Toolbox

CS635

Daniel G. Aliaga
Image Tools

• Features
 – Point, edge, line, corner, SIFT
 – Hough Transform
Edge Detection

• What would you do?
Edge Detection:
First Order Operator

• Roberts operator (1963) on image A:

$$G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} * A, \quad G_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} * A$$

$$G = \sqrt{G_x^2 + G_y^2}$$

• $\theta = \tan^{-1}\left(\frac{G_y}{G_x}\right)$
Edge Detection

• Sobel operator (1968) on image A:

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * A, \quad G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * A$$

• $G = \sqrt{G_x^2 + G_y^2}$

• $\theta = \tan^{-1}\left(\frac{G_y}{G_x}\right)$
Edge Detection

• Prewitt operator (1970) on image A (different spectral response as compared to Sobel):

$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} * A, \quad G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} * A$$

• $G = \sqrt{G_x^2 + G_y^2}$

• $\theta = \tan^{-1}\left(\frac{G_y}{G_x}\right)$
Edge Detection

- Canny Edges (1986)
 - Multi-stage algorithm, uses Sobel/Prewitt (or other) edge detector on a Gaussian filtered image and then has a process of non-maximal suppression
Edge Detection:
Second-Order Operator

• Laplacian: highlights regions of rapid intensity change

\[L_A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \times A \]

(positive Laplacian takes out outward edges; negative Laplacian is possible too)
Edge Detection

• Hough Transform (1972)
 – Associate with each line segment, a pair \((r, \theta)\)
 – Each line segment could be obtained by fitting to results of edge detection
 – Ex: find edges, find strong clusters/points in transform space, then draw lines
Corner Detection

- What would you do?
Corner Detection

- Harris-Stephens Corner Detector
 - Let the SSD between two patches be:

\[
f(\Delta x, \Delta y) = \sum_{(x_k, y_k) \in W} (A(x_k, y_k) - A(x_k + \Delta x, y_k + \Delta y))^2
\]

- which can be rewritten as

\[
f(\Delta x, \Delta y) \approx [\Delta x \ \Delta y] M [\Delta x \ \Delta y]^T
\]

- Where

\[
M = \begin{bmatrix}
\sum_{(x,y) \in W} A_x^2 & \sum_{(x,y) \in W} A_x A_y \\
\sum_{(x,y) \in W} A_x A_y & \sum_{(x,y) \in W} A_y^2
\end{bmatrix}
\]
Corner Detection

• Harris-Stephens Corner Detector
 – We want pixels where λ_1 and λ_2 of M are large, and hence f is large
 – $\lambda_1 \gg \lambda_2$ or $\lambda_2 \gg \lambda_1$ means an edge
 – $\lambda_1 \approx \lambda_2$ and large means corner

 – One option:

$$R = \det(M) - k \cdot tr(M)$$
Corner Detection

• Shi-Tomasi Detector
 – Similar to Harris but compute $\min(\lambda_1, \lambda_2)$ directly (using characteristic equation)

(claimed to be better, perhaps)
Feature Detection

- Corners
- SIFT: Scale Invariant Feature Transform (1999)
- SURF: Speeded Up Robust Features (2006)
- Deep Learning Based Feature Detection...
SIFT

• Properties:
 – Invariant to spatial rotation, translation, scale
 – Experimentally seen to be less sensitive to small spatial affine or perspective changes
 – Invariant to affine illumination changes
SIFT

• Computational Steps:
 – Scale-space extrema detection
 • local extrema detection using DoG (difference of Gaussians)
 • Compare difference of Gaussians center on a pixel to lower and higher blurs
 • Pick the scale/pixel with highest differences
SIFT

• Computational Steps:
 – Scale-space extrema detection
 – Keypoint localization
 • Similar to Harris Corner Detector, refine location of corners; ignore relatively weak corners
SIFT

- Computational Steps:
 - Scale-space extrema detection
 - Keypoint localization
 - Compute orientation
 - Use an orientation histogram with 36 bins (or so)
SIFT

• Computational Steps:
 – Scale-space extrema detection
 – Keypoint localization
 – Compute orientation
 – Keypoint descriptor creation

 • Use 16x16 pixel neighborhood to define 4x4 pixel subblocks yields a 128 vector as a descriptor of orientations and normalized to be illumination invariant
SIFT

• Computational Steps:
 – Scale-space extrema detection
 – Keypoint localization
 – Compute orientation
 – Keypoint descriptor creation
(Image) Convolution

• Convolution
 – Define a kernel
 – “Convolve the image”
(Image) Convolution

- Kernel: \((1/16) \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}\)

- What if kernel is not normalized?

- Image:
 \[
 \begin{bmatrix}
 p_{11} & \cdots & p_{m1} \\
 \vdots & \ddots & \vdots \\
 p_{1n} & \cdots & p_{mn}
 \end{bmatrix}
 \]

- What if image is multi-channel?

- What if kernel falls off the side of the image?
(Image) Convolution
(Image) Convolution
(Image) Convolution
(Image) Convolution
(Image) Convolution

• Recall
 – Convolution in spatial domain = multiplication in frequency domain
 – Thus, low/high frequency filter is a simple multiplication in frequency space
 – Phase component also exists in frequency space so that makes things more complicated...
(Image) Correlation

- Convolution: result of a composition of two signals
- Correlation: measure of coincidence of two signals
 - Subtle difference...
 - Mathematically, the difference is only two signs
 - https://www.youtube.com/watch?v=O9-HN-yszFQ

- Correlation = measure of similarity?
 - Maybe: Pearson correlation measure
 \[\rho_{X,Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y} \]
 - Does this work?
Image Similarity Metrics

• Use SIFT/SURF
 – Compute features and see how similar
• L2-norm
 – Per-pixel L2-norm
• Cross correlation
 – Kinda Pearson correlation
• SSIM
• Deep Learning...
Image Similarity Metrics

• SSIM: Structural Similarity Index

$$SSIM(x, y) = [l(x, y)^\alpha \cdot c(x, y)^\beta \cdot s(x, y)^\gamma]$$

where

- $l(x, y)$ measures luminance similarity,
- $c(x, y)$ measures contrast similarity, and
- $s(x, y)$ measures structure similarity (by covariance)
SSIM
Blurring

• Blur:
 – Box Blur
Blurring

- Gaussian Blur
Blurring

• Blur:
 – Radial Blur
Blurring

• Optical Blur:
 - PSF composed of Zernike Polynomials
Blurring

• Basic notion:
 – Blur is basically a PSF (Point Spread Function)

• Basic technique:
 – Apply a spatial blurring using a kernel and convolution
Note: Bilateral Filtering/Blurring

• It is a non-linear, edge-preserving, and noise-reducing smoothing filter
• It replaces the intensity of each pixel with a weighted average of intensity values from nearby pixels but not across edges
Bilateral Filter

• What is the formulation to account for value difference and spatial difference?
Bilateral Filter

- Given image I
- Value difference is $f(x_i, x)$
 - E.g., $\|I(x_i) - I(x)\|$
- Spatial difference is $g(x_i, x)$
 - E.g., $\|x_i - x\|$
- Altogether:

$$I_{filtered}(x) = \frac{1}{W_p} \sum_{x_i \in \Omega} I(x_i) f_r(\|I(x_i) - I(x)\|) g_s(\|x_i - x\|)$$
Deblurring

• One option is to perform a deconvolution:
 – Non-blind deconvolution
 • The PSF is known
Deblurring

• **Another option** is to perform a deconvolution:
 – Blind deconvolution
 • The PSF is NOT known

Several variations of blind deconvolution
Human Computation

• https://www.youtube.com/watch?v=tx082gDwGcM
 – Start at 6:45

• Relates to:
 – Citizen science is sometimes described as "public participation in scientific research"
 – Crowdsourcing is a less-specific, more public group, to help with the work
 – whereas outsourcing is commissioned from a specific, named group, and includes a mix of bottom-up and top-down processes
Function Solving vs Optimization

• Finding “solutions”:
 – Newton’s method: \(x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \)
 – Gradient descent: \(x_{n+1} = x_n - \alpha_n \nabla F(x_n) \)
 – If have no derivatives, use Powell’s (conjugate direction) method:
 • Searches in a variety of directions and picks best
 – Linear system of equations: \(Ax = b \)
 • What is \(A \) is not square?
 • ...then it is over/under determined
Optimization

• Linear least squares (LLS):
 – LLS is the problem of approximately solving an **overdetermined system** of linear equations, where the best approximation is defined as that which minimizes the sum of squared differences between the data values and their corresponding modeled values.
 – \(x = (A^T A)^{-1} A M^T y \) where \(y \) are dependent observations and \(A \) are independent observations (note: \((A^T A)^{-1} A^T \) is the Moore-Penrose inverse which is needed because \(A \) is not square – else would just be \(x = A^{-1} y \)
Optimization

• Non-linear least squares (NLLS):
 – Requires successive approximations to solve

\[S = \sum_i W_{ii} \left(y_i - \sum_j X_{ij} \beta_j \right)^2 \]

\[f(x_i, p + \delta) \approx f(x_i, p) + J_i \delta \]

PROBLEM: NLLS very sensitive to the presence of outliers (i.e., \(x_i, y_i \) pairs that behavior weird, maybe noise)
Optimization

• Random Sample Consensus (RANSAC)
 – Assumes that inliers exist and focuses on determining and using those
 – Randomly select data points and if they fit sufficiently well, use in the iterative optimization

• Rule of thumb:
 • If lots of inliers, use NLLS
 • If lots of outliers, use RANSAC
Optimization

• Convexity: typical assumption which means that objective function is convex

• Fancier optimization methods:
 – ADMM (Alternating Direction Method of Multipliers): optimize by dividing into subproblems
 – and many more...
Randomization-based Algorithms

• Pro: does not need convexity, can handle many dimensions even with lots of local minima

• Con: no guarantees
 – Exception: if PDF of parameters is known and is Gaussian, then it is a maximum likelihood estimation which can essentially be \approx NLLS
Randomization-based Algorithms

• Simulated Annealing
 – Inject noise while during optimization and hope for the best...

• Sequential Monte Carlo (or particle filters)
 – A set of Monte Carlo algorithms, that given some knowledge as to the expected parameter variance, can chose number and range of perturbations, that with some guarantees can field the optimum
 – Fun fact: developed in 1940s by Ulam and von Neumann who used the code name Monte Carlo since the work was secret – think WWII
Randomization-based Algorithms

• Markov Chain Monte Carlo (MCMC):
 – An ensemble of chains is created and walked along
 • Start with a set of points
 • Propose changes to the chains at different temperatures
 • Use acceptance probability to accept some chains (e.g., Metropolis-Hastings method)
 • Keep best chains and repeat
 • Terminate at max iterations or at little change
 – Used often in high-complexity (not-necessarily convex) problems in graphics/vision
Deep Learning

• Has lots of parameters to optimize (100M!)
 – SGD: Stochastic Gradient Descent
 – AdaGrad: Adaptive Gradient Descent
 – ADAM: Adaptive Moment Estimation