Image Deblurring Primer

CS635 Spring 2017

Daniel G. Aliaga
Department of Computer Science
Purdue University
Image Blurring

• Where does blur come from?
 – Optical blur: camera is out-of-focus
 – Motion blur: camera or object is moving

• Why do we need deblurring?
 – Visually annoying
 – Wrong target for compression
 – Bad for analysis
 – Numerous applications
Optical Example

Before

After
Example

Observed image of Saturn

Restored image
Example

![Example image with car before and after processing]
Modeling Blurring Process

\[x(m,n) \xrightarrow{h(m,n)} y(m,n) \] (input) (output)

\[h(m,n) = \text{blurring filter (or kernel, or PSF)} \]

\[w(m,n) \sim N(0, \sigma_w^2) = \text{additive white Gaussian noise} \]
Classic Example

\[x(m,n) \rightarrow (\text{horizontal blur}) \rightarrow y(m,n) \]
Types of “Deblurring”

• Blind Deblurring
 – Blurring kernel unknown

• Non-blind Deblurring
 – Blurring kernel known

• Bounded vs Nonbounded Deblurring
 – If bounded, pixel values are kept in a fixed range
 (less studied)
Gaussian filter can be used to approximate out-of-focus blur

\[h(m, n) = \exp\left(-\frac{m^2 + n^2}{2\sigma^2} \right) \]

\[H (w_1, w_2) = \exp\left(-\frac{w_1^2 + w_2^2}{2\sigma^2} \right) \]
Blurring Filter Example

Motion blurring along a line

MATLAB code:
\[h = \text{FSPECIAL('motion',9,30)}; \]
Inverse Filter

To compensate the blurring, we seek

\[h_{\text{combi}}(m, n) = h(m, n) \otimes h^I(m, n) = \]

\[\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} h^I(m - k, n - l)h(k, l) = \delta(m, n), \forall (m, n) \]

\[H^I(w_1, w_2) = \frac{1}{H(w_1, w_2)} \]
Problem: Zeros

\[OTF = \frac{H(w_1, w_2)}{H(0,0)} \]

\[MTF = |OTF| \]

The kernel/filter cancels some frequencies and causes “zeroes” which is bad – cannot recover
But It Can Work...

- Some approaches:
 - Inverse Filter
 - Wiener Filter
 - Lucy Richardson
 - And more!