in Forest B. Overall, our
method achieves an AP of 74.5, 69.8 and 70.1 on Forest A,
B, and C respectively.

Tab. 3 reports the counting accuracy comparison to our
baselines. The accuracy metric is defined as 1 − MAE
(normalized) as a percentage where MAE is the mean ab-
solute error. Our method exceeds the performance of all
prior methods across all forests. On Forest A, our method
achieves a count accuracy of 91.5% compared to the next
best baseline (TraDeS) of 85.9%. On Forest B, our method
achieves 86.8 compared to the next best baseline (Swin-
T) of 81.1%. On Forest C, our method achieves 90.2%
compared to the next best baseline (Aerial Laser Scanning
Model) of 86.9%.

Ablated feature AP AP50 AP75 Acc.

All Features 74.5 81.6 72.8 91.5
All — aspect ratio 67.6 72.9 68.4 82.4
All — solidity 69.2 74.1 66.2 80.1
All — self-occlusion 62.9 77.3 71.1 78.2
All — patch 51.3 56.8 63.2 71.8
All — deviation 59.8 62.2 64.1 70.9
All — area 55.1 58.8 61.6 68.3
All — neighbor sim. 57.4 61.7 59.6 63.5

Table 4. Feature ablations. Performance of our approach on For-
est A as we ablate each feature (sorted by count accuracy). Fea-
tures with lower accuracy have a higher impact on the prediction.

4.3. Qualitative Study

Beyond the quantitative results, we also qualitatively
study the method’s behavior. Fig. 7 shows the results of
our method and baselines applied to the three real-world
datasets. We generally observe that the predicted instance
segmentation closely matches the ground truth annotations.
On the other hand, we observe that a typical failure case
for TraDes and Swin-T is that they often group multiple
tree crowns into one; See Fig. 7 for regions boxed in red.
–Similar illustrations of qualitative comparisons with more
baselines are given in the Appendix.

Next, we study the merging behavior (Sec. 3.2). Fig. 8
shows the contour map before and after merging. We ob-
served that our approach merged small contours into larger
ones to match the tree crown boundaries more closely.

Input image Contour map After merging Output

Fo
re

st
A

Fo
re

st
B

Fo
re

st
C

Figure 8. Visual illustration of data flow. We visualize the contour map before and after contour merging.

Frame ∆ 1 2 3 4 5 no flow

AP ↑ 74.5 72.8 68.1 65.4 64.8 62.9
Acc ↑ 91.5 86.1 83.5 82.9 81.8 78.2

Table 5. Frame-rate ablations. The performance drop as optical
flow is computed at different image intervals.

4.4. Ablation Study

To quantify the importance of features of our con-
tour graph, we perform an ablation study using Forest A.
In Tab. 4, we sort the ablations by descending in count ac-
curacy – i.e., the feature in the top rows are the features that
least impact model performance. We observe that ‘neighbor
similarity’ impacts count accuracy the most, and the patch
feature has the most impact on AP.

The other shape and self-occlusion features contribute
significantly to the segmentation. The ablation shows a
13.3% increase in count accuracy when the self-occlusion
features are used (driven by optical flow). Not using this
feature in dense scale forests, similar to the samples of all
real forest trees reported in Tab. 3, would lead to an over or
underestimation of approximately 868 trees.

Moreover, to test the capability of the optical flow al-
gorithm used [?], we skipped progressively more frames
and recomputed the flow in each case (ablating the self-
occlusion feature). The different flow values were then used
and evaluated in terms of AP (see Tab. 5) and tree count ac-
curacy. We can see in Tab. 5 the largest shift happens from
skipping one frame to two frames, as the granularity of flow
(using motion) halves. The subsequent drops indicate lower

frame rate adversely affects the performance. Notably, even
at lower frame rates, the performance metrics were higher
than having no optical flow. In summary, we observe that
our method generally functions well even for images cap-
tured between 30-60 fps.

5. Limitations & Conclusion
Our method is limited by the quality of the input image.

For example, trees include very high-frequency details, e.g.,
small branchlets, that are below the resolution of the UAV
cameras, which our approach cannot capture. Other image
degradation factors, such as blurring caused by the wind and
the UAV motion, also lead to similar challenges. Also, some
shadows can be identified as trees. An obvious limitation
is that our approach does not work for a single image and
requires an image sequence.

In summary, we introduced a novel approach to instance
segmentation and counting tree crowns in forests. Our
approach uses image sequences from increasingly available
UAVs. Our key contribution is leveraging the partial
occlusion between successive images, shape features of the
contours, and encoding these features into a contour graph
that is updated between successive images. The result is
a method that produces instance segmentation masks that
separate the individual tree crowns. Finally, we provide
synthetic and real-world datasets that can facilitate future
research in tree crown instance segmentation and counting.

Acknowledgements: This research is at least partially sup-
ported by Purdue Digital Forestry Center (esp. Dr. Songlin
Fei) and NSF grants 1835739 and 2106717.

Appendix: Tree Instance Segmentation with Temporal Contour Graph

A1. Additional Results
In this section, we expand upon the methods and results we presented in our main paper. We further explain the reasoning

and rationales for making certain choices in our methodology.

Additional qualitative results. Fig. A1 illustrates several additional input-to-output data flows on various types of forest
appearances. In particular, we selected varying shadows, lighting, shapes, colors, and distributions. This example shows the
robustness of our method.

Input image Initial contour After merging Output

Figure A1. Additional qualitative results. We visualize the contour map before and after contour merging.

Additional visual comparisons to baselines: Here, we present more qualitative comparisons to other baselines in Figs.
Fig. A2 and Fig. A3.

Human Annotation Ours Mask2Former SLIC

Fo
re

st
A

Fo
re

st
B

Fo
re

st
C

Figure A2. Extended Qualitative Comparisons. Comparisons of our approach vs. Mask2Former and SLIC. We observe that our approach
produces instance segmentation masks that more closely match the human annotation.

Human Annotation Ours Aerial Laser MS-RCNN

Fo
re

st
A

Fo
re

st
B

Fo
re

st
C

Figure A3. More Qualitative comparisons. Comparisons of our approach vs. Aerial Laser Model and Mask Scoring RCNN. We observe
that our approach produces instance segmentation masks that more closely match the human annotation.

Comprehensive ablation. To offer a more detailed ablation on the effect of out-of-distribution data, we conduct ablations
and report quantitative metrics for Forest B and Forest C (in addition to Forest A, which was presented in the main paper). In
addition, we show the (very low) performance of just using the initial contours as determined by the edge detection network.
Tab. A1 presents the aforementioned metrics.
Justification for Guo-Hall skeletonization [?]. Our method uses Guo Hall (GH) skeletonization [?] to convert and
simplify grayscale contours to binary maps. We illustrate the effects of using GH in Fig. A4, and the resulting segmentation

Forest A Forest B Forest C
Ablated feature AP ↑ AP50 ↑ AP75 ↑ Acc. ↑ AP ↑ AP50 ↑ AP75 ↑ Acc. ↑ AP ↑ AP50 ↑ AP75 ↑ Acc. ↑
All Features 74.5 81.6 72.8 91.5 69.8 76.2 71.5 86.8 70.1 75.4 72.5 90.2
All — aspect ratio 67.6 72.9 68.4 82.4 55.3 60.7 57.5 62.2 57.5 62.2 57.7 56.1
All — solidity 69.2 74.1 66.2 80.1 63.5 75.1 70.2 78.8 65.9 73.6 65.9 71.3
All — self-occlusion 62.9 77.3 71.1 78.2 56.2 58.4 52.5 62.7 56.5 61.8 60.2 66.5
All — patch 51.3 56.8 63.2 71.8 60.2 57.9 61.1 65.9 57.2 54.5 51.9 59.2
All — deviation 59.8 62.2 64.1 70.9 61.3 64.6 62.1 60.4 50.5 62.9 61.4 65.3
All — area 55.1 58.8 61.6 68.3 51.1 52.5 44.6 54.5 54.7 57.2 56.5 59.4
All — neighbor sim. 57.4 61.7 59.6 63.5 54.9 59.7 58.9 59.9 68.6 72.2 70.7 79.5
All — Guo-Hall 32.6 39.2 30.8 41.7 28.8 36.3 31.6 44.2 30.7 38.1 34.7 42.2
Initial Contour 25.7 29.1 27.3 38.5 21.6 22.5 21.8 31.3 28.4 34.8 29.7 36.9

Table A1. Ablation analysis of all forest datasets: Performance of our approach on real-world forest datasets as we ablate each feature.
Also, we show performance when not using Guo-Hall skeletonization and also when directly using the initial contours. The table is sorted
on count accuracy of Forest A to stay consistent with base paper.

Input Edge Map

Without GH
(Double edges) After Merging Output without GH

With GH After Merging Output with GH

Figure A4. Impact of Guo-Hall Skeletonization (GH) [?]. We visualize, with and without Guo-Hall, the resulting intermediates throughout
the proposed method.

is different as can be seen in the top and bottom rows. The initial edge detector generates edges with doubled contours.
When constructing the contour graph, without GH, we would potentially receive two instead of one contour for each side
(see Fig. A4). This results in double edges in the edge maps and leads to incorrect connectivity between the nodes. This leads
to incorrect contour merging. Such effect is also shown quantitatively in Tab. A1.

Hyperparameter tuning. We used 30× 30 pixels for each node’s representative patch. We selected this dimension through
a hyperparameter tuning experiment using several choices of patch sizes as shown in Tab. A2. The resolution of 30× 30 was
chosen because it outperformed both larger and smaller patches. Using larger patches would pick up pixels from neighboring
nodes that are undesirable at this point of the pipeline. Graph Fig. A5 shows the values of AP and Acc. with varying patch
sizes.

Patch
Size (px) AP ↑ AP50 ↑ AP75 ↑ Acc. ↑

10 x 10 52.1 61.8 57.9 74.4
20 x 20 61.5 74.8 68.1 87.2
30 x 30 68.9 77.3 71.1 90.1
40 x 40 64.2 75.9 70.3 88.3

Table A2. Hyperparameter tuning for patch
size on Forest A.

10 x 10 20 x 20 30 x 30 40 x 40
Patch size (pixels)

55

60

65

70

75

AP

Patch size vs. Segmentation Metrics
AP
AP_50
AP_75

10 x 10 20 x 20 30 x 30 40 x 40
Patch size (pixels)

74

76

78

80

82

84

86

88

90

Co
un

t A
cc

ur
ac

y
(%

)

Patch size vs. Count Accuracies
Count Accuracy (%)

Figure A5. Plots showing AP performance and count accuracies vs. patch sizes.

A2. Implementation Details

Compute resource. All our experiments and training were done on a machine with AMD EPYC 7302 16-Core Processor
with 3 GHz clock speed, and 128 GB RAM. Our model is trained with a single NVIDIA RTX 3090 GPU.

Implementation details. Our work is implemented in Python using PyTorch. We utilize Pytorch Geometric [?] for
graph processing and OpenCV for image processing. The deep contour/edge map generation is generated using a deep
edge detection network named Pixel Difference Networks for Efficient Edge Detection (PIDINet) [?] from repository. We
retrained the edge detection network with our annotated dataset. It took approximately 22 hours to train the network with
a base learning rate of 0.01 and weight decay of 0.0005 for 200 epochs. The optimizer used was ADAM [?]. Then, the
network could generate the initial edge maps necessary for our pipeline.

We use a GCN [?] to perform message passing of node embedding, where input features capture each node’s accompa-
nying neighborhood information. In our GCN implementation, we set our walk length to two, which corresponds to K in the
original GCN paper[?]. In this way, we aggregate information from at most two steps (i.e., neighbor of neighbors) away for
each node embedding. We used a base learning rate of 0.1 and weight decay of 0.005 with ADAM [?] and trained for 200
epochs. It took approximately 15 hours to process and train the model on our dataset.

Finally, the MLP used for edge classification is trained with a base learning rate of 0.001 and momentum of 0.9. using
ADAM [?]. It took under two hours to train the MLP classifier for 500 iterations with early stopping at 10 steps.

Baseline implementation details. We document how we train/use the nine baseline models on our dataset.
Mask-RCNN [?]. We use the publicly available implementation Matterport official GitHub repository (which was ac-

knowledged by the original authors). We used the ResNet-101 backbone and retrained on our labeled dataset. We train the
modeling using SGD with a learning rate of 0.001, a momentum of 0.9, and a weight decay of 0.0001. It took approximately
four days to train 200 epochs on our dataset.

Swin-T [?] backbone with Mask-RCNN [?]. We use the official branch in Github from the author’s affiliation – Microsoft
Research, which was specific for instance segmentation. We train the model using a base learning rate of 0.001 and weight
decay of 0.0001 using ADAM [?]. This baseline was trained for 200 epochs, which takes approximately three days.

TraDes [?]. We use the official repository on GitHub. We used the MoT17 [?] pre-trained weights and evaluated our
validation dataset to confirm consistency. We note that MoT17 also had trees and other vegetation classes subjectively similar
to ours.

BoundaryFormer [?]. We use the official implementation on GitHub. We retrained the model using our own dataset.
It took approximately 2 days to finish the training for 200 epochs. We set the base learning rate is set to 0.02 and use the
ADAM [?] optimizer.

Mask Scoring RCNN [?]. We use the official implementation on GitHub. We retrained the model using our own dataset
in COCO format. It took approximately one day to finish the training for 100 epochs. We set the base learning rate to 0.02
with weight decay of 0.0001 and use the SGD optimizer.

https://github.com/zhuoinoulu/pidinet
https://github.com/matterport/Mask_RCNN
https://github.com/microsoft/Swin-Transformer
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
 https://github.com/JialianW/TraDeS
https://github.com/mlpc-ucsd/BoundaryFormer
https://github.com/zjhuang22/maskscoring_rcnn

Mask2Former [?]. We use the official implementation on GitHub. We retrained the model using our own dataset in
COCO format. It took approximately eight hours to finish the training for 100 epochs. We set the base learning rate to
0.0001, weight decay of 0.05 and use the ADAM [?] optimizer.

Aerial Laser Model [?]. It is an improved parameterized version of YOLOv4. We make the instructed changes to the
PyTorch implementation on GitHub. We retrained the model using our own dataset. It took approximately 12 hours to finish
the training for 200 epochs. We set the base learning rate to 0.0013, weight decay of 0.0005, the momentum of 0.949 and use
the ADAM [?] optimizer.

SLIC (Superpixel) [?]. As this is a traditional algorithm as opposed to a deep learning model, we used the SLIC
implementation from the Python Scikit-Learn package.

OCISIS [?]. We use the official implementation on GitHub. We retrained the model using our own dataset in COCO
format. It took approximately two days to finish the training for 200 epochs. We set the base learning rate to 0.01, weight
decay of 0.0001, and momentum of 0.9 and used the SGD optimizer.

https://github.com/facebookresearch/Mask2Former
https://github.com/Tianxiaomo/pytorch-YOLOv4
https://github.com/alzayats/CountSeg-1

[10pt,twocolumn,letterpaper]article [rebuttal]cvpr
graphicx amsmath amssymb booktabs multirow contour [normalem]ulem soul
0.8pt
[pagebackref,breaklinks,colorlinks,bookmarks=false]hyperref
xcolor xspace
symbols
Rebuttal: Tree Instance Segmentation using Temporal Structured Images

We thank the reviewers for their constructive feedback.
We address individual questions from each reviewer and in-
clude the requested new comparisons. Our method outper-
forms all newly requested baselines across all datasets.

To Reviewer Qvio
Q1. Quality of human annotations. Experienced forest re-
search collaborators prepared our validation data by physi-
cally surveying the forests and by using images with green-
leaf, fall-colored, and leaf-off (only branches and trunks).
Q2. Comparision with traditional superpixel segmentation.
We added an experiment using SLIC [?] in Tab. A3. SLIC
achieves less than one-third of the AP of our method.
Q3. Comparision with tree specific segmentation. We
are not aware of dense tree-specific methods that are able
to address our goal. However, one similar recent work in
a top venue is [?], which focuses on bounding boxes and
not segmentation masks. We provide additional compar-
isons (suggested by Reviewer MpxE) in Tabs. A3 and A4.
Our method achieves better performance than the compared
methods.
Q4. Novelty. First, our work addresses the challeng-
ing problem of densely packed trees. Prior works fo-
cus on counting and not instance segmentation for dense
trees (see ℓ.96). Second, our approach computes an over-
segmentation and then performs a refined instance segmen-
tation posed as an edge classification problem modeled via
graph nets. Our approach differs from the generic instance
segmentation pipelines. Third, we discuss the relation, and
how we differ, to prior works in Sec. 2.

To Reviewer MpxE
Q5. Requested additional baselines. Tab. A3 compares
to the requested additional baselines [? ? ? ? ? ?]. Our
method across all datasets at least outperforms the next-best
model [?] by 25% in MAE and by 5% in AP for segmen-
tation and [?] by 26% in MAE for counting. Average
improvement over other methods 49.6% (AP) and 50.2%
(MAE).
Q6. Evaluation metric for counting (Why not MAE?).
Sorry for the confusion, we briefly explained Acc. in ℓ.584-
586. For clarity, Acc. is computed as 1−MAE (normalized)
where MAE = 1

N

∑N
n=1 |ŷn − yn|, with ŷn, yn, N denot-

ing the tree prediction (binary), ground-truth (binary) and
total ground-truth tree count, respectively. We use Acc. as
higher is better, i.e., its direction is consistent with AP. See
AP/MAE in Tab. A3.
Q7. Interest to the community. Algorithmic interest:
Counting tightly packed moving structures, e.g., trees, has
not been done extensively before, and we believe this may
stimulate future works in this direction. Please also see
Q4 where we summarize the paper’s novelty. Societal
interest: This is directly linked to the theory of human-
induced climate changes and also to ecological balance and
environmental health (as suggested by Reviewer rjNH).

Table A3. Additional benchmarks against crowd, object,
tree/planet segmentation approaches (AP ↑ / MAE ↓)

Method/Dataset Synth. Fors. A Fors. B Fors. C

Ours 74.6/9.3 74.5/8.5 69.8/13.2 70.1/9.8
Mask2Former [?] 62.4/36.2 59.7/26.4 64.1/21.6 61.9/22.6
MS-RCNN[?] 66.2/31.6 64.8/18.4 66.4/19.1 64.2/19.5
OCISIS[?] 59.1/15.2 55.7/14.9 60.8/19.5 60.2/16.1
Aerial Laser[?] 71.1/14.7 70.4/15.3 65.1/19.7 65.3/13.1
SLIC[?] 23.7/57.9 20.7/54.1 22.5/61.6 38.4/62.1

Table A4. Additional benchmarks against object and crowd count-
ing models - our method performs best (MAE ↓)

Method/Dataset Synth. Fors. A Fors. B Fors. C

Ours 9.3 8.5 13.2 9.8
DMCC[?] 13.8 14.3 17.8 16.4
OCISIS[?] 15.2 14.9 19.5 16.1

To Reviewer rjNH
Q8. Comparision with crowd detection. We report the
requested comparison with [?] in Tab. A4 (and other new
comparisons in Tab. A3, see Q5). We observe, among the
crowd-based models, ours at least outperformed the next-
best models in segmentation (AP) [?] by 5%, and the
next-best model in counting (MAE) [?] by 26% across
all datasets.
Q9. Additional dataset details. Dataset details are in Sec 3.3
(ℓ.519-524), where we described the captured areas, framer-
ates, speed, FOV, and resolution. We purposefully captured
UAV data at three heights (80, 100, and 120 meters) and
three forests of varying species distribution. The trees have
a range of heights (Forest A: 3.4-15.6 meters, Forest B: 18-
25 meters; Forest C: 10-33 meters). We choose Forest B
and C to evaluate the out-of-distribution setting, as written
in Sec. 3.3. When anonymity is lifted, we will report actual
forest names and full-length UAV videos; example videos
are already included in the supplement. Finally, we will up-
date the paper and appendix with more dataset details.

	. Introduction
	. Related Work
	. Tree Crown Instance Segmentation
	. Contour Graph Creation
	. Contour Merging
	. Collection of Datasets

	. Results
	. Synthetic Data Experiments
	. Real-World Data Experiments
	. Qualitative Study
	. Ablation Study

	. Limitations & Conclusion
	. Additional Results
	. Implementation Details

