CS63500
Capturing, Modeling, and Rendering 3D Structures

Daniel G. Aliaga
Department of Computer Science

http://www.cs.purdue.edu/cgvlab

Purdue University
Who?

- Daniel G. Aliaga
 http://www.cs.purdue.edu/~aliaga and aliaga@cs.purdue.edu
 Associate Professor of CS doing Graphics
 Doctorate in Graphics
 Master’s in Graphics
 Bachelors in Graphics
 High School Degree doing graphics/robots/science
 1980 [TRS80 Model I](http://www.youtube.com/watch?v=3yuqdC8ld48)
 Then: http://www.youtube.com/watch?v=3yuqdC8ld48
 http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
 Now: http://www.youtube.com/watch?v=QAEkuVgt6Aw

- CGVLAB

- You?
http://www.cs.purdue.edu/homes/aliaga

• **Topic:**
 – Covers fundamental problems and challenges encountered when capturing, modeling, and rendering 3D structures and objects.
 – Covers material in computer graphics, computer vision, and visualization

• **Goal:**
 – To bring students up to speed in latest methods (research)
 – To enable students to develop new and improved approaches
Syllabus

- Toolbox
 - Images, optimization/minimization, stochastic, HC, DL
- Camera Calibration
- Geometry and Image-based Acquisition
- Deep Learning Based Visual Computing
- Light-Transport based Methods and NeRFs
- Computational Images and Displays
- Inverse Optics
- 3D Printing
Workload

• 3 “short warm-up” assignments
• In-class presentations (lit. review, mid-project)
• Final project (demo/presentation)
 – Suitable for conference or journal submission...
Camera Calibration
Active/Passive Reconstruction

Illuminated (ON)

Non-illuminated (OFF)
Photogeometric Acquisition

To provide an easy-to-use and high-resolution acquisition platform for deployment
Deep Learning and Graphics

• Fundamentals of these and use in graphics/vision
 – CNN
 – GAN
 – RNN
 – GNN
 – Diffusion Models
Deep Learning and Graphics

- RayNet: volumetric 3D reconstruction
Deep Learning and 3D Reconstruction

- OccNet: occupancy-based reconstruction
Deep Learning and 3D Reconstruction

- Semantic Segmentation
Light Transport Based Methods

- Can encode light (or projector) to camera “transport” in a large matrix T

$$c = T p$$

As seen from camera...

$$p = T^t c$$

As seen from projector!!!
Light Transport Based Methods

- Can encode light (or projector) to camera “transport” in a large matrix T

\[
\begin{bmatrix}
 c \\
 p
\end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix}
 p
\end{bmatrix}
\]

As seen from camera...

\[
\begin{bmatrix}
 p
\end{bmatrix} = \begin{bmatrix} T^t \end{bmatrix} \begin{bmatrix}
 c
\end{bmatrix}
\]

As seen from projector!!!
Light in Slow Motion

- https://www.youtube.com/watch?v=Y_9vd4HWlVA
NERF

• Neural Radiance Field
 – Deep learning version of lightfields
Build your own coded aperture
Build your own coded aperture
Voila!
Coded Aperture Deblurring

(a) Captured Image 1 (b) Captured Image 2 (c) All-focused Image (d) Estimated Depth Map

(e) Close-Ups
Captured Recovered Captured Recovered Captured Recovered
Single input image:

Output #1: Depth map
Single input image:

Output #1: Depth map

Output #2: All-focused image
Computational Displays

- http://gl.ict.usc.edu/Research/3DDisplay/
Inverse/Computational Optics

• Some deblurring approaches:
 – Inverse Filter
 – Wiener Filter
 – Lucy Richardson
 – And more!
Inverse/Computational Optics

- Family of methods that “prevent” blurring...
Inverse/Computational Optics

• Family of methods that “prevent” blurring...
 – Defocus blur
 – Motion blur
 – Projector blur

– Question:
 • Are two superimposed blurry images better than one blurry?
3D Printing: Self Standing
3D Printing: Self Standing

- Automatic balancing
 - Stability & shape preservation
 - Inner carving & shape deformation
Questions?
This Week

• I will be at a conference 😊

• Wednesday: Toolbox

• Friday: 1st assignment out
 – Trivial compile something simple, change, and run

• Move class to LWSN 3151A (Conference Room in Graphics Lab)