Stereo and 3D Reconstruction

CS635

Daniel G. Aliaga
Department of Computer Science
Purdue University

Thanks to S. Narasimhan @ CMU for some of the slides
Problem Statement

• How to create (realistic) 3D models of existing objects and scenes in the world?
 – Object vs. scene
 – Shape vs. color vs. material properties
 – Automatic vs. manual
 – And many more factors...
3D Shape Reconstruction from Photos

Fundamental Approaches

- **Manual modeling**
 - CAD, Sketchup, 3D Studio Max, MS Paint

- **Point Clouds**
 - LIDAR, Laser, Kinect

- **Photographs**
 - “photogrammetry and remote sensing”
 - Single Photograph
 - Stereo Reconstruction (2 photos)
 - Multi-view Reconstruction
 - narrow (video?) or wide baseline
Fundamental Approaches

- Manual modeling
 - CAD, Sketchup, 3D Studio Max, MS Paint
- Point Clouds
 - LIDAR, Laser, Kinect
- Photographs
 - “photogrammetry and remote sensing”
 - Single Photograph
 - Stereo Reconstruction (2 photos)
 - Multi-view Reconstruction
 - narrow (video?) or wide baseline
Definitions

• Camera geometry (=motion)
 – Given corresponded points on ≥2 views, what are the poses of the cameras?

• Correspondence geometry (=correspondence)
 – Given a point in one view, what are the constraints of its position in another view?

• Scene geometry (=structure)
 – Given corresponded points on ≥2 views and the camera poses, what is the 3D location of the points?
Assume that we know P_L corresponds to P_R.

Using perspective projection (defined using coordinate system shown):

What is relationship between x_L and X?
Assume that we know P_L corresponds to P_R.

Using perspective projection (defined using coordinate system shown)

$$x_L = \frac{X + \frac{b}{2}}{Z}$$
$$x_R = \frac{X - \frac{b}{2}}{Z}$$
$$y_L = \frac{Y}{f}$$
$$y_R = \frac{Y}{Z}$$
Stereo Rig

\[
 \begin{align*}
 x_L &= \frac{X + b}{2f} \\
 x_R &= \frac{X - b}{2f} \\
 y_L &= \frac{y_R}{f} = \frac{Y}{f} = \frac{Y}{Z} \\
 \Rightarrow X &= \frac{b(x_L + x_R)}{2(x_L - x_R)} \\
 Y &= \frac{b(y_L + y_R)}{2(x_L - x_R)} \\
 Z &= \frac{bf}{(x_L - x_R)}
\end{align*}
\]
Stereo: Disparity and Depth

$$(X, Y, Z)$$

scene

left image

right image

$$P_L(x_L, y_L)$$

$$P_R(x_R, y_R)$$

baseline $$b$$

$$\frac{x_L}{f} = \frac{X + b/2}{Z}$$

$$\frac{x_R}{f} = \frac{X - b/2}{Z}$$

$$\frac{y_L}{f} = \frac{y_R}{f} = \frac{Y}{Z}$$

$$X = \frac{b(x_L + x_R)}{2(x_L - x_R)}$$

$$Y = \frac{b(y_L + y_R)}{2(x_L - x_R)}$$

$$Z = \frac{bf}{(x_L - x_R)}$$

$$\Rightarrow d = x_L - x_R$$ is the **disparity** between corresponding left and right image points

- inversely proportional to depth
- disparity increases with baseline $$b$$
(Ray) Triangulation: compute reconstruction as intersection of two rays
Do two lines intersect in 3D?
If so, how do you compute their intersection?
Stereo: Ray Triangulation

Equations for the intersection:

\[(p_1 - p_2) \cdot (p_a - p_b) = 0\]
\[(p_3 - p_4) \cdot (p_a - p_b) = 0\]
\[p_b = p_1 + s(p_2 - p_1)\]
\[p_a = p_3 + t(p_4 - p_3)\]

Solve for \(s\) and \(t\), compute \(p\):

\[s = \ldots\]
\[t = \ldots\]
\[p = 0.5(p_a + p_b)\]
Stereo: Vergence

1. Field of view decreases with increase in baseline and vergence
2. Accuracy increases with increase in baseline and vergence
Camera Geometry

- We need to transform “left frame” to “right frame” – includes a rotation and translation:

\[\tilde{x}_R = R \tilde{x}_L + t_{LR} \]
Camera Geometry

In matrix notation, we can write \(\tilde{x}_R = R \tilde{x}_L + t_{LR} \) as:

\[
\begin{bmatrix}
\tilde{x}_L \\
\tilde{y}_L \\
\tilde{z}_L
\end{bmatrix} = \begin{bmatrix}
x_L \\
y_L \\
z_L
\end{bmatrix} \quad \begin{bmatrix}
\tilde{x}_R \\
\tilde{y}_R \\
\tilde{z}_R
\end{bmatrix} = \begin{bmatrix}
x_R \\
y_R \\
z_R
\end{bmatrix} \quad R = \begin{bmatrix}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{bmatrix} \quad t_{LR} = \begin{bmatrix}
r_{14} \\
r_{24} \\
r_{34}
\end{bmatrix}
\]
Camera Geometry

- In matrix notation, we can write $\tilde{x}_R = R \tilde{x}_L + t_{LR}$ as:

\[
\begin{align*}
\begin{array}{l}
 r_{11} x_L + r_{12} y_L + r_{13} z_L + r_{14} = x_R \\
 r_{21} x_L + r_{22} y_L + r_{23} z_L + r_{24} = y_R \\
 r_{31} x_L + r_{32} y_L + r_{33} z_L + r_{34} = z_R
\end{array}
\end{align*}
\]
Camera Geometry: Orthonormality Constraints

(a) Rows of \(R \) are perpendicular vectors

\[
egin{align*}
 r_{11} r_{21} + r_{12} r_{22} + r_{13} r_{23} &= 0 \\
 r_{21} r_{31} + r_{22} r_{32} + r_{23} r_{33} &= 0 \\
 r_{11} r_{31} + r_{12} r_{32} + r_{13} r_{33} &= 0
\end{align*}
\]

(b) Each row of \(R \) is a unit vector

\[
egin{align*}
 r_{11}^2 + r_{12}^2 + r_{13}^2 &= 1 \\
 r_{21}^2 + r_{22}^2 + r_{23}^2 &= 1 \\
 r_{31}^2 + r_{32}^2 + r_{33}^2 &= 1
\end{align*}
\]

\(R^T R = I \)

NOTE: Constraints are NON-LINEAR!
Problem:

Given \tilde{x}_L, \tilde{x}_R 's

Find R, $t_{LR} \rightarrow (r_{11}, r_{12}, \ldots, r_{34})$ subject to (nonlinear) constraints
Camera Geometry: Scale Ambiguity

Problem: same image coords can be generated by doubling $\tilde{x}_L, \tilde{x}_R, \tilde{t}_{LR}$

thus, we can find \tilde{t}_{LR} only up to a scale factor!

Partial Solution: fix scale by using constraint: $\tilde{t}_{LR} \cdot \tilde{t}_{LR} = 1$ (1 additional equation)
Camera Geometry:
How many scene points are needed?

Each scene point gives 3 equations:

\[r_{11} x_L + r_{12} y_L + r_{13} z_L + r_{14} = x_R \]
\[r_{21} x_L + r_{22} y_L + r_{23} z_L + r_{24} = y_R \]
\[r_{31} x_L + r_{32} y_L + r_{33} z_L + r_{34} = z_R \]

and 6+1 additional equations from orthonormality of rotation matrix constraints and scale constraint.

Thus, for \(n \) scene points, we have \((3n + 6 + 1)\) equations and 12 unknowns

• What is the minimum value for \(n \)?
Camera Geometry:
Solving an Over-determined System

- Generally, more than 3 points are used to find the 12 unknowns

- Formulate error for scene point i as:

$$ e_i = (R \tilde{x}_L + t_{LR}) - \tilde{x}_R $$

- Find R & t_{LR} that minimize:

$$ E = \sum_{i=1}^{N} |e_i|^2 + [\lambda_1 (R^T R - I) + \lambda_2 (t_{LR} \cdot t_{LR} - 1)] $$
Camera Geometry: A Linear Estimation

Assume a near correct rotation is known. Then an orthogonal rotation matrix looks like:

\[
R = \begin{bmatrix}
1 & -\omega_z & \omega_y \\
\omega_z & 1 & -\omega_x \\
-\omega_y & \omega_x & 1
\end{bmatrix}
\]

where \(\omega \) is the 3D rotation axis and its length is the amount by which to rotate.

Using this matrix, iteratively and linearly solve for \(\omega \)'s and \(t_{LR} \):

\[
(R \tilde{x}_L + t_{LR}) - \tilde{x}_R = 0
\]

Limitations:

1. ignores normality/scale (fix by re-scaling each iteration)
2. assumes good initial guess

How many equations/scene-points are needed?

6 unknowns, 3 equations per scene point, so \(\geq 2 \) points
Correspondence

scene point

optical center

image plane

optical center
Correspondence

scene point

optical center

image plane

epipolar line

optical center
Correspondence

scene point

epipolar line

optical center

image plane

epipolar line

optical center
Epipolar Geometry

Epipolar Constraint: reduces correspondence problem to 1D search along conjugate epipolar lines
Epipolar Constraint: can be expressed using the fundamental matrix F
Epipolar Geometry

converging cameras
Epipolar Geometry

motion parallel with image plane
Epipolar Geometry

Forward motion
Epipolar Geometry

Correspondence reduced to looking in a small neighborhood of a line...
Fundamental Matrix

How to compute the fundamental matrix?

1. geometric explanation...

2. algebraic explanation...
Fundamental Matrix: Geometric Exp.

Thus, there is a mapping $x \rightarrow l'$
How do you map a point to a line?
Idea:
- We know \((x')\)'s are in a plane
- Define a line by its “perpendicular”, then we can use dot product; e.g., \(x' \cdot l' = 0\) or \((x' - c') \cdot l' = 0\)
What is a definition of l' as perpendicular to the pictured epipolar line?

$$l' = (e' - c') \times (x' - c') \quad \rightarrow \quad l' = e' \times x'$$

(assume all in canonical frame of the right-side camera)
Cross product can be expressed using matrix notation:

\[l' = e' \times x' \]

\[e' \times x' = \begin{bmatrix}
 0 & -e'_z & e'_y \\
 e'_z & 0 & -e'_x \\
 -e'_y & e'_x & 0
\end{bmatrix} \begin{bmatrix} x'_x \\
 x'_y \\
 x'_z \end{bmatrix} \]

\[e' \times x' = [e']_x x' \]

\[l' = [e']_x x' \]
How do you compute x'?

Use a homography (or projective transformation) to map x to x'

(Homography: maps points in a plane to another plane)

$$x = \begin{bmatrix} x_x \\ x_y \\ 1 \end{bmatrix}, \quad x' = \begin{bmatrix} w'x'_x \\ w'x'_y \\ w' \end{bmatrix}, \quad H = \begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$$

$$x' = Hx$$
Fundamental Matrix: Geometric Exp.

\[
l' = [e']_\times x'
\]

\[
x' = Hx
\]

\[
l' = [e']_\times Hx \quad \Rightarrow \quad F = [e']_\times H
\]

\[
x'^T F x = 0
\]

Epipolar Constraint

Want \(x' \cdot l' = 0 \) ...
Fundamental Matrix: Algebraic Exp.

\[x = \begin{bmatrix} R & t \end{bmatrix} X \]

\[x = PX \]

\[x' = P'X \]
Fundamental Matrix: Algebraic Exp.

\[x = PX \quad X' = ? \]

\[X(t) = P^+ x + tc \quad \text{where } P^+ \text{ is the pseudoinverse of } P \]

Why pseudoinverse?

Since \(P \) not square, pseudoinverse means \(PP^+ = I \) but solved as an optimization

Recall \(l' = [e']_x x' \)

What is \(x' \) in terms of \(x \) ?

(Let’s assume \(t = 0 \) which means \(X \) in on the image plane)

\[x' = P' P^+ x \quad \Rightarrow \quad F = [e']_x P' P^+ \quad \Rightarrow \quad x'^T F x = 0 \]

Epipolar Constraint
Epipolar constraint reduces correspondence problem to 1D search along \textit{conjugate epipolar lines}
Correspondence: Epipolar Geometry

Epipolar constraint can be expressed as

$$x'^T F x = 0$$

Fundamental matrix
Interesting case: what happens if camera motion is pure translation?

\[P = [I \mid 0] \quad P' = [I \mid t] \]

\[F = \begin{bmatrix} \mathcal{e}' \end{bmatrix}_x \quad (H = I) \]

If motion parallel to x-axis...

\[e' = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \]

\[F = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \]

implies horizontal epipolar line...
Thus for rectified images, correspondence is reduced to looking in a small neighborhood of a line...
Essential Matrix

• Similar to the fundamental matrix but includes the intrinsic calibration matrix, thus the equation is in terms of the normalized image coordinates, e.g.:

\[x'\begin{bmatrix} E \end{bmatrix} x' = 0 \quad \text{and} \quad E = K'\begin{bmatrix} T \end{bmatrix} FK \]

essential matrix
Scene Geometry

What is the location of the scene point (scene geometry)?

Camera geometry known
Correspondence and epipolar geometry known
Scene Geometry: Linear Formulation

\[M_a = KP_a \]
\[M_b = KP_b \]

\[\tilde{x}_a = M_a \tilde{X} \quad \text{or} \quad \tilde{x}_b = M_b \tilde{X} \]

Problem?

Assumes we know \(\tilde{x} = [x' \quad y' \quad w']^T \)

But what is the value for \(w' \)?
Scene Geometry: Linear Formulation

\[\tilde{x} = M\tilde{X} \quad \text{where} \quad \tilde{x} = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \]

Recall
\[\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix} \quad \text{where} \quad x \text{ and } y \text{ are the observed projections} \]

Let
\[\tilde{x} = \begin{bmatrix} sx \\ sy \\ s \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix}, \text{ thus } s = \bar{w}' \]

Hence?
\[sx = m_{11}X + m_{12}Y + m_{13}Z + m_{14} \]
\[sy = m_{21}X + m_{22}Y + m_{23}Z + m_{24} \]
Scene Geometry: Linear Formulation

\[sx = m_{11}X + m_{12}Y + m_{13}Z + m_{14} \]

Given \[sy = m_{21}X + m_{22}Y + m_{23}Z + m_{24} \] and N cameras

\[s = m_{31}X + m_{32}Y + m_{33}Z + m_{34} \]

For a scene point, how many unknowns? 3+N
For a scene point, how many camera views needed? \[3N \geq 3+N \]

In general, one scene point observed in at least two views is sufficient...
Scene Geometry: Linear Formulation

\[
\begin{bmatrix}
X \\
Y \\
Z \\
s_a \\
s_b
\end{bmatrix}
=
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}
\]

\[
\begin{align*}
sx &= m_{11}X + m_{12}Y + m_{13}Z + m_{14} \\
sy &= m_{21}X + m_{22}Y + m_{23}Z + m_{24} \\
s &= m_{31}X + m_{32}Y + m_{33}Z + m_{34}
\end{align*}
\]
Scene Geometry: Linear Formulation

\[
\begin{bmatrix}
m_{11} & m_{12} & m_{13} & -x & 0 \\
m_{21} & m_{22} & m_{23} & -y & 0 \\
m_{31} & m_{32} & m_{33} & -1 & 0 \\
m'_{11} & m'_{12} & m'_{13} & 0 & -x' \\
m'_{21} & m'_{22} & m'_{23} & 0 & -y' \\
m'_{31} & m'_{32} & m'_{33} & 0 & -1 \\
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
Z \\
s \\
s' \\
\end{bmatrix}
=
\begin{bmatrix}
-m_{14} \\
-m_{24} \\
-m_{34} \\
-m'_{14} \\
-m'_{24} \\
-m'_{34} \\
\end{bmatrix}
\]

Cameras \(M \) and \(M' \)

\[
sx = m_{11}X + m_{12}Y + m_{13}Z + m_{14}
\]
\[
sy = m_{21}X + m_{22}Y + m_{23}Z + m_{24}
\]
\[
s = m_{31}X + m_{32}Y + m_{33}Z + m_{34}
\]
\[
\begin{bmatrix}
sx \\
sy \\
s \\
\end{bmatrix} \times 2
\]
Scene Geometry: Nonlinear Form.

• Remember “Bundle Adjustment”
 – Given initial guesses, use nonlinear least squares to refine/compute the calibration parameters
 – Simple but good convergence depends on accuracy of initial guess
Scene Geometry: Nonlinear Form.

Recall

\[E = \frac{1}{mn} \sum_{ij} \left[(x_{ij} - \frac{m_{i1} \cdot \tilde{X}_j}{m_{i3} \cdot \tilde{X}_j})^2 + (y_{ij} - \frac{m_{i2} \cdot \tilde{X}_j}{m_{i3} \cdot \tilde{X}_j})^2 \right] \]

Goal is \(E \to 0 \)

For scene geometry, \(\tilde{X} \) are the unknowns…
Example Result

• Using dense feature-based stereo

• Next: images and features!

[Pollefeys99]