Capture Devices

- **Cameras**
 - Traditional, omnidirectional
 - Satellite-based, telescopes, microscopes
- **Scanners**
 - Laser, structured-light
- **Radar**
 - Traditional, Doppler, ground-penetrating, sound-based (sonar), light-based (lidar)
- **Atmospheric**
 - Radio-based
- **Medical**
 - X-ray, MRI, CAT, Electron microscope, STM

Cameras

- Traditional camera
 - Pinhole Camera Model
 - Problems: aberrations, distortions
 - Tradeoff between aperture, shutter speed, focus, dynamic range
- Calibration
 - Fit an assumed camera model to an actual camera
- Omnidirectional cameras
 - Single camera, multiple cameras, rotating camera designs
- Localization and pose estimation
 - Where is the camera relative to the object or environment

Optical Systems

- **Dioptric**
 - All elements are refractive (lenses)
- **Catoptric**
 - All elements are reflective (mirrors)
- **Catadioptric**
 - Elements are refractive and reflective (mirrors + lenses)

A Thin Lens System (Dioptric)

\[\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} \]

“Classic” Pinhole Camera

\[f \]

\[d \]

\[f \]

\[d \]
Aberrations

- A “real” lens system does not produce a perfect image
- Aberrations are caused by imperfect manufacturing and by our approximate models
 - Lenses typically have a spherical surface
 - Aspherical lenses would better compensate for refraction but are more difficult to manufacture
 - Typically 1st order approximations are used
 - Remember \(\sin \Omega = \Omega - \Omega^3/3! + \Omega^5/5! - \ldots \)
 - Thus, thin-lens equations only valid if \(\sin \Omega \approx \Omega \)

Spherical Aberration

- Deteriorates the axial-image

Coma

- Deteriorates off-axial bundles of rays

Most common aberrations:
- Spherical aberration
- Coma
- Astigmatism
- Curvature of field
- Chromatic aberration
- Distortion
Astigmatism and Curvature of Field
- Produces multiple (two) images of a single object point

Chromatic Aberration
- Caused by wavelength dependent refraction
 - Apochromatic lenses (e.g., RGB) can help

Distortion
- Radial (and tangential) image distortions
 - Example radial distortions

Radial Distortion
- (x, y) pixel before distortion correction
- (x', y') pixel after distortion correction
- Let $r = (x^2 + y^2)^{-1}$
 - Then
 - $x' = x(1 - \Delta r/r)$
 - $y' = y(1 + \Delta r)$
 - where $\Delta r = k_0$r + k_1r^3 + k_2r^5 + ...
 - Finally,
 - $x' = x(1 - k_0 - k_1r^2 - k_2r^4 - ...)$
 - $y' = y(1 - k_0 - k_1r^2 - k_2r^4 - ...)$

Taking a picture...

Exposures
- An “exposure” is when the CCD is exposed to the scene, typically for a brief amount of time and with a particular set of camera parameters
- The characteristics of an “exposure” are determined by multiple factors, in particular:
 - Camera aperture
 - Determines amount of light that shines onto CCD
 - Camera shutter speed
 - Determines time during which aperture is “open” and light is shined onto CCD
Exposures

Digital Camera vs. "Film" Camera

- **Charge-Coupled Device (CCD)**
 - Image plane is a CCD array instead of film
 - CCD arrays are typically ¼ or ½ inch in size
 - CCD arrays have a pixel resolution (e.g., 640x480, 1024x1024)
 - CCD Cameras have a maximum "frame rate", usually determined by the hardware and bandwidth

- **Number of CCDs**
 - 3: each CCD captures only R, G, or B wavelengths
 - 1: the single CCD captures RGB simultaneously, reducing the resolution by 1/3 (kinda)

- **Video**
 - Interlaced: only "half" of the horizontal lines of pixels are present in each frame
 - Progressive scan: each frame has a full set of pixels

The simplest 1-CCD camera in town

Dynamic Range

- The dynamic range of an image is the maximum difference between the darkest and brightest spot of an image

- Typical images have very limited dynamic range
 - A typical JPEG, TIFF, BMP image has 8 bits per color or a maximum dynamic range of 256 per color channel (256:1)

- The real-world has much higher dynamic range
 - A typical scene can have 100,000:1 dynamic range

Dynamic Range

- Example images

100,000:1 250,000:1

Dynamic Range

- To compensate for this, researchers either
 - Ignore the problem
 - Use more bits per color channel (the camera must support this!)
 - Use images with multiple exposures and combine them; the "combined image" can then be tone-mapped back to an 8-bit image
High Dynamic Range Images

- Short exposure
- Tone-mapped image
- Long exposure

Aperture vs. Shutter Speed

- How do you deal with low-light scenes?
- How do you deal with fast moving objects?
- How do you produce crisp/focused images?

- Small aperture
 - Crisp images, requires lots of light
- Fast shutter speed
 - Crisp images for moving objects, requires lots of light
- Large aperture
 - Low-light ok, images can be blurry
- Slow shutter speed
 - Can produce crisp images in low light but camera/objects cannot move

Some Videos...

- Fiat Lux (SIGGRAPH '99)
 - Rendering synthetic images in a real environment using high-dynamic-range techniques