

Structured-Light Based Acquisition (Part 1)

CS635 Daniel G. Aliaga Department of Computer Science Purdue University

Passive vs. Active Acquisition

- Passive
 - + Just take pictures
 - + Does not intrude in the environment (=passive)
 - Some surfaces cannot be acquired
 - Robustness is problematic
- Active
 - + Emit "light" into the scene so as to force the generation of robust correspondence
 - Environment is intruded (=active)

Active Acquisition

- Some options:
 - Laser scanning
 - "Structured Light"

Laser Scanning

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning
 - Good for high resolution 3D, but needs many images and takes time

• Project laser stripe onto object

- Depth from ray-plane triangulation:
 - Intersect camera ray with light plane

$$x = x'z / f$$

$$y = y'z / f$$

$$z = \frac{-Df}{Ax'+By'+Cf}$$

Example: Laser scanner

- + very accurate < 0.01 mm
- more than 10sec per scan

Cyberware[®] face and head scanner

Example: Laser scanner

Digital Michelangelo Project

http://graphics.stanford.edu/projects/mich/

Example: Laser scanner

Portable scanner by Minolta

 Goal: generate correspondences so as to enable a robust 3D reconstruction

Digital Projector Structured Light

- Method:
 - Use the projector as a "pattern" generator
 - Have the camera see the "pattern" and generate 1 or more corresponded points

- What are possible patterns?
 - Spatial patterns
 - Temporal patterns
 - Color patterns
 - And combinations of the above

Digital Projector Structured Light

		Binary codes	Posdamer et al.	N		N,			<u> </u>	
		Dinary coucs	Inokuchi et al.	N,		N,			Ń	
			Minou et al.	ĺ√.		Ń				
			Trobina	\checkmark		Ń				
	.5		Valkenburg and McIvor	Ń		N				
	exi		Skocaj and Leonardis							
	lq		Rocchini et al.							
	ult	n any andar	Caspi et al.							
	Ę	n-ary codes	Horn and Kiryati							
	me	Gray code + Phase shifting	Bergmann							
	Ţ		Sansoni et al.							
			Wiora				V			
			Gühring	\checkmark						h
		Hybrid mothoda	Kosuke Sato			V	V			
		Hybrid methods	Hall-Holt and Rusinkiewicz						\checkmark	
		Non-formal codification	Maruyama and Abe					V		n
			Durdle et al.				V			Ρ
			Ito and Ishii				Ń			•
			Boyer and Kak							
			Chen et al.							
	po	De Bruijn sequences	Hügli and Maître							
	-ho	De Di uji sequences	Monks et al.							
	ghboı		Vuylsteke and Oosterlinck							
			Salvi et al.							
	Vei		Lavoie et al.							
	Spatial I		Zhang et al.							
		M-arrays	Morita et al.			Ń				
			Petriu et al.							
			Kiyasu et al.							
			Spoelder et al.							
			Griffin and Yee			Ń				
			Davies and Nixon							
			Morano et al.							
	irect coding	Grey levels	Carrihill and Hummel							
			Chazan and Kiryati							
			Hung							
		Colour	Tajima and Iwakawa	\checkmark						
		Colour	Smutny and Pajdla							
			Geng							
	9		Wust and Capson					 		
			Tatsuo Sato	\checkmark				 		
		Scene applicability	Static		J					
			Moving							
		Pixel depth	Binary							
			Grey levels		_					
			Colour							
		Coding strategy	Periodical							
		County su aregy	Absolute							

Lets focus on binary striped patterns...

Binary Pattern Structured Light

Binary Coding

 Assign each pixel a unique illumination code over time [Posdamer 82]

X coordinate

Binary Coding

 Assign each pixel a unique illumination code over time [Posdamer 82]

Y coordinate

Binary vs Gray Codes

Decimal	Binary	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111

Binary vs Gray Codes

Standard Pixel Classification

Pixel Classification Challenges

Standard Pixel Classification

Interval

- Common methods
 - Simple threshold
 - Albedo threshold
 - Dual pattern

1. Simple Threshold

User specifies one threshold t for all pixels

1. Simple Threshold

User specifies two thresholds t₁, t₂

2. Albedo Threshold

Compute the albedo $t_{\rm p}$ for each pixel

2. Albedo Threshold

Compute the albedo $t_{\rm p}$ for each pixel

3. Dual Pattern: Pattern and Inverse

Without explicitly computing t_p

 This is incorrect when there is strong indirect (global) light

 Haven't actually established the correct bounds

Example Comparison

Usunsining stareparateix pixels statissification

Pixel Intensity (p is ON)

Pixel Intensity (p is OFF)

Pixel Intensity

- Chicken and egg problem is
 - Need to know d, i_{on} , i_{off} to classify a pixel.

- Need to classify a pixel to know d, i_{on} , i_{off}

ALL white pattern

(all projector pixels on)

Direct and Indirect Separation

• Direct and indirect (global) components of each pixel can be separated easily (Nayar et al. SIGGRAPH'06).

• Direct and indirect (global) components of each pixel can be separated easily (Nayar et al. SIGGRAPH'06).

https://cave.cs.columbia.edu/gallery/separation/RWO

High Frequency Illumination Pattern

High Frequency Illumination Pattern

fraction of activated source elements

Separation from Two Images

 Direct and indirect (global) components of each pixel under ALL white pattern can be separated easily (Nayar et al. SIGGRAPH'06).

- Project high frequency binary pattern and its inverse to separate light components.
- Structured light patterns include the separation patterns.
 - Thus, separation can be applied to previously captured data to obtain per pixel

$$p = d_{total} + i_{total}$$

Pixel Classification Scenarios

255

Pixel Classification Scenarios

Pixel Classification Scenarios

Single Pattern Classification Rules

- $d_{\text{total}} < m \rightarrow$ pixel is uncertain
- $p < \min(d_{total}, i_{total}) \rightarrow \text{pixel is off}$
- $p > \max(d_{total}, i_{total}) \rightarrow pixel is on$
- otherwise \rightarrow pixel is *uncertain*

Classification Results

Classification Results

ON(1) OFF(0) Uncertain

Another issue...

Another issue...

- Classify...
 - pixels at stripe boundaries?
 - pixels at strip middle?
 - all pixels?

Structured Light using Phase shifting

- Binary/gray code structured light
 - limited to (integer) projector resolution
 - has trouble with the LSB bits
- Alternative is **phase shifting**
 - Able to produce subpixel accuracies
 - Able to capture LSB bits more robustly

proj	0
proj	1
proj	2
proj	3
proj	4
proj	5
proj	6
proj	7

Phase Shifting

- Project 3 or more "phase shifted" sinusoidal patterns
- For example:

$$I_{-} = I_{b} + I_{v} \cos(\phi - \theta)$$
$$I_{*} = I_{b} + I_{v} \cos(\phi)$$
$$I_{+} = I_{b} + I_{v} \cos(\phi + \theta)$$

- The variable ϕ is the phase of each column

Phase Shifting

 Since binary/gray code good for MSB (and phase shifting less reliably for large ranges), we define absolute and relative phase shifts:

Phase Shifting

$$I_{-} = I_{b} + I_{v} \cos(\phi - \theta)$$
$$I_{*} = I_{b} + I_{v} \cos(\phi)$$
$$I_{+} = I_{b} + I_{v} \cos(\phi + \theta)$$

- How do you remove dependence on I_b , I_v ?
- One option: use 3 images and compute

$$\frac{I_{-} - I_{+}}{2I_{*} - I_{-} - I_{+}}$$

Phase Shifting

$$\frac{I_{-} - I_{+}}{2I_{*} - I_{-} - I_{+}}$$

$$= \frac{2 \sin(\phi) \sin(\theta)}{2 \cos(\phi)(1 - \cos(\theta))} = \frac{\tan(\phi)}{\tan(\frac{\theta}{2})}$$
thus

$$\phi(0, 2\pi) = \arctan(\tan(\frac{\theta}{2}) \frac{I_{-} - I_{+}}{2I_{*} - I_{-} - I_{+}})$$

Phase-shift projection

- Phase angle from brightness
 - Computed from the three images
 - Ambient light and projector power can be ignored
 - Result tells you location within one period...thus "micro-correspondence" and not "macro correspondence"
 - Empirically, good for last few bits:
 - E.g., to get 10 bits of correspondence, use gray code for 7 msb and phase shifting for 3 lsb
 - Total images: 2 x 7 x 2 + 3 x 2 = 34 instead of 2 x 10 x 2 = 40 (but also maybe more robust)