
Graphics Pipeline

CS535

Daniel G. Aliaga
Department of Computer Science

Purdue University

Ray-tracing – Inverse mapping
for every pixel

construct a ray from the eye
for every object in the scene

intersect ray with object
find closest intersection with the ray
compute normal at point of intersection
compute color for pixel
shoot secondary rays

Pipeline – Forward mapping

Start from the geometric primitives to find the values of
the pixels

Fixed Pipeline

Programmable Pipeline
(High-level Shading Language)

Alternate Pipelines?

Standard pipeline….

A Sorting Classification of
(Parallel) Graphics Pipelines

• Sort-first
• Sort-middle
• Sort-last

Sort First

Sort Middle

Sort Last

Sort First

• Advantages:
– Low communication requirements when the tessellation

ratio and the degree of oversampling are high, or when
frame-to-frame coherence can be exploited.

– Processors implement entire rendering pipeline for a
portion of the screen.

• Disadvantages:
– Susceptible to load imbalance. Primitives may clump into

regions, concentrating the work on a few renderers.
– To take advantage of frame-to-frame coherence, retained

mode and complex data handling code are necessary.

Sort Middle

• Advantages:
– General and straightforward; redistribution occurs

at a natural place in the pipeline.

• Disadvantages:
– High communication costs if tessellation ratio is

high.
– Susceptible to load imbalance between rasterizers

when primitives are distributed unevenly over the
screen.

Sort Last

• Advantages:
– Renderers implement the full rendering pipeline

and are independent until pixel merging.
– Less prone to load imbalance.
– SL-full merging can be embedded in a linear

network, making it linearly scalable.

• Disadvantage:
– Pixel traffic may be extremely high, particularly

when oversampling.

Graphics Rendering History

• IKONAS Graphics System (1978)
– (basically a dedicated CPU)

Graphics Rendering History

• TAAC Graphics Accelerator Board (a GPU…)

Graphics Rendering History

https://www.youtube.com/watch?v=9dHYdhE4-Gk

Graphics Rendering History

• Silicon Graphics Personal Iris (1986)
– CPU and GPU (a sort first architecture)
– “gl” appeared
– HP had “starbase”
– (OpenGL appeared

 in 1991)

Graphics Rendering History

• Renderman: a programmable shading
language (1986)

Graphics Rendering History

• PixelPlanes 1,2,3,4,5
– (a sort middle architecture)

Graphics Rendering History

• PixelFlow
– A sort-last architecture
– Formally supports programmable shading

Graphics Rendering History

• PixelFlow -> HP

Graphics Rendering History

• PixelFlow -> HP

Graphics Rendering History

• PixelFlow -> NVIDIA

Graphics Rendering History

“Standard” Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

“Standard” Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Modeling Transformations

• Most popular transformations in graphics
– Translation
– Rotation
– Scale
– Projection

• In order to use a single matrix for all, we use
homogeneous coordinates…

Modeling Transformations

Modeling Transformations

And many more…

“Standard” Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Diffuse

(mostly)

Specular++

Environment Mapping

Subsurface Scatterring

Others

Ambient occlusion

Radiosity

Transparency

Others

Lighting and Shading

• Light sources
– Point light

• Models an omnidirectional light source (e.g., a bulb)
– Directional light

• Models an omnidirectional light source at infinity
– Spot light

• Models a point light with direction

• Shade model
– Ambient shading
– Diffuse reflection
– Specular reflection

Lighting and Shading

• Diffuse reflection
– Lambertian model

Lighting and Shading

• Diffuse reflection
– Lambertian model

Lighting and Shading

• Diffuse reflection
– Lambertian model

Lighting and Shading

• Specular reflection
– Phong model

Lighting and Shading

• Specular reflection
– Phong model

Lighting and Shading

• Specular reflection
– Phong model

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Viewing Transformation



























=

1
10
tR~

Z
Y
X

xc

)~(~ CXRxc −=
RCXRxc −=

~~

t−

zyx RRRR =
3x3 rotation matrices

[]Tzyx tttt =
translation vector

World-to-camera matrix M

“Standard” Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

“Standard” Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

f Z
x = f X

Z
y = f Y

Z

Perspective projection

(X, Y, Z)f

image plane
eye/viewpoint

(x, y)

z

optical axis

Z

Yy?

y = Y &

Perspective Projection


































=

















1
0100
000
000

Z
Y
X

f
f

Z
fY
fX









ZfY
ZfX

/
/

=







y
x

OpenGL 3D Viewing

H&B 10-10:365-371

3D Viewing in OpenGL:

Position camera;
Specify projection.

OpenGL 3D Viewing

z

x

y

View volume

Camera always in origin, in direction of negative z-axis.
Convenient for 2D, but not for 3D.

OpenGL 3D Viewing

Solution for view transform: Transform your model
such that you look at it in a convenient way.

Approach 1: Carefully do it yourself. Apply rotations,
translations, scaling, etc., before rendering the model.

Approach 2: Use gluLookAt();

OpenGL 3D Viewing

MatrixMode(GL_MODELVIEW);
gluLookAt(x0,y0,z0, xref,yref,zref, Vx,Vy,Vz);

x0,y0,z0: P0, viewpoint, location of camera;
xref,yref,zref: Pref, centerpoint;
Vx,Vy,Vz: V, view-up vector.

Default: P0 = (0, 0, 0); Pref = (0, 0, −1); V=(0, 1, 0).

OpenGL 3D Viewing

z

x
y

Orthogonal projection:
MatrixMode(GL_PROJECTION);
glOrtho(xwmin, xwmax, ywmin, ywmax, dnear, dfar);

xwmin

xwmaxywmin

ywmax

xwmin, xwmax, ywmin,ywmax:
specification window

dnear: distance to near clipping plane
dfar : distance to far clipping plane

Select dnear and dfar right:
dnear < dfar,
model fits between clipping planes.

OpenGL 3D Viewing

H&B 10-10:365-371

Perspective projection:
MatrixMode(GL_PROJECTION);
glFrustrum(xwmin, xwmax, ywmin, ywmax, dnear, dfar);

xwmin
xwmaxywmin

ywmax

xwmin, xwmax, ywmin,ywmax:
specification window

dnear: distance to near clipping plane
dfar : distance to far clipping plane

z
x

y

Standard projection: xwmin = -xwmax,
ywmin = -ywmax

Select dnear and dfar right:
0 < dnear < dfar,
model fits between clipping planes.

OpenGL 3D Viewing

Finally, specify the viewport (just like in 2D):
glViewport(xvmin, yvmin, vpWidth, vpHeight);

xvmin, yvmin: coordinates lower left corner (in pixel coordinates);
vpWidth, vpHeight: width and height (in pixel coordinates);

(xvmin, yvmin)

vpWidth

vpHeight

H&B 8-4:265-267

OpenGL 2D Viewing

In short:

glMatrixMode(GL_PROJECTION);
glFrustrum(xwmin, xwmax, ywmin, ywmax, dnear, dfar);
glViewport(xvmin, yvmin, vpWidth, vpHeight);
glMatrixMode(GL_MODELVIEW);

gluLookAt(x0,y0,z0, xref,yref,zref, Vx,Vy,Vz);

To prevent distortion, make sure that:
(ywmax – ywmin)/(xwmax – xwmin) = vpWidth/vpHeight

Make sure that you can deal with resize/reshape of the (OS) window.

H&B 8-4:265-267

“Standard” Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

Scan Conversion/Rasterization

• Determine which fragments get generated
• Interpolate parameters (colors, textures,

normals, etc.)

Scan Conversion/Rasterization

• Determine which fragments get generated
• Interpolate parameters (colors, textures,

normals, etc.)

Scan Conversion/Rasterization

• Determine which fragments get generated
• Interpolate parameters (colors, textures,

normals, etc.)

• How?

Scan Conversion/Rasterization

• Determine which fragments get generated
• Interpolate parameters (colors, textures,

normals, etc.)

• E.g., Barycentric coords (see whiteboard!)

Barycentric coordinates

p2

p1

p3q

𝑞𝑞 = 𝛼𝛼𝑝𝑝1 + 𝛽𝛽𝑝𝑝2 + 𝛾𝛾𝑝𝑝3
If [𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾 = 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼,𝛽𝛽, 𝛾𝛾 ≥ 0],

then q inside triangle (𝑝𝑝1,𝑝𝑝2,𝑝𝑝3)

Can also write:
𝑞𝑞 = 𝛼𝛼𝑝𝑝1 + 𝛽𝛽𝑝𝑝2 + (1 − 𝛼𝛼 − 𝛽𝛽)𝑝𝑝3

Barycentric coordinates

p2

p1

p3q

How to solve for α and β in
𝑞𝑞 = 𝛼𝛼𝑝𝑝1 + 𝛽𝛽𝑝𝑝2 + 1 − 𝛼𝛼 − 𝛽𝛽 𝑝𝑝3?

Two equations, two unknowns:
use 2x2 matrix inversion…

	Graphics Pipeline
	Ray-tracing – Inverse mapping
	Pipeline – Forward mapping
	Fixed Pipeline
	Alternate Pipelines?
	A Sorting Classification of �(Parallel) Graphics Pipelines
	Sort First
	Sort Middle
	Sort Last
	Sort First
	Sort Middle
	Sort Last
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	Graphics Rendering History
	“Standard” Graphics Pipeline
	“Standard” Graphics Pipeline
	Modeling Transformations
	Modeling Transformations
	Modeling Transformations
	“Standard” Graphics Pipeline
	Diffuse
	Specular++
	Environment Mapping
	Subsurface Scatterring
	Others
	Others
	Lighting and Shading
	Lighting and Shading
	Lighting and Shading
	Lighting and Shading
	Lighting and Shading
	Lighting and Shading
	Lighting and Shading
	Computer Graphics Pipeline
	Viewing Transformation
	“Standard” Graphics Pipeline
	“Standard” Graphics Pipeline
	Perspective projection
	Perspective Projection
	OpenGL 3D Viewing
	OpenGL 3D Viewing
	OpenGL 3D Viewing
	OpenGL 3D Viewing
	OpenGL 3D Viewing
	OpenGL 3D Viewing
	OpenGL 3D Viewing
	OpenGL 2D Viewing
	“Standard” Graphics Pipeline
	Scan Conversion/Rasterization
	Scan Conversion/Rasterization
	Scan Conversion/Rasterization
	Scan Conversion/Rasterization
	Barycentric coordinates
	Barycentric coordinates

