Objective

The objective of this assignment is for you to reconstruct a significant fragment of a 3D object of your choosing. This assignment will build off the previous assignment and using your calibrated camera, you will take 3 or more pictures of an object, reconstruct its geometry, and triangulate the computed surface. Remember: precision is very important -- small errors can lead to big calibration errors. As a forward note, the next assignment will include photometric reconstruction aspects.

This assignment requires some mental planning work, some lab work, and some programming. The whole assignment is not that much work and mostly requires you to understand the process. I do recommend STARTING EARLY! (i.e. -- you will not be able to complete the assignment if you start the day before its due --).

RECOMMENDATION: in the next assignment, you will be added deep-learning to the pipeline and thus it is best to make the program quite modular.

Detailed Description

Step 0 – Image Capture and External Pose Estimation

Using your internally calibrated camera, take at least 3 pictures spanning an angular viewing area in front of your object. Since your camera is now internally calibrated, you only need to determine the camera’s external pose. You should choose a few well-chosen and known 3D points across all images and use them to perform pose estimation (e.g., if you put the checkerboard in the background and an object in the foreground, you can use points on the checkerboard to do pose estimation). You may implement a closed-form (linear) pose estimator or you can use an iterative optimization. The optimization can be of a general nonlinear form or a linear form (with some assumptions of locality). Also, if you take your pictures using a smoothly changing viewing position, you can use the pose of the previous picture to initialize the pose of the new picture. To do this, review the camera calibration lectures and assignment.

You should also plan on taking your pictures wisely – they should span a wide field-of-view of the object you choose. The object you choose should also be adequate for the reconstruction, both in terms of its colors (for point selection) and in terms of its aspect-graph (for preventing too many disocclusions). Also, it is probably easiest if all your to-be-selected-scene-points are visible in all images, however this is not necessary. For example, you can take pictures from one semi-circular path in front of the object.

Step 1 – Reconstruction

To perform the reconstruction of the object, correspond selected scene points on the object over at least 2 images (use the mouse) and reconstruct them. You might have points corresponded over 2 images up to all 3 or more images. Regardless, you can calculate their 3D position using a single formulation for linear reconstruction as explained in class. The more points you correspond, the
more 3D data you have. You should have **at least 30 points** reconstructed between any pair of captured images. However, this number is rather arbitrary -- it should be “as many as you can get”. Thus use it as a minimum guideline, not as a goal. In general, the goal is for the front half of the object you choose to be “well reconstructed”.

Step 2 – Triangulation

To demonstrate the object, render a triangulated 3D reconstruction of the object. The virtual viewpoint will typically be somewhere in front of the object and the image from closest captured viewpoint to the virtual viewpoint should be used to triangulate the reconstructed points.

You may use a virtual trackball style interface to enable changing the virtual viewpoint when rendering the reconstruction.

Step 3 – Visualization

Your program should include basic GUI tools so that the source images, the clicked on features, and the triangulated 3D reconstruction can be selected to be viewed in a reasonable way.

NOTE: At least one of the captured images should be texture-mapped onto the triangulation.

Step 4 – Extra Credit

Add a visualization that enables selecting one or all of the projected scene points in an image A and seeing a segment of their epipolar line in an image B. Since you have the pose matrices, computing the fundamental matrix is very simple.

Implement a version of view-dependent texture mapping: in other words, based on the current viewpoint and view direction, choose which of the source pictures to texture-map onto the triangulation. You might actually choose the “3 best ones” and then trilinearly interpolate between the 3 of them. One paper on this topic is “Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping” by Debevec et al.

Tools

To help with this assignment, we will provide you with a **2D triangulation library** (“triangulation”) and with a **linear least squares optimization** (“LSQR”) package. The former can be used to triangulate the reconstructed scene points using their projected positions on an captured image plane. It came from http://ect.bell-labs.com/who/sjf/. The latter can be used to compute a linear 3D reconstruction of scene points using known camera matrices. The latter package is intended for use in “large sparse linear systems” but you can equally use it for smaller dense linear systems. It is from http://web.stanford.edu/group/SOL/software/lsqr/. I have included “lsqr-simple.zip” which I have used before and a newer version called “lsqr++.zip”.

Grading/Demonstration

Your demonstration will consist of you showing me your program in short demo session to be arranged (in my office). On or before the due date, please give Blackboard a zip file with a single directory called “<your-name>-asgn2” containing:
- Executable
- Data files (i.e., images)
- Other necessary files, DLLs, etc…

During your demo session, I will use the provided zip-file to grade your program. Your grade will be influenced by how well your particular camera/object is reconstructed, by the presentation and usability of your program, and by how well you complete the assignment requirements.

In this assignment, you may collaborate only to help with the mechanics of the assignment (e.g., using the pad, your camera, etc). *Everybody must take their own pictures!* Practically speaking, this means that nobody should have the same pictures or calibration results.

If you have questions, please come see me ASAP – do not wait until the last moment. Have fun and good luck!