
 1

CS535: Assignment #1 – Camera Models

Out: Jan 27, 2026

Back/Due: February 10, 2026

Objective:

This objective of this assignment is to obtain a good understanding of 3D camera models, basic

3D transformations, basic shading, and some geometric computations. You have two weeks and I

recommend you start immediately. You will write a program that implements a Generalized

Linear Camera (GLC) Model and will demonstrate a subset of the possible camera models it can

imitate. You program will make use of OpenGL but most of the work will be vector math and

geometric computations.

Specifics:

(0) (5%) Object. Load a simple object. You may use the .OBJ loader (from assignment 0) to

load a simple plane or cube object. You may choose a more complex object but you will have

to do ray-object intersections – see next section. Define a background color as well. Minimal

requirement is loading a 3D object that is “more complex” than a cube and composed of

triangles. Also define a solid background color (not equal to the object colors).

(1) (20%) Ray-object intersection. You object should be formed by a set of triangles, thus you

need to implement ray-triangle intersection. If your object is not flat then you might need to

intersect the all triangles with the ray and pick the closest intersection to the camera or

implement some other front to back sorting mechanism.

(2) (20%) GLC Definition. This means a structure with a two-plane parameterization of three

rays. You are basically implementing equation 1 from the GLC paper (see reference below).

Place the first plane at z=0 and the second plane at z=1. To define a GLC you then need to

specify the 3 rays. Given those rays and the aforementioned planes you have defined a

camera model.

(3) (20%) GLC Rendering. To render using the GLC, place an imaginary image plane at z=1 at

some chosen pixel resolution (e.g., 256x256 or 512x512). Then, compute the ray

corresponding to each pixel and intersect it with the object (e.g., use your ray-triangle

intersection). This will result in a pixel color (either of the object or of the background color).

Assemble all pixels into an image like structure and draw-to-screen as a texture (e.g., a

window size textured quadrilateral). Example of image to texture to screen will be sent to

class.

(4) (10%) Shading and Illumination: Color each pixel using at least a simple diffuse shading

model (e.g., “N dot L”); no need to worry about shadows.

(5) (25%) GUI. As a minimal requirement,

a. (5%) enable using the GUI to rotate/translate the object (or the two planes defined the

GLC). This way you can experiment and see the difference between different GLC

rays,

b. enable the user to select from one of the two below camera models:

i. (10%) pinhole/perspective camera model,

ii. (10%) another camera model of your choosing (that is NOT orthographic

camera model) – please give it a reasonable name and a brief explanation in

 2

the code of what it is; it should produce some sensible projection. You may

choose one of the other models from the GLC paper.

(example outputs; you do not need to support the “gridded” lines, but it helps…)

(6) (Up to 10%) As extra credit:

a. you can support more elaborate objects,

b. you can implement more complex shading and illumination, and

c. you can extend the GUI so that GLC rays and/or planes can be defined on the fly.

GLC papers: “General Linear Cameras”, Jingyi Yu and Leonard McMillan, European

Conference on Computer Vision, 2004; and “Multiperspective Modeling and Rendering using

General Linear Cameras”, J. Yu, Y. Ding, and L. McMillan, Communications in Information and

Systems, 7(4), pp. 359-384, 2007.

Grading:

Your program will be tested against the aforementioned functionality and your code will be

inspected.

Turn-in:

To give in the assignment, please use Brightspace. Give in a zip file with your complete

project (project files, source code, and precompiled executable). The assignment is due

BEFORE class on the due date. It is your responsibility to make sure the assignment is

delivered/dated before it is due. If you wish to receive confirmation of receipt, please ask by

email in advance.

If you implement the extra credit, please ensure instructions are given on how to use it --- put

such in the GUI or have clear instructions printout – do not assume we will read your code and

decipher how to use your extra credit.

eccv2004_Yu.pdf
eccv2004_Yu.pdf
cis2007_Yu.pdf
cis2007_Yu.pdf
cis2007_Yu.pdf

