

CS63500 Capturing, Modeling, and Rendering 3D Structures

Daniel G. Aliaga Department of Computer Science

http://www.cs.purdue.edu/cgvlab

Purdue University

Who?

• Daniel G. Aliaga

http://www.cs.purdue.edu/~aliaga and aliaga@cs.purdue.edu Associate Professor of CS doing Graphics Doctorate in Graphics Master's in Graphics Bachelors in Graphics High School Degree doing graphics/robots/science **1980 (TRS80 Model I)**

Then: <u>http://www.youtube.com/watch?v=3yuqdC8Id48</u>) <u>http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png</u> Now: <u>http://www.youtube.com/watch?v=QAEkuVgt6Aw</u>

• CGVLAB

http://www.cs.purdue.edu/cgvlab

• You?

- Topic:
 - Covers fundamental problems and challenges encountered when capturing, modeling, and rendering 3D structures and objects.
 - Covers material in computer graphics, computer vision, and deep visual computing (aka subsets of computational imaging, computational cameras, computational displays)
- Goal:
 - To bring students up to speed in latest methods (research)
 - To enable students to develop new and improved approaches

Syllabus

- Toolbox
 - Images, optimization/minimization, stochastic, HC, DL
- Camera Calibration
 - e.g.,g Tsai, Zhang, Bouguet's methods
- Passive Acquisition
 - e.g., stereo, self-calibration, pose-free
- Active Acquisition
 - e.g., photometric, structured light, time of flight, lasers, SPAD
- Light-Transport based Methods
 - e.g., Lightfields, Inverse Transport, NeRFs, 3DGS
- Computational Images and Cameras
 - e.g., single-image reconstruction, re-illumination, coded aperture
- Computational Displays /Optics
 - e.g., 3D displays, spatial augmented reality, inverse optics, inverse blur
- Deep Visual Computing
 - diffusion models, GANS for content generation

- 3 "short warm-up" assignments
- In-class presentations (lit. review, mid-project)
- Final project (demo/presentation)
 - Suitable for conference or journal submission...

Camera Calibration

Stereo

Photometric Acquisition

• Given three pictures from same camera viewpoint but three illumination directions...

Photometric Acquisition

Can reconstruct normal and from normal the geometry...

Photometric Acquisition

Can reconstruct normal and from normal the geometry...kinda works...

Active/Passive Reconstruction

To provide an easy-to-use and high-resolution acquisition platform for deployment

Light Transport Based Methods

 Can encode light (or projector) to camera "transport" in a large matrix T

As seen from camera...

|C| =

p

As seen from projector!!!

Light Transport Based Methods

 Can encode light (or projector) to camera "transport" in a large matrix T

Camera *c*

 $\begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} T^t \end{bmatrix} \begin{bmatrix} c \end{bmatrix}$

As seen from camera...

As seen from projector!!!

<u>https://www.youtube.com/watch?v=Y_9vd4HWIVA</u>

NERF

- Neural Radiance Field
 - Deep learning version of lightfields

Computational Imaging/Cameras

Build your own coded aperture

Voila!

Coded Aperture Deblurring

Recovered

and

~

Recovered

EA 500

(e) Close-Ups

Output #1: Depth map

Single input image:

Single input image:

Output #1: Depth map

Output #2: All-focused image

Rectified Crop

Deblurred Result

Computational Displays: Spatial Augmented Reality

- Optoma EP910 projectors
- Canon Digital Rebel XTi 10MP camera
- Object
- 3.0 GHz multicore PC

Computational Displays: Spatial Augmented Reality

 Enable visual restoration of damaged and historically significant objects without needing to touch or alter them

Photo Before Restoration

Photo After Restoration

Computational Displays: Spatial Augmented Reality

 Mexican pot (genuine) from the Casas Grandes Cultural Region (1200-1425 A.D.)

photo of original object

photo of visually compensated object

photo of original object

photo of visually compensated object

Computational Displays: Spatial Augmented Reality

<u>http://gl.ict.usc.edu/Research/3DDisplay/</u>

Inverse/Computational Optics

- Some deblurring approaches:
 - Inverse Filter
 - Wiener Filter
 - Lucy Richardson
 - And more!

Inverse/Computational Optics

• Family of methods that "prevent" blurring...

Original

Captured Original

Precorrected

Captured Precorrected

Inverse/Computational Optics

- Family of methods that "prevent" blurring...
 - Defocus blur
 - Motion blur
 - Projector blur
 - Question:
 - Are two superimposed blurry images better than one blurry?

Deep Learning and Graphics

- Fundamentals of these and use in graphics/vision
 - CNN
 - GAN
 - RNN
 - GNN
 - Diffusion Models

Deep Learning and Graphics

• RayNet: volumetric 3D reconstruction

(a) Input Image

(b) Ground-truth

(c) Ulusoy et al. [35]

(e) RayNet

OccNet: occupancy-based reconstruction

Deep Learning and 3D Reconstruction

Semantic Segmentation

and the second

Semantic Segmentation Results

Questions?