
Making Stuff:
Synthesis, Generative Modeling,

and Procedural Modeling

CS535

Daniel G. Aliaga

Department of Computer Science

Purdue University

Making Stuff

• Synthesis/Generation/Procedural-
Modeling/Content-Creation/Model-Creation

– Manual Modeling (most prevalent approach):

• Softimage (Microsoft+SoftImage3D, 1989-2002)

• Maya (SGI+Alias+Wavefront, 1998-today)

• Blender (open source, 1995-today)

• Houdini (SideFX, 1996-today)

• Rhino/Grasshopper (TLM, 1978? – today)

• And more…

• Problem: TIME CONSUMING!

– E.g., 3-20 days for a photorealistic character

Making Stuff

• Texture Synthesis

– Make/replicate small fragments

• Image Synthesis, Generative 2D Images, Procedural
Modeling

– Make 2D images

• Model Synthesis, Generative 3D Modeling,
Procedural Modeling

– Make 3D models

Synthesis by Tiling

• Simple tiling (next slides)

• Wang tiles (~1960s)

Periodic Aperiodic

◼5

Synthesis by Tiling

• Repeat pattern

◼6

Synthesis by Tiling

• Repeat pattern

◼7

Synthesis by Tiling

• Repeat pattern

• How can we
improve?

◼8

Synthesis by Tiling

• Repeat pattern

– reduce seems by
mirroring

◼9

Synthesis by Tiling

• Repeat pattern

– reduce seems by
mirroring

◼10

Synthesis by Tiling

• Repeat pattern

– reduce seems by
mirroring

◼11

Synthesis by Tiling

• Repeat pattern

– reduce seems by
mirroring

– How we can
further improve?

◼12

Synthesis by Tiling

• Repeat pattern

– reduce seems by
mirroring

– reduce seems by
choosing tile
that covers one
period of
repeated
texture

◼13

Synthesis by Tiling

◼14

Bricks are similar but not identical

◼15

Solution?

Texture Synthesis

• “Texture Synthesis by
Non-parametric
Sampling”, Efros and
Leung, 1999

(slides from their
presentation)

Goal of Texture Synthesis

• Given a finite sample of some texture, the
goal is to synthesize other samples from
that same texture.
– The sample needs to be "large enough"

True (infinite) texture

SYNTHESIS

generated image

input image

The Challenge

• Texture analysis: how to capture
the essence of texture?

• Need to model the whole
spectrum: from repeated to
stochastic texture

• This problem is at intersection of
vision, graphics, statistics, and
image compression

repeated

stochastic

Both?

Our Approach
• Goals:

– preserve local structure

– model wide range of real textures

– ability to do constrained synthesis

• Method:

– Texture is “grown” one pixel at a time

– conditional pdf of pixel given its neighbors
synthesized thus far is computed directly from
the sample image

Motivation from Language
• [Shannon,’48] proposed a way to generate

English-looking text using N-grams:

– Assume a generalized Markov model (i.e., the next
state is only dependent on the current state and is
independent of anything in the past)

– Use a large text to compute probability distributions of
each letter given N-1 previous letters
• precompute or sample randomly

– Starting from a seed repeatedly sample this Markov
chain to generate new letters

– One can use whole words instead of letters too:

WE NEED TO EAT CAKE

Mark V. Shaney (Bell Labs)

• Results (using alt.singles corpus):

– “As I've commented before, really relating to
someone involves standing next to impossible.”

– "One morning I shot an elephant in my arms and
kissed him.”

– "I spent an interesting evening recently with a
grain of salt"

• Notice how well local structure is preserved!

• Jump 20 years: LLMs not so surprising…

• Now let’s try this in 2D...

Synthesizing One Pixel

◼Infinite sample
image

◼Generated image

– Assuming Markov property, what is conditional probability
distribution of p, given the neighbourhood window?

– Instead of constructing a model, let’s directly search the
input image for all such neighbourhoods to produce a
histogram for p

– To synthesize p, just pick one match at random

◼SAMPLE

◼p

Really Synthesizing One Pixel

◼finite sample
image

◼Generated image

◼p

However, since our sample image is finite, an exact

neighbourhood match might not be present

So we find the best match using SSD error (weighted by a

Gaussian to emphasize local structure), and take all samples

within some distance from that match

◼SAMPLE

Growing Texture

Starting from the initial configuration, we “grow” the

texture one pixel at a time

The size of the neighbourhood window is a parameter that

specifies how stochastic the user believes this texture to be

To grow from scratch, we use a random 3x3 patch from

input image as seed

Some Details
• Growing is in “onion skin” order

– Within each “layer”, pixels with most neighbors are
synthesized first

– If no close match can be found, the pixel is not
synthesized until the end

• Using Gaussian-weighted SSD is very important

– to make sure the new pixel agrees with its closest
neighbors

– Approximates reduction to a smaller neighborhood
window if data is too sparse

Randomness Parameter

More Synthesis Results

Increasing window size

More Results
◼wood ◼granite

More Results
◼white bread ◼brick wall

Constrained Synthesis

Visual Comparison

◼[DeBonet, ‘97] ◼Our

approach

◼Simple tiling

◼Synthetic

tilable

◼texture

Failure Cases

◼Growing garbage ◼Verbatim copying

Homage to Shannon

Constrained Text Synthesis

Texture Synthesis -1

Inverse Texture Synthesis

• “Inverse Texture Synthesis”, Wei, Han, Zhou,
Bao, Guo, Shum, 2008

Inverse Texture Synthesis

Inverse Texture Synthesis

• https://www.youtube.com/watch?v=cJJkQoFjQPU

https://www.youtube.com/watch?v=cJJkQoFjQPU

Making Stuff

• Texture Synthesis

– Make/replicate small fragments

• Image Synthesis, Generative 2D Images, Procedural
Modeling

– Make 2D images

• Model Synthesis, Generative 3D Modeling,
Procedural Modeling

– Make 3D models

◼40

Procedural Modeling

• Apply algorithms for producing objects and
scenes

• The rules may either be embedded into the
algorithm, configurable by parameters, or
externally provided

• Key notions:

– Detail amplification: from a little, make a lot, but
not random

– Kolmogorov Complexity: “a measure of the
complexity or randomness of an object”

◼41

Procedural Modeling

• 1-2.5D:

– Fractals

– Terrains

– Image-synthesis

• Perlin Noise

• Clouds

• 3D:

– Plants

– Cities

– And procedures in general…

Fractals

• Consider a simple line fractal

– Split a line segment, randomize the height of the midpoint
by some number in the [-r,r] range

– Repeat and randomize by [-r/2,r/2]

– Continue until a desired number of steps, randomizing by
half as much each step

Fractals and Terrains

• A similar process can be applied to squares in the xz plane
(Diamond-Square Algorithm):
– At each step, an xz square is subdivided into 4 squares, and the y

component of each new point is randomized

– By repeating this process recursively, we can generate a mountain
landscape

Terrains

• A similar process can be applied to squares in the xz
plane

– At each step, an xz square is subdivided into 4 squares, and
the y component of each new point is randomized

– By repeating this process recursively, we can generate a
mountain landscape

Image Synthesis

• Procedurally generate an image (pixels)

Idea: Perlin Noise

• Procedurally generate noise

– http://js1k.com/demo/543

http://js1k.com/demo/543

Plant Modeling

• The Algorithmic Beauty of Plants

Background: Chomsky Hierarchy

• Type 0 grammars

– Unrestricted, recognized by Turing machine

• Type 1 grammars

– Context-sensitive grammars

• Type 2 grammars

– Context-free grammars

• Type 3 grammars

– Regular grammars (e.g., regular expressions)

Lindenmayer system (or L-system)

• A context-free or context-sensitive grammar

• All rules are applied in “every iteration” before
jumping to the next level/iteration

• Can be deterministic or non-deterministic

L-system

• Variables: a

• Constants: +, - (rotations of + or – 90 degrees)

• Initial string (axiom): s=a

• Rules: a → a+a-a-a+a

(Context-Free) L-system for Plants

L-system for Plants (stochastic)

L-system for Plants (3D)

Virtual Ecosystem

Koch Snowflake

Demo

• http://nolandc.com/sandbox/fractals/

http://nolandc.com/sandbox/fractals/

Shape Grammar

• Is used to generate geometric models from a
set of shapes and rules

Shape Grammar

../../grammars/shape-grammars.pdf

Shape Grammar

Shape Grammar

Exercise: let’s make some art!

Shape Grammar

Shape Grammar

Shape Grammar

• Style: Mediterranean

Cellular Automata

• A CA is a spatial lattice of N cells, each of which is one of k states at time t.

• Each cell follows the same simple rule for updating its state.

• The cell's state s at time t+1 depends on its own state and the states of
some number of neighbouring cells at t.

• For one-dimensional CAs, the neighbourhood of a cell consists of the cell
itself and r neighbours on either side. Hence, k and r are the parameters of
the CA.

• CAs are often described as discrete dynamical systems with the capability to
model various kinds of natural discrete or continuous dynamical systems

John Conway’s Game of Life

• 2D cellular automata system.

• Each cell has 8 neighbors - 4 adjacent
orthogonally, 4 adjacent diagonally. This is
called the Moore Neighborhood.

John Conway’s Game of Life

• A live cell with 2 or 3 live neighbors survives to the
next round.

• A live cell with 4 or more neighbors dies of
overpopulation.

• A live cell with 1 or 0 neighbors dies of isolation.

• An empty cell with exactly 3 neighbors becomes a
live cell in the next round.

Is it alive?

• http://www.bitstorm.org/gameoflife/

• Compare it to the definitions…

http://www.bitstorm.org/gameoflife/

Cellular Automata

• Used in computer graphics:

– Cellular Texturing

../../grammars/cell-texs.pdf

Urban Procedural Modeling

• Cities

• Buildings

• CityEngine

– CityEngine

– http://proceedings.esri.com/library/userconf/devs
ummit12/papers/developing_with_esri_cityengin
e.pdf

grammars/proc-mod-cities.pdf
grammars/proc-mod-bldgs.pdf
http://www.esri.com/software/cityengine
http://proceedings.esri.com/library/userconf/devsummit12/papers/developing_with_esri_cityengine.pdf
http://proceedings.esri.com/library/userconf/devsummit12/papers/developing_with_esri_cityengine.pdf
http://proceedings.esri.com/library/userconf/devsummit12/papers/developing_with_esri_cityengine.pdf

Videos and more

• Procedural Modeling of Cities
– http://www.youtube.com/watch?v=khrWonALQiE

• Procedural Modeling of Buildings
– http://www.youtube.com/watch?v=iDsSrMkW1uc

• Procedural Modeling of Structurally Sound
Masonry Buildings
– http://www.youtube.com/watch?v=zXBAthLSxSQ

• Image-based Procedural Modeling of Facades

– http://www.youtube.com/watch?v=SncibzYy0b4

http://www.youtube.com/watch?v=khrWonALQiE
http://www.youtube.com/watch?v=iDsSrMkW1uc
http://www.youtube.com/watch?v=zXBAthLSxSQ
http://www.youtube.com/watch?v=SncibzYy0b4

Videos and more

• Image-based Modeling
– http://www.ece.nus.edu.sg/stfpage/eletp/Projects/ImageBasedModeling/

– Facades: http://www.youtube.com/watch?v=amD6_i3MVZM

• Inverse Procedural Modeling of Cities

– https://www.youtube.com/watch?v=HntNsZbWIgg&featur
e=youtu.be

• Our Work:

– CGVLAB Urban

http://www.ece.nus.edu.sg/stfpage/eletp/Projects/ImageBasedModeling/
http://www.youtube.com/watch?v=amD6_i3MVZM
https://www.youtube.com/watch?v=HntNsZbWIgg&feature=youtu.be
https://www.youtube.com/watch?v=HntNsZbWIgg&feature=youtu.be
http://www.cs.purdue.edu/cgvlab/urban/

	Slide 1: Making Stuff: Synthesis, Generative Modeling, and Procedural Modeling
	Slide 2: Making Stuff
	Slide 3: Making Stuff
	Slide 4: Synthesis by Tiling
	Slide 5: Synthesis by Tiling
	Slide 6: Synthesis by Tiling
	Slide 7: Synthesis by Tiling
	Slide 8: Synthesis by Tiling
	Slide 9: Synthesis by Tiling
	Slide 10: Synthesis by Tiling
	Slide 11: Synthesis by Tiling
	Slide 12: Synthesis by Tiling
	Slide 13: Synthesis by Tiling
	Slide 14: Bricks are similar but not identical
	Slide 15: Solution?
	Slide 16: Texture Synthesis
	Slide 17: Goal of Texture Synthesis
	Slide 18: The Challenge
	Slide 19: Our Approach
	Slide 20: Motivation from Language
	Slide 21: Mark V. Shaney (Bell Labs)
	Slide 22: Synthesizing One Pixel
	Slide 23: Really Synthesizing One Pixel
	Slide 24: Growing Texture
	Slide 25: Some Details
	Slide 26: Randomness Parameter
	Slide 27: More Synthesis Results
	Slide 28: More Results
	Slide 29: More Results
	Slide 30: Constrained Synthesis
	Slide 31: Visual Comparison
	Slide 32: Failure Cases
	Slide 33: Homage to Shannon
	Slide 34: Constrained Text Synthesis
	Slide 35: Texture Synthesis -1
	Slide 36: Inverse Texture Synthesis
	Slide 37: Inverse Texture Synthesis
	Slide 38: Inverse Texture Synthesis
	Slide 39: Making Stuff
	Slide 40: Procedural Modeling
	Slide 41: Procedural Modeling
	Slide 42: Fractals
	Slide 43: Fractals and Terrains
	Slide 44: Terrains
	Slide 45: Image Synthesis
	Slide 46: Idea: Perlin Noise
	Slide 47: Plant Modeling
	Slide 48: Background: Chomsky Hierarchy
	Slide 49: Lindenmayer system (or L-system)
	Slide 50: L-system
	Slide 51: (Context-Free) L-system for Plants
	Slide 52: L-system for Plants (stochastic)
	Slide 53: L-system for Plants (3D)
	Slide 54: Virtual Ecosystem
	Slide 55: Koch Snowflake
	Slide 56: Demo
	Slide 57: Shape Grammar
	Slide 58: Shape Grammar
	Slide 59: Shape Grammar
	Slide 60: Shape Grammar
	Slide 61: Exercise: let’s make some art!
	Slide 62: Shape Grammar
	Slide 63: Shape Grammar
	Slide 64: Shape Grammar
	Slide 65: Cellular Automata
	Slide 66: John Conway’s Game of Life
	Slide 67: John Conway’s Game of Life
	Slide 68: Is it alive?
	Slide 69: Cellular Automata
	Slide 70: Urban Procedural Modeling
	Slide 71: Videos and more
	Slide 72: Videos and more

