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Image Tools

• Features

– Point, edge, line, corner, SIFT

– Hough Transform



Edge Detection

• What would you do?



Edge Detection:
First Order Operator

• Roberts operator (1963) on image 𝐴:

• 𝐺𝑥 =
1 0
0 −1

*A, 𝐺𝑦 =
0 1
−1 0

*A

• 𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

• 𝜃 = tan−1(
𝐺𝑦

𝐺𝑥
)

(pro: less ops than other methods)



Edge Detection

• Sobel operator (1968) on image 𝐴:

• 𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

*A, 𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

*A

• 𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

• 𝜃 = tan−1(
𝐺𝑦

𝐺𝑥
)



Edge Detection

• Prewitt operator (1970) on image 𝐴 (different 
spectral response as compared to Sobel):

• 𝐺𝑥 =
−1 0 1
−1 0 1
−1 0 1

*A, 𝐺𝑦 =
−1 −1 −1
0 0 0
1 1 1

*A

• 𝐺 = 𝐺𝑥
2 + 𝐺𝑦

2

• 𝜃 = tan−1(
𝐺𝑦

𝐺𝑥
)



Edge Detection

• Canny Edges (1986)

– Multi-stage algorithm, uses Sobel/Prewitt (or other) 
edge detector on a Gaussian filtered image and 
then has a process of non-maximal suppression



Edge Detection:
Second-Order Operator

• Given an image:

– Gradient (vector)

𝛻𝑓 𝑥, 𝑦 =
𝜕𝑓

𝜕𝑥
ො𝑥 +

𝜕𝑓

𝜕𝑦
ො𝑦

– Laplacian (scalar) (2nd order)

𝛻2𝑓 𝑥, 𝑦 =
𝜕2𝑓

𝜕𝑥2
+
𝜕2𝑓

𝜕𝑦2



Discrete Laplacian

• 𝛻2𝑓 𝑥, 𝑦 =
𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥 + 1, 𝑦 +
𝑓 𝑥, 𝑦 − 1 + 𝑓 𝑥, 𝑦 + 1 −
4𝑓 𝑥, 𝑦

• Matrix form = ??



Discrete Laplacian

• 𝛻2𝑓 𝑥, 𝑦 =
𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥 + 1, 𝑦 +
𝑓 𝑥, 𝑦 − 1 + 𝑓 𝑥, 𝑦 + 1 −
4𝑓 𝑥, 𝑦

• Matrix form = 
0 1 0
1 −4 1
0 1 0



Edge Detection:
Second-Order Operator

• Laplacian: highlights regions 
of rapid intensity change

• 𝐿𝐴 =
0 −1 0
−1 4 −1
0 −1 0

*A

(positive Laplacian takes out 
outward edges; negative Laplacian
is possible too)



Edge Detection

• Hough Transform (1972)

– Associate with each line segment, a pair 𝑟, 𝜃

– Each line segment could be obtained by fitting to 
results of edge detection

– Ex: find edges, find 
strong clusters/points 
in transform space, 
then draw lines



Corner Detection

• What would you do?



Corner Detection

• Harris-Stephens Corner Detector
– Let the SSD between two patches be:

𝑓 ∆𝑥, ∆𝑦 =෍
(𝒙𝒌,𝒚𝒌)∈𝑾

(𝑨 𝒙𝒌, 𝒚𝒌 − 𝑨 𝒙𝒌 + ∆𝒙, 𝒚𝒌 + ∆𝒚 )𝟐

– 𝑨 𝒙𝒌 + ∆𝒙, 𝒚𝒌 + ∆𝒚 can be approximated by its Taylor Expansion:
= 𝐴 𝑥𝑘 , 𝑦𝑘 + 𝐴𝑥 𝑥𝑘 , 𝑦𝑘 Δ𝑥 + 𝐴𝑦 𝑥𝑘 , 𝑦𝑘 Δy (𝐴𝑥 , 𝐴𝑦 are partial derivatives)

– Thus, 𝑓 ∆𝑥, ∆𝑦 ≅ ∑ 𝐴𝑥 𝑥𝑘 , 𝑦𝑘 Δ𝑥 + 𝐴𝑦 𝑥𝑘 , 𝑦𝑘 Δy
2

– which can be rewritten as

𝑓 ∆𝑥, ∆𝑦 ≈ ∆𝑥 ∆𝑦 𝑀
∆𝑥
∆𝑦

– Where M is the second-moment tensor (or structural tensor):

𝑀 =

෍
(𝑥,𝑦)∈𝑊

𝐴𝑋
2 ෍

(𝑥,𝑦)∈𝑊
𝐴𝑥𝐴𝑦

෍
(𝑥,𝑦)∈𝑊

𝐴𝑥𝐴𝑦 ෍
(𝑥,𝑦)∈𝑊

𝐴𝑦
2



Corner Detection

• Harris-Stephens Corner Detector
– With a structural tensor, the eigenvectors summarize the distribution of 

the gradient within the associated pixel window
– To define a strong corner, we want pixels were 𝜆1 and 𝜆2 of 𝑀 are large, 

and hence 𝑓 is large
– 𝜆1 ≫ 𝜆2 or 𝜆2 ≫ 𝜆1 means an edge
– 𝜆1 ≈ 𝜆2 and large means corner

– One option, compute score: 
𝑅 = det 𝑀 − 𝑘 ∙ 𝑡𝑟 𝑀 2

𝑘 empirically determined, usually 0.04,0.06
det(M) = 𝜆1𝜆2 tr(M)=𝜆1 + 𝜆2

R small = flat, R < 0 = edge, R > 0 = corner



Corner Detection

• Shi-Tomasi Detector

– Similar to Harris but compute min(𝜆1, 𝜆2) directly 
(using characteristic equation)

(claimed to be better, perhaps)



Feature Detection

• Corners

• SIFT: Scale Invariant Feature Transform (1999)

• SURF: Speeded Up Robust Features (2006)

• Deep Learning Based Feature Detection…



SIFT

• Properties:

– Invariant to spatial rotation, translation, scale

– Experimentally seen to be less sensitive to small 
spatial affine or perspective changes

– Invariant to affine illumination changes



SIFT

• Computational Steps:

– Scale-space extrema detection 

• local extrema detection using DoG (difference of 
Gaussians)

• Compare difference of Gaussians center on a pixel to 
lower and higher blurs

• Pick the scale/pixel with highest differences



SIFT

• Computational Steps:

– Scale-space extrema detection 

– Keypoint localization

• Similar to Harris Corner Detector, refine location of 
corners; ignore relatively weak corners



SIFT

• Computational Steps:

– Scale-space extrema detection 

– Keypoint localization

– Compute orientation 

• Use an orientation histogram with 36 bins (or so)



SIFT

• Computational Steps:

– Scale-space extrema detection 

– Keypoint localization

– Compute orientation

– Keypoint descriptor creation

• Use 16x16 pixel neighborhood to define 4x4 pixel 
subblocks yields a 128 vector as a descriptor of 
orientations and normalized to be illumination invariant



SIFT

• Computational Steps:

– Scale-space extrema detection 

– Keypoint localization

– Compute orientation

– Keypoint descriptor creation



Deep Learning Edge Detection

• HED

– https://arxiv.org/pdf/1504.06375.pdf

• DexiNET

– https://arxiv.org/pdf/1909.01955.pdf

https://arxiv.org/pdf/1504.06375.pdf
https://arxiv.org/pdf/1909.01955.pdf


(Image) Convolution

• Convolution
– Define a kernel

– “Convolve the image”



(Image) Convolution

• Kernel: (1/16)
1 2 1
2 4 2
1 2 1

• What if kernel is not normalized?

• Image:

𝑝11 ⋯ 𝑝𝑚1

⋮ ⋱ ⋮
𝑝1𝑛 ⋯ 𝑝𝑚𝑛

• What if image is multi-channel? 

• What if kernel falls off the side of the image?



(Image) Convolution



(Image) Convolution



(Image) Convolution



(Image) Convolution



(Image) Convolution

• Recall

– Convolution in spatial domain = multiplication in frequency 
domain

– Thus, low/high frequency filter is a simple multiplication in 
frequency space

– Phase component also exists in frequency space so that 
makes things more complicated…



(Image) Correlation

• Convolution: result of a composition of two signals 

• Correlation: measure of coincidence of two signals
— Subtle difference…

— Mathematically, the difference is only two signs

— https://www.youtube.com/watch?v=O9-HN-yzsFQ

• Correlation = measure of similarity?
— Maybe: Pearson correlation measure

— Does this work?

https://www.youtube.com/watch?v=O9-HN-yzsFQ


Image Similarity Metrics

• Use SIFT/SURF

– Compute features and see how similar

• L2-norm

– Per-pixel L2-norm

• Cross correlation

– Kinda Pearson correlation

• SSIM

• Deep Learning…



Image Similarity Metrics

• SSIM: Structural Similarity Index

𝑆𝑆𝐼𝑀 𝑥, 𝑦 = 𝑙 𝑥, 𝑦 𝛼 ∙ 𝑐 𝑥, 𝑦 𝛽 ∙ 𝑠 𝑥, 𝑦 𝛾

where 

𝑙(𝑥, 𝑦) measures luminance similarity,

𝑐(𝑥, 𝑦) measures contrast similarity, and

𝑠 𝑥, 𝑦 measures structure similarity (by covariance)



SSIM



Blurring

• Blur:

– Box Blur



Blurring

• Gaussian Blur



Blurring

• Blur:

– Radial Blur



Blurring

• Optical Blur:

– PSF composed of Zernike Polynomials



Blurring

• Basic notion:

– Blur is basically a PSF (Point Spread Function)

• Basic technique:

– Apply a spatial blurring using a kernel and 
convolution



Note: Bilateral Filtering/Blurring

• It is a non-linear, edge-preserving, and noise-reducing 
smoothing filter

• It replaces the intensity of each pixel with a weighted average 
of intensity values from nearby pixels but not across edges



Bilateral Filter

• What is the formulation to account for value 
difference and spatial difference?



Bilateral Filter

• Given image 𝐼

• Value difference is 𝑓(𝑥𝑖 , 𝑥)

– E.g., 𝐼 𝑥𝑖 − 𝐼(𝑥)

• Spatial difference is 𝑔 𝑥𝑖 , 𝑥

– E.g., 𝑥𝑖 − 𝑥

• Altogether:



Deblurring

• One option is to perform a deconvolution:

– Non-blind deconvolution

• The PSF is known



Deblurring

• Another option is to perform a deconvolution:

– Blind deconvolution

• The PSF is NOT known

Several variations of blind deconvolution



Human Computation

• https://www.youtube.com/watch?v=tx082gDwGc
M
– Start at 6:45

• Relates to:
– Citizen science is sometimes described as "public 

participation in scientific research
– Crowdsourcing is a less-specific, more public group, to 

help with the work
– whereas outsourcing is commissioned from a specific, 

named group, and includes a mix of bottom-up and 
top-down processes

https://www.youtube.com/watch?v=tx082gDwGcM
https://www.youtube.com/watch?v=tx082gDwGcM


Function Solving vs Optimization

• Finding “solutions”:

– Newton’s method: 𝑥𝑛+1 = 𝑥𝑛 −
𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)

– Gradient descent: 𝑥𝑛+1 = 𝑥𝑛 − 𝛼𝑛𝛻𝐹 𝑥𝑛
– If have no derivatives, use Powell’s (conjugate 

direction) method:
• Searches in a variety of directions and picks best

– Linear system of equations: 𝐴𝑥 = 𝑏
• What is 𝐴 is not square?

• …then it is over/under determined



Optimization

overdetermined system

• Linear least squares (LLS):
– LLS is the problem of approximately solving 

an overdetermined system of linear equations, where 
the best approximation is defined as that which 
minimizes the sum of squared differences between 
the data values and their corresponding modeled 
values. 

– 𝑥 = 𝐴𝑇𝐴 −1𝐴𝑀𝑇𝑦  where 𝑦 are dependent 
observations and 𝐴 are independent observations 
(note: 𝐴𝑇𝐴 −1𝐴𝑇 is the Moore-Penrose inverse 
which is needed because 𝐴 is not square – else would 
just be 𝑥 = 𝐴−1𝑦

https://en.wikipedia.org/wiki/Overdetermined_system


Optimization

• Non-linear least squares (NLLS):
– Requires successive approximations to solve

e.g. Levenburg-Marquadt’s method (LevMar) uses the 
Jacobian and some damping:
              𝑓 𝑥𝑖 , 𝑝 + 𝛿 ≈ 𝑓 𝑥𝑖 , 𝑝 + 𝐽𝑖𝛿

PROBLEM: NLLS very sensitive to the presence of 
outliers (i.e., 𝒙𝒊, 𝒚𝒊 pairs that behavior weird, maybe 
noise)



Optimization

• Random Sample Consensus (RANSAC)

– Assumes that inliers exist and focuses on 
determining and using those

– Randomly select data points and if they fit 
sufficiently well, use in the iterative optimization

• Rule of thumb:
• If lots of inliers, use NLLS

• If lots of outliers, use RANSAC



Optimization

• Convexity: typical assumption which means 
that objective function is convex

• Fancier optimization methods:

– ADMM (Alternating Direction Method of 
Multipliers): optimize by dividing into 
subproblems

– and many more…



Randomization-based Algorithms

• Pro: does not need convexity, can handle 
many dimensions even with lots of local 
minima

• Con: no guarantees 

– Exception: if PDF of parameters is known and is 
Gaussian, then it is a maximum likelihood 
estimation which can essentially be ≈ NLLS



Randomization-based Algorithms

• Simulated Annealing
– Inject noise while during optimization and hope for 

the best…

• Sequential Monte Carlo (or particle filters)
– A set of Monte Carlo algorithms, that given some 

knowledge as to the expected parameter variance, 
can chose number and range of perturbations, that 
with some guarantees can field the optimum

– Fun fact: developed in 1940s by Ulam and von 
Neumann who used the code name Monte Carlo since 
the work was secret – think WWII



Randomization-based Algorithms

• Markov Chain Monte Carlo (MCMC):
– An ensemble of chains is created and walked 

along
• Start with a set of points

• Propose changes to the chains at different 
temperatures

• Use acceptance probability to accept some chains (e.g., 
Metropolis-Hastings method)

• Keep best chains and repeat

• Terminate at max iterations or at little change

– Used often in high-complexity (not-necessarily 
convex) problems in graphics/vision



Deep Learning

• Has lots of parameters to optimize (100M!)

– SGD: Stochastic Gradient Descent

– AdaGrad: Adaptive Gradient Descent

– ADAM: Adaptive Moment Estimation


	Slide 1: Toolbox
	Slide 2: Image Tools
	Slide 3: Edge Detection 
	Slide 4: Edge Detection: First Order Operator
	Slide 5: Edge Detection
	Slide 6: Edge Detection
	Slide 7: Edge Detection
	Slide 8: Edge Detection: Second-Order Operator
	Slide 9: Discrete Laplacian
	Slide 10: Discrete Laplacian
	Slide 11: Edge Detection: Second-Order Operator
	Slide 12: Edge Detection
	Slide 13: Corner Detection
	Slide 14: Corner Detection
	Slide 15: Corner Detection
	Slide 16: Corner Detection
	Slide 17: Feature Detection
	Slide 18: SIFT
	Slide 19: SIFT
	Slide 20: SIFT
	Slide 21: SIFT
	Slide 22: SIFT
	Slide 23: SIFT
	Slide 24: Deep Learning Edge Detection
	Slide 25: (Image) Convolution
	Slide 26: (Image) Convolution
	Slide 27: (Image) Convolution
	Slide 28: (Image) Convolution
	Slide 29: (Image) Convolution
	Slide 30: (Image) Convolution
	Slide 31: (Image) Convolution
	Slide 32: (Image) Correlation
	Slide 33: Image Similarity Metrics
	Slide 34: Image Similarity Metrics
	Slide 35: SSIM
	Slide 36: Blurring
	Slide 37: Blurring
	Slide 38: Blurring
	Slide 39: Blurring
	Slide 40: Blurring
	Slide 41: Note: Bilateral Filtering/Blurring
	Slide 42: Bilateral Filter
	Slide 43: Bilateral Filter
	Slide 44: Deblurring
	Slide 45: Deblurring
	Slide 46: Human Computation
	Slide 47: Function Solving vs Optimization
	Slide 48: Optimization
	Slide 49: Optimization
	Slide 50: Optimization
	Slide 51: Optimization
	Slide 52: Randomization-based Algorithms
	Slide 53: Randomization-based Algorithms
	Slide 54: Randomization-based Algorithms
	Slide 55: Deep Learning

