Art Gallery Theorems and Algorithms

Daniel G. Aliaga
Computer Science Department
Purdue University

Contents

- Interior Visibility
 - Art Gallery Problem
 - Overview
 - Fisk's Proof
 - Reflex Vertices
 - Convex Partitioning
 - Orthogonal Polygons
 - Mobile Guards
 - Miscellaneous Shapes
 - Star, Spiral, Monotone
- Exterior Visibility
 - Fortress Problem
 - Prison Yard Problem
 - Minimal Guards

Definitions

- P is a simple polygon (i.e., does not cross over itself)
- Point $x \in P$ "covers" a point $y \in P$ if $xy \subseteq P$
- Let $G(P)$ be the minimum number k of points of P, such that for any $y \in P$, some $x=x_1...x_k$ covers y
- Let $g(n)$ be the max($G(P)$) over all polygons of n vertices
 - Thus, $g(n)$ guards are occasionally necessary and always sufficient

Art Gallery

- **Problem**: determine the minimum number of guards sufficient to cover the interior of an n-wall art gallery
 - Victor Klee, 1973
 - Vasek Chvatal, 1975

Main reference for this material:
Art Gallery Theorems and Algorithms, Joseph O'Rourke, Oxford University Press, 1987

Guard Placement

1. Can we just place one guard on every 3rd vertex?

[Diagram of a simple polygon with points labeled 0, 1, 2, 3, 4, and 5]
Guard Placement

1. Can we just place one guard on every 3rd vertex? – No!

2. If guards placed so they can see all the walls, does that imply they can see all the interior?
 - No!

3. If we restrict guards to vertices, is \(g_v(n) = g(n) \)?
 - In general, yes, equal for \(g(n) = \max(G(P)) \)

Art Gallery

- **Theorem**: \(\text{floor}(n/3) \) guards are occasionally necessary and always sufficient to cover a polygon of \(n \) vertices
 - “Chvatal’s Art Gallery Theorem”
 - “Watchman Theorem”

Fisk’s Proof

- \(g(n) = \text{floor}(n/3) \)
 - Published in 1978 (three years are Chvatal’s original proof, but it is much more compact)

- **Necessity**
 - \(g(n) \leq \text{floor}(n/3) \) are sometimes necessary

- **Sufficiency**
 - \(g(n) \leq \text{floor}(n/3) \) are always sufficient
Necessity: Base Cases

- $n=3$
- $n=5$
- $n=4$
- $n=6$

$$g(n) \geq \text{floor}(n/3)$$

Sufficiency: Fisk’s Proof

Step 1 of 3
- Triangulate the polygon P by adding only internal diagonals

Step 2 of 3
- Perform a 3-coloring of the triangulation graph
 - Using three colors, no two adjacent nodes have the same color

Triangulation Theorem

- A polygon of n-vertices may be partitioned into $n-2$ triangles by the addition of $n-3$ internal diagonals

Four Color Theorem

- Problem stated in 1852 by Francis Guthrie and Augustus De Morgan
 - "Given a map on a flat plane, what is the minimum number of colors needed to color the different regions of the map in such a way that no two adjacent regions have the same color."
Four Color Theorem

- Several attempted proofs and algorithms
 - Kempe (1879), Tait (1880), Birkhoff (1922), …
 - Appel and Haken - first complete proof (1976)
 - Robertson, Sanders, Seymour, and Thomas - second more compact proof (1994)

- The proof creates a large number of cases (~1700 for Appel-Haken and ~600 for Robertson et al.)
- A computer is used to rigorously check the cases
- Solution is (still) controversial because of the use of a computer

Sufficiency: Fisk’s Proof

- Step 3 of 3
 - Note that one of three colors must be used no more than floor(1/3) of the time
 - Let \(a, b, c\) be \# of nodes of each color
 - \(a \leq b \leq c\) and \(n = a + b + c\)
 - If \(a > n/3\), then \((a+b+c) \geq n\)
 - Thus \(a \leq \text{floor}(n/3)\)
 - Since each triangle is a complete graph, each triangle has a node of color ‘\(a\)’
 - Since each triangle is convex and the triangles partition all of \(P\), at most ‘\(a\)’ guards are necessary!

Fisk’s Proof

- Necessity
 - \(g(n) \geq \text{floor}(n/3)\) are sometimes necessary

- Sufficiency
 - \(g(n) \leq \text{floor}(n/3)\) are always sufficient

- Thus, \(g(n) = \text{floor}(n/3)\)

- \(O(n\log n)\) overall algorithm

Reflex Vertices

- We wish to investigate the art gallery question as a function of \(r\) (the number of reflex vertices of a polygon)

 \[r \leq (n-3) \]

 \[\text{reflex vertex} \]

Reflex Vertices

- Necessity
 - How many reflex-vertex guards are necessary?

 \[1 \text{ needed} \]
 \[r \text{ needed} \]
Reflex Vertices

- **Necessity**
 - \(r \) guards are sometimes necessary
- **Sufficiency**
 - Place 1 guard at each reflex vertex
 - Proved via a convex partitioning of the polygon \(P \)
 - Any polygon \(P \) can be partitioned into at most \(r+1 \) convex pieces

Proved via a convex partitioning of the polygon \(P \)

Any polygon \(P \) can be partitioned into at most \(r+1 \) convex pieces

Convex Partitioning

- **Naive Algorithm (Chazelle 1980)**

 - Because at most two reflex vertices can be resolved by a single cut, the minimum number of pieces is \(m=\text{ceil}(r/2)+1 \)
 - This approach achieves no more than \(r+1 \leq 2m \) in \(O(rn)=O(n^2) \) time

Convex Partitioning

- **A fast algorithm: \(O(n \log \log n) \)**
 - Any triangulation can be divided into \(2r+1 \) convex pieces by removing diagonals

Orthogonal Polygons

- **Kahn, Klawe, Kleitman 1980**
 - \(\text{Floor}(n/4) \) guards are occasionally necessary and always sufficient
 - Based on convex quadrilateralization
 - Any orthogonal polygon \(P \) is convexly quadrilateralizable (theorem)
Orthogonal Polygons

- **Necessity**
 \[g(n) \geq \text{floor}(n/4) \]

- **Sufficiency**
 Four-colorable, and thus:
 \[g(n) \leq \text{floor}(n/4) \]

- **Theorem:** \(g(n) = \text{floor}(n/4) \)

Quadrilateralization

- **Sacks's Algorithm**
 \[O(n \log n) \]

- **Lubiw's Algorithm**
 \[O(n \log n) \]

Mobile Guards

- **Theorem**
 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{Shape} & \text{Stationary} & \text{Mobile} \\
 \hline
 \text{General} & \text{floor}(n/3) & \text{floor}(n/4) \\
 \text{Orthogonal} & \text{floor}(n/4) & \text{floor}((3n+4)/16) \\
 \hline
 \end{array}
 \]

 - In general, only \(\frac{1}{3} \) as many mobile guards are needed as stationary guards.

- **Goal of the proof**
 - Given a triangulation graph \(T \)
 - Vertex guard = node
 - Edge guard = adjacent arc
 - Diagonal guard = any arc
 - The analog of covering is domination
 - A collection of guards \(C = \{g_1, \ldots, g_k\} \) dominates triangulation graph \(T \) if every face has at least one of its three nodes in some \(g_i \in C. \)
Mobile Guards

- **Necessity**

 Polygon that requires floor(n/4) edge, diagonal (or line) guards

- **Sufficiency**: a little more complicated...

Miscellaneous Shapes

- (General polygon, convex, orthogonal)
- Star, spiral, monotone

Star Shape

- A star polygon P is a polygon that may be covered by a single point guard

- **Toussaint's Theorem**
 - A star polygon P requires floor(n/3) vertex guards

- **Toussaint's Theorem**
 - A star polygon P requires at least floor(n/5) edge guards
Star Shape

- Toussaint's Theorem
 - For a star polygon P
 - Unrestricted patrol, one line guard is needed
 - Restricted to diagonal lines, two are needed

Spiral Polygon

- A spiral polygon is a polygon with at most one chain of reflex vertices

Monotone Polygon

- A polygon with no "doubling back" with respect to a line

Spiral and Monotone Polygons

- Aggarwal's Theorem
 - $\lceil n/3 \rceil$ vertex guards are needed
 - $\lceil r/2 \rceil + 1$ reflex-vertex guards are needed
 - $\lceil (n+2)/5 \rceil$ diagonals guards are needed

Exterior Visibility

- "Fortress Problem"
 - "Prison Yard Problem"

(Independently stated by Derick Wood and Joseph Malkelvitch, early 1980s)
Fortress Problem

- How many vertex guards are needed to see the exterior of a polygon P?

- Simplex convex polygon

- Arbitrary polygon

- Three-color the resulting triangulation graph T (of $n+2$ nodes)
Fortress Problem

- **Arbitrary polygon**
 - If least frequently used color is red and \(v_\infty \) is not red then,
 - \(\lceil (n+2)/3 \rceil \) vertex guards are needed

Fortress Problem

- **Arbitrary polygon**
 - If least frequently used color is red and \(v_\infty \) is red then,
 - No guard can be placed at \(v_\infty \) because it's not part of original polygon
 - Thus, place guards at second least frequently used color
 - \(a \leq b \leq c \) and \(a + b + c = n + 2 \)
 - \(a \geq 1 \) and \(b + c \leq n + 1 \)
 - \(b \leq \lceil (n+1)/2 \rceil = \lceil n/2 \rceil \) vertex guards are needed

Fortress Problem

- **Arbitrary polygon (Summary)**
 - 1. Triangulate the convex hull of the polygon \(P \)
 - 2. Add edges from all exterior vertices to new vertex \(v_\infty \)
 - 3. Split a vertex \(x \) into \(x' \) and \(x'' \)
 - 4. Open up the convex hull, straighten the lines to \(v_\infty \), and form a triangulation graph \(T \) of \((n+2) \) nodes
 - 5. Three-color graph \(T \)
 - 6. Use least or second least frequently used color
 - At most \(\lceil n/2 \rceil \) vertex guards are needed

Fortress Problem

- **Orthogonal polygon**
 - \(\end{equation}

Fortress Problem

- Orthogonal polygon
 - Solution A
 - Solution B
 ceil(n/4)+1 vertex guards necessary

Fortress Problem

- Orthogonal polygon

Fortress Problem

- Orthogonal polygon
 - Interiors of new polygon P coincide with the immediate exterior of P, except for Q which is exterior to both

Fortress Problem

- Orthogonal polygon
 - For P of m+4 vertices, floor(r/2)+1 or floor((m+4)/4) vertex guards suffice to cover the interior
 - None of the new vertices of P are reflex vertices
 - Need an additional one for Q
 - Thus, floor(n/4)+2 vertex guards are sufficient
 - For n mod 4=0, ceil(n/4)+1

Guards in the plane

- Necessity
 - ceil(n/3) point guards needed
 (n=3k+4 and k=2 guards)
Fortress Problem

- Guards in the plane
 - Sufficiency
 - New triangulated polygon P' of $n+3$ vertices
 - $\text{floor}(n+3)/3 = \text{ceil}(n+1)/3$ point guards

- More lengthy proof to remove "1/3 of a guard"
 - Add only 2 guards and 3-color triangulation
 - If even hull vertices, trivial
 - If odd hull vertices, need some extra work
 - Result: $\text{ceil}(n/3)$ point guards are necessary to cover the exterior of a polygon P of n vertices
 - Nice duality with $\text{floor}(n/3)$ for the interior

Prison Yard Problem

- How many vertex guards are needed to simultaneously see the exterior and interior of polygon P?

General Polygons

- Worst-case is a convex polygon
 - $\text{ceil}(n/2)$ vertex guards needed

- Multiply-connected polygons
 - $\text{min}(\text{ceil}(n/2), \text{floor}(n/2) + \text{ceil}(n/4), 2\text{ceil}(n/3))$

Orthogonal Polygons

- $\text{floor}((7n/16)+5)$ vertex guards are needed
Fortress/Prison Yard Problem

<table>
<thead>
<tr>
<th>Problem</th>
<th>Techniques</th>
<th>Guards</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Triangulation, 3-coloring</td>
<td>$\text{ceil}(n/2)$</td>
<td>$O(T)$</td>
</tr>
<tr>
<td></td>
<td>Triangulation, 3-coloring</td>
<td>$\text{ceil}(n/4)+1$</td>
<td>$O(T)$</td>
</tr>
<tr>
<td>Orthogonal</td>
<td>Triangulation, L-shaped partition</td>
<td>$\text{ceil}(n/2)+1$</td>
<td>$O(T)$</td>
</tr>
<tr>
<td>Prison Yard</td>
<td>Exterior, triangulation, 4-coloring</td>
<td>$\text{floor}((n+\text{ceil}(h/2))/2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>Exterior, triangulation, 4-coloring</td>
<td>$\text{floor}(2n/3)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td></td>
<td>Exterior, triangulation, 3-coloring</td>
<td>$\text{floor}(2n/3+1)$</td>
<td>$O(T)$</td>
</tr>
<tr>
<td></td>
<td>Exterior, quadrantal, 4-coloring</td>
<td>$\text{floor}(7n/16)+5$</td>
<td>$O(T)$</td>
</tr>
</tbody>
</table>

Minimal Guard Coverage

- Seek the placement of a minimal number of guards that cover a polygon P
 - In general, a NP-complete problem

Minimal Guard Coverage

<table>
<thead>
<tr>
<th>Polygon</th>
<th>Cover</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w/ Steiner</td>
<td>w/o Steiner</td>
</tr>
<tr>
<td>Simple Polygons</td>
<td>NP-hard</td>
<td>NP-complete</td>
</tr>
<tr>
<td>Polygons with Holes</td>
<td>NP-hard</td>
<td>NP-complete</td>
</tr>
</tbody>
</table>